Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου 2015 ΘΕΜΑ 1 Ο (6,0 μονάδες) Δίνεται το κύκλωμα του σχήματος, όπου v 1 (t) είναι η είσοδος και v 3 (t) η έξοδος. Να θεωρήσετε μηδενικές αρχικές συνθήκες. v 1 (t) i 1 (t) v 2 (t) i 2 (t) C v 3 (t) 1. Να σχεδιάσετε το ισοδύναμο Διάγραμμα Ροής Σημάτων και να προσδιορίσετε τη συνάρτηση μεταφοράς / με εφαρμογή του τύπου του MASON. 2. Να σχεδιάσετε το ισοδύναμο δομικό (λειτουργικό) διάγραμμα και να προσδιορίσετε τη συνάρτηση μεταφοράς / με κατάλληλους μετασχηματισμούς του δομικού διαγράμματος. Λύση: Οι ολοκληρωδιαφορικές εξισώσεις του συστήματος είναι οι ακόλουθες: Μετασχηματίζοντας κατά Laplace έχουμε: 1. Με βάση τις παραπάνω εξισώσεις του συστήματος και ξεκινώντας τη σχεδίαση του διαγράμματος από την έξοδο, το ζητούμενο Δ.Ρ.Σ. είναι το ακόλουθο: I 1 (s) Αναλυτικά, τα βήματα σχεδίασης του Διαγράμματος Ροής Σημάτων παρατίθενται στο παρακάτω σχήμα:
=() = () () I 1 (s) = I 1 (s) I 1 (s) I 1 (s) = () () Σύμφωνα με τον γενικευμένο τύπο του MASON, η συνάρτηση μεταφοράς δίνεται από τη σχέση: όπου: = η είσοδος του συστήματος, = η έξοδος του συστήματος, N = το πλήθος των απευθείας δρόμων μεταξύ εισόδου και εξόδου του συστήματος, Q k (s) = η απολαβή του k απευθείας δρόμου, Δ(s) = η ορίζουσα του συστήματος: με: ΣL 1 = το άθροισμα των απολαβών όλων των βρόχων, ΣL 2 = το άθροισμα του γινομένου ανά δύο των απολαβών όλων των δυνατών συνδυασμών των μη εγγιζόντων ανά δύο βρόχων, ΣL 3 = το άθροισμα του γινομένου ανά τρεις των απολαβών όλων των δυνατών συνδυασμών των μη εγγιζόντων ανά τρεις βρόχων,
ΣL n = το άθροισμα του γινομένου ανά n το πλήθος των απολαβών όλων των δυνατών συνδυασμών των μη εγγιζόντων ανά n το πλήθος βρόχων, Δ k (s) = η τιμή την τιμή της ορίζουσας Δ(s), εάν δεν λάβουμε υπόψη μας όλους τους βρόχους που εγγίζουν (έχουν κοινό κόμβο με) τον k απευθείας δρόμο. Παρατηρούμε ότι: έχουμε έναν (1) απευθείας δρόμο I 1 (s) (άρα k=1) με απολαβή: έχουμε τρεις (3) βρόχους I 1 (s)i 1 (s), και με απολαβές αντίστοιχα: άρα: έχουμε δύο (2) μη εγγίζοντες ανά δύο βρόχους I 1 (s)i 1 (s) και, άρα: δεν έχουμε μη εγγίζοντες ανά τρεις βρόχους, άρα: Η ορίζουσα του συστήματος είναι: και επειδή όλοι οι βρόχοι εγγίζουν τον μοναδικό απευθείας δρόμο: Επομένως, η συνάρτηση μεταφοράς του συστήματος είναι: 2. Η σχεδίαση του ζητούμενου Δομικού Διαγράμματος γίνεται με βάση τις εξισώσεις του συστήματος και ξεκινώντας τη σχεδίαση (όπως και στο προηγούμενο ερώτημα) από την έξοδο. Αναλυτικά, τα βήματα σχεδίασης του Δομικού Διαγράμματος παρατίθενται στο παρακάτω σχήμα: =() = ()[ ]
I 1 (s) = [I 1 (s) ] I V 3 1 (s) (s) V 2 (s) I 1 (s) = ()[ ] Μετακινώντας το σημείο άθροισης και το σημείο λήψης του κάτω κλάδου ανάδρασης, όπως φαίνεται στο παρακάτω σχήμα, I V 3 1 (s) (s) V 2 (s) προκύπτει το ακόλουθο ισοδύναμο δομικό διάγραμμα: I V 3 1 (s) (s) Cs Συνεχίζοντας τους μετασχηματισμούς προκύπτουν τα ακόλουθα: 1 Cs Cs 1/2 1/(1Cs) Cs 1/[2(1Cs)] Cs
Επομένως, η συνάρτηση μεταφοράς του συστήματος αυτού είναι: ΘΕΜΑ 2 Ο (3,0 μονάδες) Δίνεται το σύστημα ελέγχου με μοναδιαία αρνητική ανάδραση του σχήματος. 1 / (s1) (s2) / (s3) Να υπολογίσετε τη βηματική απόκριση του συστήματος και την τελική τιμή της εξόδου y(t) (την τιμή της y(t) όταν t τείνει στο άπειρο). Να θεωρήσετε μηδενικές αρχικές συνθήκες. Λύση: Το ισοδύναμο δομικό διάγραμμα είναι το ακόλουθο: (s2) / [(S1)(s3)] Η συνάρτηση μεταφοράς του συστήματος είναι: Όπου p 1 και p 2 οι πόλοι του συστήματος (οι ρίζες του τριωνύμου του παρανομαστή): Η βηματική απόκριση του συστήματος είναι η έξοδος του συστήματος y(t), όταν η είσοδος είναι η βηματική συνάρτηση, δηλαδή x(t) = u(t), οπότε = 1/s. Επομένως: Εκφράζοντας τη συνάρτηση μεταφοράς ως άθροισμα απλών κλασμάτων, έχουμε: Προσδιορίζουμε τους συντελεστές α, β και γ:
Άρα, η συνάρτηση μεταφοράς είναι: και η συνάρτηση της εξόδου y(t) είναι: Η τελική τιμή της εξόδου y(t) είναι η τιμή της y(t) όταν t τείνει στο άπειρο. Γνωρίζουμε από το θεώρημα τελικής τιμής ότι: Επομένως, η τελική τιμή της y(t) είναι: ΘΕΜΑ 3 Ο (3,0 μονάδες) Το δομικό (λειτουργικό) διάγραμμα του σχήματος περιγράφει τη λειτουργία ενός σχεδιογράφου (plotter) χαμηλής αδράνειας. Επιθυμητή θέση 100 / s 2 Πραγματική θέση Ks Ρύθμιση ταχύτητας Ανάδραση θέσης Εάν η είσοδος του συστήματος είναι συνάρτηση ράμπας μοναδιαίας κλίσης, να υπολογίσετε το κατάλληλο εύρος τιμών του Κ ώστε το σφάλμα μόνιμης κατάστασης e ss να είναι μικρότερο του 10%.
Λύση: Το ισοδύναμο δομικό διάγραμμα είναι το ακόλουθο: 100 / (s 2 100KS) Η συνάρτηση μεταφοράς του συστήματος είναι: Και το χαρακτηριστικό πολυώνυμο είναι: Για να προσδιορίσουμε το εύρος τιμών του K για το οποίο το σύστημα είναι ευσταθές, συμπληρώνουμε τον πίνακα OOTH: s 2 1 100 s 1 100K 0 s 0 100 Επομένως, για να είναι το σύστημα ευσταθές, θα πρέπει: K>0. Αφού η είσοδος του συστήματος είναι συνάρτηση ράμπας μοναδιαίας κλίσης, θα έχουμε σφάλμα ταχύτητας: όπου: Επομένως: και επειδή η συνάρτηση ράμπας έχει μοναδιαία κλίση, Α=1, οπότε θα είναι: Άρα, για να έχουμε σφάλμα μόνιμης κατάστασης e ss μικρότερο του 10%, θα πρέπει Κ<0,10. Προσδιορίσαμε ότι για να είναι το σύστημα ευσταθές θα πρέπει Κ>0. Επομένως, το κατάλληλο εύρος τιμών του Κ ώστε να έχουμε ευστάθεια και το σφάλμα μόνιμης κατάστασης e ss να είναι μικρότερο του 10%, είναι: 0<Κ<0,10.