Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου Θέµα Α A1. Για δυο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδείξετε ότι: Ρ( Α Β) = Ρ(Α) + Ρ(Β) Ρ( Α Β) Α. Πότε µια συνάρτηση f µε πεδίο ορισµού Α λέγεται συνεχής; Α3. Έστω ένας δειγµατικός χώρος Ω={ω 1, ω,..., ω ν } µε πεπερασµένο πλήθος στοιχείων. Να διατυπώσετε τον αξιωµατικό ορισµό της πιθανότητας. Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. α) Σε κανονικούς πληθυσµούς το 100% των παρατηρήσεων βρίσκεται στο διάστηµα ( x 3s, x + 3s). β) Όταν προσθέσουµε µια σταθερά στις παρατηρήσεις µιας µεταβλητής, τότε η µέση τιµή και η τυπική απόκλιση αυξάνονται κατά αυτή τη σταθερά. γ) Στο ιστόγραµµα συχνοτήτων οµαδοποιηµένων δεδοµένων, το εµβαδόν του χωρίου που ορίζεται από το πολύγωνο συχνοτήτων και τον οριζόντιο άξονα είναι ίσο µε το µέγεθος του δείγµατος. δ) Εάν ένα δείγµα έχει συντελεστή µεταβολής ίσο µε 10% τότε είναι οµοιογενές. ε) Ισχύει ηµχ στ) = συνχ Το τοπικό µέγιστο είναι πάντοτε µεγαλύτερο από το τοπικό ελάχιστο ζ) Αν µια συνάρτηση είναι συνεχής στο πεδίο ορισµού της, τότε θα είναι και παραγωγίσιµη σε αυτό. η) Ισχύει: ( ln5) = 1 5 θ) Ισχύει: ( f (x) g(x) ) = f (x) g (x) ι) Αν ισχύει lim x x 0 f (x) = l 1 τότε lim ( k f (x)) = k l 1 x x0 (1 µονάδες ανά ερώτηµα)
Θέµα Β Έστω Χ µια ποσοτική µεταβλητή ως προς την οποία εξετάζουµε ένα δείγµα µεγέθους ν και x 1, x, x 3,, x v, οι παρατηρήσεις µε µέση τιµή x > 0 και τυπική απόκλιση s 0. Θεωρούµε τις συναρτήσεις: g(x) = 4x ( x ) 3 x +18s, x R και f (x) = CV x 3 9x + g(7) x 5, x R Αν η συνάρτηση g(x) παρουσιάζει ακρότατο στο σηµείο A (s 3, 0): B1. Να βρεθούν η µέση τιµή x και η τυπική απόκλιση s B. Να εξεταστεί αν το δείγµα είναι οµοιογενές. Β3. Να βρεθεί η τιµή του x, για την οποία ο ρυθµός µεταβολής της f(x) γίνεται ελάχιστος Β4. Με την παραδοχή ότι η κατανοµή είναι περίπου κανονική, επιλέγουµε στην τύχη µια παρατήρηση από τις ν παρατηρήσεις. Ποια είναι η πιθανότητα να βρίσκεται µεταξύ των αριθµών και 10; Β5. Αυξάνουµε κάθε παρατήρηση κατά την ίδια ποσότητα λ > 0. Να βρείτε την µικρότερη τιµή του λ, ώστε το δείγµα να είναι οµοιογενές. Θέµα Γ Εξετάζουµε ένα δείγµα µεγέθους ν ως προς µία ποσοτική µεταβλητή Χ και οµαδοποιούµε τις παρατηρήσεις του δείγµατος σε 4 ισοπλατείς κλάσεις πλάτους c, όπως φαίνεται στον παρακάτω πίνακα: κλάσεις v i f i % [α ) v 1 [ ) v [ ) v 3 [ ] v 4 Σύνολο v
Γ1. Να βρεθούν οι συχνότητες ν 1, ν, ν 3, ν 4 των κλάσεων όταν: το ν 1 = lim 5x 18x + 9 x +16 5 το ν ισούται µε την τιµή της συνάρτησης f (x) = ln x 1 + ( x + 3) 11x + 7, στο σηµείο όπου η εφαπτοµένη της είναι παράλληλη µε τον άξονα x x το ν 3 ισούται µε την ελάχιστη τιµή της συνάρτησης g(x) = 3x + 6x +14 το ν 4 = 3v v 3 v 1 +10 (10 µονάδες) Γ. Αν το 40% των παρατηρήσεων είναι µικρότερες του 3 και το 50% των παρατηρήσεων είναι µεγαλύτερες ή ίσες του 4, τότε να αποδείξετε ότι α = 1 και c = και να συµπληρώσετε τον πίνακα. Γ3. Να υπολογίσετε την µέση τιµή του παραπάνω δείγµατος. Γ4. Να βρεθεί ο αριθµός των παρατηρήσεων που είναι µεταξύ του και του 7 Θέµα Δ Έστω τα ενδεχόµενα Α, Β ενός δειγµατικού χώρου Ω και η συνάρτηση: f (x) = P(A B)ln x + Ρ(Β)x 3 x + 3P(A), η οποία παρουσιάζει ακρότατο στο x 0 = 1 Δ1. Να υπολογίσετε την πιθανότητα να πραγµατοποιείται ένα τουλάχιστον από τα ενδεχόµενα Α και Β (7 µονάδες) Έστω επιπλεόν οι παρατηρήσεις: Ρ( ),Ρ(Α Β), Ρ(Β),Ρ(Α),Ρ(Α Β), Ρ( ), Ρ(Α Β), Ρ(Ω) Που έχουν διάµεσο ίση µε το µισό της πιθανότητας να πραγµατοποιείται µόνο ένα από τα ενδεχόµενα Α και Β Δ. Να δείξετε ότι τα ενδεχόµενα Α, Β είναι ασυµβίβαστα (8 µονάδες)
Δ3. Εάν επιπλέον ισχύει ότι Ρ(Α) = Ρ(Β), να υπολογίσετε τις πιθανότητες Ρ(Α) και Ρ(Β) Δ4. Για τις τιµές των Ρ(Α) και Ρ(Β) που βρήκατε στο ερώτηµα Δ3., να µελετήσετε την f(x) ως προς την µονοτονία.
Λύσεις Διαγωνίσµατος Θέµα Α Α1. Σχολικό βιβλίο σελ. 151 Α. Σχολικό βιβλίο σελ. 16 Α3. Σχολικό βιβλίο σελ. 149 Α4. α) Λάθος β) Λάθος γ) Σωστό δ) Σωστό ε) Λάθος στ) Λάθος ζ) Λάθος η) Λάθος θ) Λάθος ι) Σωστό Θέµα Β Β1. g ( x) = 8x x 3 Εφόσον η g(x) παρουσιάζει ακρότατο στο σηµείο A (s 3, 0), ισχύει ότι: g s 3 = 0 8s 3 = x 3 (1) Το σηµείο A (s 3, 0) επαληθεύει την g(x), δηλαδή: g( s 3 ) = 0 4s 6 ( x ) 3 s 3 +18s = 0 (1) 4s 6 8s 6 +18s = 0 4s 6 +18s = 0 4s( s 5 3) = 0 s = 0 απορ. ή s 5 = 3 s = Για s = : (1) ( x ) 3 = 64 x = 4 Β. CV = s x = = 0, 5 > 0,1 άρα το δείγµα δεν είναι οµοιογενές 4 Β3. Έχουµε: g(7) = 4 και CV = 0,5, άρα: f (x) = x 3 9x + 4x 5 f (x) = 3x 18x + 4 f (x) = 6x 18 f (x) = 0 x = 3
x 0 3 + + f (x) f (x) Ο ρυθµός µεταβολής της f(x) γίνεται ελάχιστος για x = 3 Β4. Η πιθανότητα µεταξύ των αριθµών και 10 είναι: 83,85% Β5. Για να είναι το δείγµα οµοιογενές θα πρέπει: CV 0,1 Η νέα µέση τιµή είναι: y = x + λ = 4 + λ Η νέα τυπική απόκλιση είναι: s y = s x = Άρα CV 0,1 4 + λ 0,1 λ>0 0, 4 + 0,1λ 16 λ λ = 16 Θέµα Γ Γ1. το ν 1 = 5x 18x + 9 lim x +16 5 = lim ( 5x 3) x +16 + 5 x 3 lim 5x 3 lim x +16 5 x + 3 x +16 + 5 ( x +16 5) ( x +16 + 5) = ( 5x 3) ( x +16 + 5) ( x 3) ( 5x 3) x +16 + 5 = 0 x 3 = lim ( x 3) x + 3 Πρέπει x > 1 άρα Α f = ( 0, + ] Η εφαπτοµένη είναι παράλληλη στον x x όταν f ( x) = 0 =
= 1 11 = x + 4x 16 f x x 1 + x + 3 = 0 x 1 x = ή x = 4 απορρίπτεται διότι Α f = 0, + ( ] Οπότε ν = f = ln( 1) + ( + 3) 11 + 7 = 10 g (x) = 6x + 6 = 0 x = 1 x 0 1 + + g (x) g(x) O.E. Η g(x) παρουσιαζει ο.ε. το v 3 = g( 1) = 3( 1) + 6 ( 1) +14 = 3 6 +14 = 11 το v 4 = 3 10 11 0 +10 = 9 Γ. κλάσεις v i f i % [α, α + c) 0 40 [α + c, α + c) 10 0 [α + c, α + 3c) 11 [α + 3c, α + 4c] 9 18 Σύνολο 50 100 Το f 1 % = 40 Οπότε α + c = 3 To 50% βρίσκεται στο κέντρο της ης κλάσης οπότε x = α + c + α + c = 4 α + 3c = 8 α + c = 3 α = 1 α + 3c = 8 c =
Γ3. κλάσεις v i f i % [1, 3) 0 40 [3, 5) 10 0 [5, 7) 11 [7, 9] 9 18 Σύνολο 50 100 κλάσεις x i v i x i v i [1, 3) 0 40 [3, 5) 4 10 40 [5, 7) 6 11 66 [7, 9] 8 9 7 Σύνολο 50 18 x = 18 50 = 4,36 Γ4. ν 1 +ν +ν 3 = 10 +10 +11 = 31 Θέµα Δ Δ1. Αρκεί να βρούµε την πιθανότητα: Ρ(Α Β) Εφόσον η f(x) παρουσιάζει ακρότατο στο x 0 = 1, ισχύει: f (1) = 0 P(A B) Έχουµε: f (x) = + P(B)x 3 x Οπότε: f (1) = 0 P(A B) 1 + P(B) 1 3 = 0 Ρ(Α) Ρ(Α Β) + Ρ(Β) = 3 Ρ(Α Β) = 3 4
Δ. Αρκεί να δείξουµε ότι: Ρ(Α Β) = 0 Για να βρούµε την διάµεσο πρέπει να βάλουµε κατά αύξουσα σειρά τις πιθανότητες. Γνωρίζουµε ότι: Α Β Α,Β Α Β Οπότε έχουµε: Ρ( ), Ρ( ),Ρ(Α Β),Ρ(Β), Ρ(Α), Ρ(Α Β), Ρ(Α Β), Ρ(Ω) Επίσης γνωρίζουµε ότι η διάµεσος είναι ίση µε το µισό πιθανότητας να πραγµατοποιείται µόνο ένα από τα ενδεχόµενα Α και Β, δηλαδή: δ = 1 Ρ ( Α Β) ( Β Α) Άρα δ = t 4 + t 5 = P(A) + P(B) = Ρ ( Α Β) Β Α P(A) + P(B) Ρ(Α) + Ρ(Β) = Ρ(Α) Ρ(Α Β) + Ρ(Β) Ρ(Α Β) Ρ(Α Β) = 0 Δ3. Εφόσον τα Α, Β είναι ασυµβίβαστα ισχύει ότι: P(A B) = P(A) + P(B) P(A) + P(B) = 3 4 Ρ(Α)=Ρ(Β) 3Ρ(Β) = 3 4 Ρ(Β) = 1 4 και Ρ(Α) = 1 Δ4. Α f = (, 0) ( 0, + ) Για Ρ(Α) = 1 και Ρ(Β) = 1 4 έχουµε:
f (x) = 1 x + x 3 = x 3x + x ή x = = 0 x 3x + = 0 x = 1 x 0 1 + x + + + x 3x + + + + f (x) + + f (x) H f(x) είναι γνησίως αύξουσα στα διαστήµατα (0, 1) και (, + ) H f(x) είναι γνησίως φθίνουσα στα διαστήµατα ( +, 0) και (1, )