Ερωτήσεις ανάπτυξης. ** α) Να αποδείξετε ότι αν τα όρια lim - f () - f - είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο. ( ) και β) Να εξετάσετε τη συνέχεια της συνάρτησης f () = lim + στο σηµείο = εφαρµόζοντας το προηγούµενο συµπέρασµα. f () - f - + ( -) - ( ) αν < αν. ** Έστω οι συναρτήσεις f και g οι οποίες είναι παραγωγίσιµες στο (α, β) µε f ( ) = g ( ) και f ( ) = g ( ). Αν ισχύει f () h () g () για (α, β), να αποδείξετε ότι και η h είναι παραγωγίσιµη στο και µάλιστα ισχύει h ( ) = f ( ).. ** Η συνάρτηση g είναι συνεχής στο, η συνάρτηση f είναι παραγωγίσιµη στο και ισχύει f () = - g (), R. Να βρεθεί η τιµή g (). 4. ** ίνεται η συνάρτηση f () = - + +. Να εξετάσετε αν η f είναι παραγωγίσιµη α) στο σηµείο = και β) στο σηµείο = 4. 5. ** Η γραφική παράσταση C f της συνάρτησης f () = - + φαίνεται στο διπλανό σχήµα. α) Να εξετάσετε αν η f είναι παραγωγίσιµη στο =. β) Να σχεδιάσετε τη γραφική παράσταση της συνάρτησης f. y 4 4
6. ** Η γραφική παράσταση µιας συνάρτησης f φαίνεται στο διπλανό σχήµα. α) Να εξετάσετε αν η f είναι παραγωγίσιµη στα σηµεία µε τετµηµένες -,,. β) Να παραστήσετε γραφικά τη συνάρτηση f. 7. ** Να βρείτε την εξίσωση της εφαπτοµένης της γραφικής παράστασης της συνάρτησης f () = - + (εφόσον υπάρχει), σε καθεµιά από τις παρακάτω περιπτώσεις: α) έχει συντελεστή διεύθυνσης λ =. β) σχηµατίζει γωνία 45 µε τον άξονα. γ) είναι παράλληλη στην ευθεία y = + 4. δ) είναι κάθετη στην ευθεία y = - +. ε) είναι παράλληλη στον άξονα. στ) είναι παράλληλη στον άξονα y y. ζ) άγεται από το σηµείο (-, ). 8. ** Να βρείτε την εφαπτοµένη (αν υπάρχει) των γραφικών παραστάσεων των παρακάτω συναρτήσεων στο αντίστοιχο σηµείο: α) f () = ln στο (, ) β) f () = - στο (, ) γ) f () = στο (, ) δ) f () = στο (, ) ε) f () = στο (, ) στ) f () = + - στο (-, 4 ) 5
y 9. ** Να βρείτε την εξίσωση του κύκλου του διπλανού σχήµατος. 45 5. ** ίνεται η συνάρτηση f () = α + β + γ + δ, α. Να βρείτε τη συνθήκη για τα α, β, γ R, ώστε η C f να µην έχει σε κανένα της σηµείο οριζόντια εφαπτοµένη.. ** α) Να σχεδιάσετε τη γραφική παράσταση της συνάρτησης f () = - 6 + 8, να φέρετε τις εφαπτόµενες ε, ε της C f στα σηµεία τοµής της C f µε τον και να δικαιολογήσετε από το σχήµα γιατί οι εφαπτόµενες τέµνονται πάνω στην ευθεία =. β) Να αποδείξετε ότι οι εφαπτοµένες της παραβολής y = α + β + γ, α µε >, στα σηµεία τοµής της µε τον άξονα τέµνονται στον άξονα β συµµετρίας της παραβολής ( = - ). α Σηµείωση: Με βάση την κεντρική ιδέα αυτής της άσκησης (συµµετρία) έχουµε τη δυνατότητα να κατασκευάσουµε όµοιες ασκήσεις που αναφέρονται, για παράδειγµα, σε άρτιες παραγωγίσιµες συναρτήσεις.. ** ίνεται η συνάρτηση f () = ln (α) µε α > και >. α) Να βρεθεί η εξίσωση της εφαπτοµένης της C f στο σηµείο (, f ( )). β) Να αποδείξετε ότι όλες οι παραπάνω εφαπτόµενες στο σηµείο (, f ( )), καθώς µεταβάλλεται το α, διέρχονται από το ίδιο σηµείο. 6
. ** Έστω η συνάρτηση f () = ( - ). Να αποδείξετε ότι η εφαπτοµένη της γραφικής της παράστασης, σε οποιοδήποτε σηµείο της, δεν έχει µε αυτήν άλλο κοινό σηµείο. Σηµείωση: Η παραπάνω άσκηση θα µπορούσε να γενικευθεί για οποιοδήποτε τριώνυµο. 4. ** Για την παραγωγίσιµη συνάρτηση f ισχύει η σχέση: f ( + ) - f ( - ) = - για κάθε R. Να αποδείξετε ότι η εφαπτοµένη της γραφικής παράστασης στο σηµείο (, f ()) είναι κάθετη στην ευθεία y =. 5. ** α) Έστω δύο συναρτήσεις f, g µε πεδίο ορισµού το R. Να γράψετε τις συνθήκες ώστε η C f και η C g στο κοινό τους σηµείο µε τετµηµένη = να δέχονται κοινή εφαπτοµένη. β) ίνονται οι συναρτήσεις f () = - + και g () = - +. Να αποδείξετε ότι οι C f, C g δέχονται κοινή εφαπτοµένη σε ένα σηµείο, του οποίου να υπολογίσετε τις συντεταγµένες. 6. ** Η συνάρτηση f είναι παραγωγίσιµη στο R και η ευθεία (ε) είναι εφαπτοµένη της C f στο σηµείο (, f ()). Μετακινούµε τη C f παράλληλα προς τους άξονες, όπως φαίνεται στο σχήµα, και ονοµάζουµε g τη συνάρτηση η οποία αντιστοιχεί στη C g. α) Να βρείτε µια σχέση η οποία να συνδέει τις συναρτήσεις f και g. β) Με βάση την προηγούµενη σχέση να δείξετε ότι g ( ) = f ( - 4) για κάθε R. γ) Να βρείτε την g (4). 7
7. ** Έστω µια συνάρτηση f παραγωγίσιµη στο R για την οποία ισχύει f (ln) = ln -, >. α) Να αποδείξετε ότι η C f διέρχεται από την αρχή των αξόνων. β) Να βρείτε την εξίσωση της εφαπτοµένης της C f στο σηµείο µε τετµηµένη. γ) Να υπολογίσετε το εµβαδόν του τριγώνου το οποίο σχηµατίζεται από την εφαπτοµένη της C f στο σηµείο της µε τετµηµένη = και τους άξονες και y y. 8. ** Να βρεθούν οι εφαπτόµενες της γραφικής παράστασης της συνάρτησης f () =, οι οποίες διέρχονται από το σηµείο Α (, ). 9. ** Να δείξετε ότι: α) αν f () = συν - συν, τότε f () + f () εφ - ηµ =. β) αν f () = ln +, τότε f () + = ef ().. ** Αν f είναι µια πολυωνυµική συνάρτηση για την οποία ισχύουν: f (4) = και (f ()) = f () για κάθε R, α) να βρεθεί ο τύπος της f. β) να βρεθεί η εξίσωση της εφαπτοµένης της C f που είναι παράλληλη στην ευθεία y = - +.. ** Μια δύναµη εφαρµόζεται σε κινητό που κινείται σε άξονα και του οποίου η απόσταση από την αρχή Ο τη χρονική στιγµή t δίνεται από τη συνάρτηση S (t) = ln (t + ), t > (όπου t ο χρόνος σε sec). α) Να δείξετε ότι το κινητό δεν ήταν σε κατάσταση ηρεµίας όταν εφαρµόστηκε η δύναµη. β) Να δείξετε ότι η κίνηση είναι επιβραδυνόµενη. γ) Να βρείτε το µέτρο της ταχύτητας και της επιβράδυνσης του κινητού, sec µετά την εφαρµογή της δύναµης. 8
. ** Θεωρούµε µια συνάρτηση f παραγωγίσιµη στο R για την οποία ισχύει: f ( + y) = e f (y) + e y f () + y + α για κάθε, y R. α) Να δείξετε ότι f () = - α. β) Να δείξετε ότι η C f περνά από την αρχή των αξόνων. γ) Να δείξετε ότι f ( ) = f ( ) + f () e +, για κάθε R.. ** Μια συνάρτηση είναι περιττή και δύο φορές παραγωγίσιµη στο R. Να δείξετε ότι: α) η γραφική της παράσταση διέρχεται από το (, ). β) f () =. 4. ** Γνωρίζουµε ότι για ισχύει: ν+ - - = + + + + ν. α) Να υπολογίσετε το άθροισµα: + + + + ν ν-,. 4 5 β) Να υπολογίσετε το άθροισµα: + + + + + 4 8 6 9. 5. ** Εξηγήστε γιατί η παρακάτω διαδικασία οδηγεί σε άτοπο 4 = = 4+ 44 + 444 +... +, άρα ( 4 ) = + + + δηλαδή προσθετέοι 444 4..., φορές 4 = 4 + 44 + 4... 44 +, άρα 4 =, εποµένως 4 =!!! φορές 9