Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς

Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

P(A ) = 1 P(A). Μονάδες 7

= +. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α. Μονάδες 7.

P(A ) = 1 P(A). Μονάδες 7

P(A ) = 1 P(A). Μονάδες 7

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Μονάδες 10. x. (μονάδες 2) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο Α1. Απάντηση από το Σχολικό βιβλίο σελίδα 28

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑ 1o A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

,,, και τα ενδεχόμενα

P A B P(A) P(B) P(A. , όπου l 1

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

ευτέρα, 18 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

(f(x)+g(x)) =f (x)+g (x), x R

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΠΑΡΑΣΚΕΥΗ 20 ΜΑΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

x. Αν ισχύει ( ) ( )

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Μαθηματικών της Ώθησης

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.

Μονάδες 10 ΦΡΟΝΤΙΣΤΗΡΙΑ ΦΛΩΡΟΠΟΥΛΟΥ Σελίδα 1

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις

Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

( ) ( ) ( ) ( ) ( ) Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A ΘΕΜΑ Β

(t) x (t) t t. t 2 ή t S x( 2) x( 0) S x( 3) x( 2) 10 m

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ

Δ ι α γ ω ν ί ς μ α τ α π ρ ο ς ο μ ο ί ω ς η σ 1

ΓΕΛ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014

Transcript:

Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό 1 ΦΡΟΝΤΙΣΤΗΡΙ δυαδικό Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς 2 0 1 6 Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς Τα θέματα επεξεργάστηκαν οι καθηγητές των Φροντιστηρίων «δυαδικό» Παυλίδου Π. Μουρατίδης. Θ Ε Μ A1. ν και ' είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου Ω να αποδείξετε ότι για τις πιθανότητες τους ισχύει P(A')=1-P(A) A2. Να δώσετε τον ορισμό της διαμέσου (δ) ενός δείγματος ν παρατηρήσεων. Μονάδες 7 A3. Έστω μια συνάρτηση f με πεδίο ορισμo;y το. Πότε λέμε ότι η συνάρτηση f παρουσιάζει τοπικό ακρότατο στο x0 A 4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) ν A και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου Ω με τότε για τις πιθανότητες ισχύει P(A) P(B). β) Ο σταθμισμένος αριθμητικός μέσος ή σταθμικός μέσος είναι μέτρο διασποράς γ) ν οι συναρτήσεις f και g είναι παραγωγίσιμες, τότε ισχύει ότι: (f(x) g(x))' f '(x)g(x) f(x)g'(x) δ) Το ραβδόγραμμα χρησιμοποιείται για τη γραφική παράσταση των τιμών μιας ποιοτικής μεταβλητής. ε) ν μία συνάρτηση f είναι παραγωγίσιμη σε ένα διάστημα Δ και ισχύει f (x)>0 για κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως φθίνουσα στο Δ. Μονάδες 10 π ά ν τ η σ η 1. πόδειξη σχολ. βιβλίο σελ. 150 2. Ορισμός σχολ. βιβλίο σελ. 87 3. Θεωρία σχολ. βιβλίο σελ. 14 4. α) Σωστό β) Λάθος γ) Σωστό δ) Σωστό ε) Λάθος

2 Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό Θ Ε Μ Β 3 x 5 2 Δίνεται η συνάρτηση f με τύπο f (x) x 6x 1, x. 3 2 B1. Να βρείτε τα ακρότατα της συνάρτησης f. Μονάδες 9 B2. Να βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της συνάρτησης f στο σημείο της (0,f(0)). Μονάδες 8 f '(x) 12 Β3. Να υπολογίσετε το όριο lim x 1 x 1 π ά ν τ η σ η B1. 3 x 5 2 f (x) x 6x 1, x 3 2 ' 2 f (x) x 5x 6 x ' 2 f (x) 0 x 5x 6 0 x 2 ή x 3 Μονάδες 8 x - 2 3 + f'(x) + - + f(x) H f είναι γνησίως αύξουσα στο (-,2) και στο [3,+ ) και γνησίως φθίνουσα στο [2,3]. Έχει τοπικό μέγιστο το f(2)=11/3 και τοπικό ελάχιστο f(3)=7/2 B2. ε: y=αx+β α=f'(0)=6 Άρα ε: y=6x+β f(0)=-1 To A ανήκει στην ε άρα -1=6 0+β β=-1 οπότε ε: y=6x-1 B3. ' 2 2 f (x) 12 x 5x 6 12 x 5x 6 lim lim lim x1 x 1 x1 x 1 x1 x 1 (x 1)(x 6) lim lim(x 6) 7 x1 x1 x1

Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό 3 Θ Ε Μ Γ Μεταξύ οικογενειών με τρία παιδιά επιλέγουμε τυχαία μία οικογένεια και εξετάζουμε τα παιδιά της ως προς το φύλο και ως προς τη σειρά γέννησης τους. Γ1. Να προσδιορίσετε το δειγματικό χώρο Ω του πειράματος χρησιμοποιώντας ένα δενδρόγραμμα. Γ2. Να παρασταθούν με αναγραφή των στοιχείων τους τα ενδεχόμενα που προσδιορίζονται από την αντίστοιχη ιδιότητα: : «το πρώτο παιδί είναι κορίτσι» Β: «ο αριθμός των κοριτσιών υπερβαίνει τον αριθμό των αγοριών» Γ: «τα δύο πρώτα παιδιά του ίδιου φύλλου». Γ3. Υποθέτουμε ότι ο δειγματικός χώρος Ω αποτελείται από ισοπίθανα απλά ενδεχόμενα. α) Να υπολογίσετε την πιθανότητα των παρακάτω ενδεχομένων:,, β) Να υπολογίσετε την πιθανότητα των παρακάτω ενδεχομένων: π ά ν τ η σ η Η: «δεν πραγματοποιείται κανέναν από τα,β» Θ: «πραγματοποιείται ακριβώς ένα από τα,β» Μονάδες 9 Γ1. Έστω τα ενδεχόμενα : "το παιδί να είναι αγόρι" : "το παιδί να είναι κορίτσι" Άρα Ω={,,,,,,, }

4 Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό Γ2. ={,,, } Β={,,, } Γ={,,, } Γ3. α) Δ= ={,, } Ε= = {,,,, } Ζ=Γ-Ε={, } N(E) 5 N( ) 2 1 P(E) P( ) Άρα N( ) 8 και N( ) 8 4 β) 5 3 P(4) P((A B)') 1 P(A B) 1 8 8 P( ) P((A B) (B A)) P(A B) P(B A) P(A) P(A B) P(B) P(A B) 5 3 1 P(A B) P(A B) 8 8 4 Θ Ε Μ Δ Οι χρόνοι (σε λεπτά) που χρειάστηκαν ν υπολογιστές για να τρέξουν ένα πρόγραμμα, έχουν ομαδοποιηθεί σε 4 ισοπλατείς κλάσεις πλάτους c, όπως στον παρακάτω πίνακα: Χρόνος (σε λεπτά) εντρική Τιμή xi Συχνότητα vi [8, ) 20 [, ) 14 15 [, ) 10 [, ) v4 ΣΥΝΟΛΟ v=. Δ1. Να αποδείξετε ότι c=4. Δ2. ν η μέση τιμή των χρόνων είναι x 14 να αποδείξετε ότι ν4=5 και στη συνέχεια να μεταφέρετε στο τετράδιο σας τον παραπάνω πίνακα κατάλληλα συμπληρωμένο. Δ3. ν οι παρατηρήσεις είναι ομοιόμορφα κατανεμημένες σε κάθε κλάση, να βρείτε πόσοι υπολογιστές χρειάστηκαν τουλάχιστον 9 λεπτά για να τρέξουν το πρόγραμμα. Μονάδες 5

Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό 5 Δ4. Να αποδείξετε ότι η τυπική απόκλιση των χρόνων είναι s=4 και να εξετάσετε αν το δείγμα των χρόνων είναι ομογενές. Δ4. Να αποδείξετε ότι η τυπική απόκλιση των χρόνων είναι s=4 και να εξετάσετε αν το δείγμα των χρόνων είναι ομογενές. Δ5. ντικαθιστούμε τον επεξεργαστή κάθε υπολογιστή με έναν ταχύτερο και βρίσκουμε ότι κάθε υπολογιστής τρέχει τώρα το πρόγραμμα στο 80% του χρόνου που χρειαζόταν πριν. Να εξετάσετε ως προς την ομοιογένεια το καινούργιο δείγμα χρόνων. π ά ν τ η σ η Δ1. Η δεύτερη κλάση είναι η [8+c, 8+2c] οπότε έχουμε: (8 c) (8 2c) 14 16 3c 28 3c 12 c 4 2 Δ2. 1 η κλάση [8,12) άρα x 1 =10 2 η κλάση [12,16) άρα x 2 =14 3 η κλάση [16,20) άρα x 3 =18 4 η κλάση [20,24) άρα x 4 =22 xv 1020 1415 1810 22v x 14 v 20 15 10 v i i 4 14(45 v ) 20 210 180 22v 4 4 4 4 630 14v 590 22v 4 4 8v 40 v 5 4 Δ3. Στην κλάση [8,12) έχουμε v 1 =20 οπότε από το 9 έως το 12 θα έχουμε (3/4) 20=15 παρατηρήσεις. Δ4. x i v i x i - x (x i - x ) 2 (x i - x ) 2 v i 10 20-4 16 320 14 15 0 0 0 18 10 4 16 160 22 5 8 64 320 50 800

6 Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό 2 1 2 1 s (xi x) vi 800 16 v 50 2 Ά s s 16 4 5 4 CV 0, 286 28,6% 14 άρα το δείγμα είναι ομοιογενές. x Δ5. ν y i οι καινούριες κεντρικές τιμές θα είναι : πό γνωστή εφαρμογή του σχολικού έχουμε ότι y 0,8x 0,8 14 και s 0,8 s 0,8 4 y Οπότε: y y x s 0,84 4 CV 28,6% 0,814 14 δηλαδή δεν άλλαξε. 80 y x 0,8x 100 i i i