Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης

Σχετικά έγγραφα
Εισαγωγή στην Τεχνολογία Αυτοματισμού

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 9: Σύστημα 2 ης τάξης: Χρονική απόκριση και χαρακτηριστικά μεγέθη (φυσικοί συντελεστές)

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 7: Άλγεβρα βαθμίδων (μπλόκ) Ολική συνάρτηση μεταφοράς

Συστήματα Αυτομάτου Ελέγχου II

Συστήματα Αυτομάτου Ελέγχου II

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 5: Χρήση μετασχηματισμού Laplace για επίλυση ηλεκτρικών κυκλωμάτων Μέθοδοι εντάσεων βρόχων και τάσεων κόμβων

Εισαγωγή στην Τεχνολογία Αυτοματισμού

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα

Συστήματα Αυτομάτου Ελέγχου II

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τίτλος Μαθήματος

Συστήματα Αυτομάτου Ελέγχου Ι

Συστήματα Αυτομάτου Ελέγχου 2

Συστήματα Αυτομάτου Ελέγχου ΙΙ

Κλασσική Θεωρία Ελέγχου

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)

Συστήματα Αυτομάτου Ελέγχου Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

Συστήματα Αυτόματου Ελέγχου

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

11 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Συστήματα Αυτομάτου Ελέγχου 1

Συστήματα Αυτομάτου Ελέγχου ΙΙ

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Aνάλυση Σήματος. 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος

Συστήματα Αυτομάτου Ελέγχου ΙΙ

Έλεγχος Κίνησης

Συστήματα Αυτομάτου Ελέγχου

8 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Συστήματα Αυτομάτου Ελέγχου Ι

Κλασσική Θεωρία Ελέγχου

9 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Συστήματα Αυτομάτου Ελέγχου 1

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου Ι

Κλασσική Θεωρία Ελέγχου

Συστήματα Αυτομάτου Ελέγχου

Κλασσική Θεωρία Ελέγχου

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης

Υδραυλικά & Πνευματικά ΣΑΕ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

Σήματα και Συστήματα

Έλεγχος Κίνησης

Συστήματα Αυτομάτου Ελέγχου

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 10: Σύστηματα και απόκριση συχνότητας Λογαριθμικά διαγράμματα BODE

HMY 220: Σήματα και Συστήματα Ι

Βιομηχανικοί Ελεγκτές

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

Αυτόματος Έλεγχος. Ενότητα 3 η : Δυναμικά Χαρακτηριστικά Τυπικών Συστημάτων Ευστάθεια Δυναμικών Συστημάτων. Παναγιώτης Σεφερλής

Μοντέρνα Θεωρία Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΙΙ

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

5 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)

Λογιστικές Εφαρμογές Εργαστήριο

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

6 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

Θεωρία Πιθανοτήτων & Στατιστική

Διδάσκων: Κολιόπουλος Παναγιώτης

Βιομηχανικοί Ελεγκτές

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΥΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΣΥΣΤΗΜΑΤΩΝ

Αυτόματος Έλεγχος. Ενότητα 4 η : Πρότυπα μεταβλητών κατάστασης. Παναγιώτης Σεφερλής. Εργαστήριο Δυναμικής Μηχανών Τμήμα Μηχανολόγων Μηχανικών

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Βιομηχανικοί Ελεγκτές

3 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Έλεγχος Κίνησης

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Συστήματα Αυτομάτου Ελέγχου

Πληροφορική. Εργαστηριακή Ενότητα 3 η : Επεξεργασία Κελιών Γραμμών & Στηλών. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Συστήματα Αυτόματου Ελέγχου

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Αρχές Τηλεπικοινωνιών

Σήματα και Συστήματα ΙΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Επίλυση Δ.Ε. με Laplace

Transcript:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης Δ. Δημογιαννόπουλος, dimogian@teipir.gr Επ. Καθηγητής Τμήματος Μηχανικών Αυτοματισμού Τ.Ε

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

Σκοποί ενότητας Υπολογισμός απόκρισης σε τυπικές εισόδους με χρήση μετασχηματισμού Laplace: ΚΑΝΟΝΕΣ. Η συνάρτηση μεταφοράς και η σχέση της με τα είδη αποκρίσεων. Τυπικές αποκρίσεις συστημάτων 1 ου βαθμού. 4

Περιεχόμενα ενότητας Υπολογισμός της απόκρισης Ανάλυση σε στοιχειώδεις αποκρίσεις ανάλογα με το είδος πόλων: Πόλοι πραγματικοί Πόλοι πραγματικοί, αλλά κάποιος πολλαπλός Παράδειγμα Πόλοι μιγαδικοί σε ζεύγη Παράδειγμα 5

Περιεχόμενα ενότητας Παρατηρήσεις Αποκρίσεις συστημάτων σε τυπικές εισόδους: Σύστημα 1 ου βαθμού 6

Υπολογισμός της απόκρισης Αντίστροφος Μετασχηματισμός Laplace 7

Υπολογισμός της απόκρισης: Αντίστροφος Μετασχηματισμός Laplace Μετασχηματισμός Laplace: Μια διαφορική εξίσωση γίνεται αλγεβρική. 8

Υπολογισμός της απόκρισης: Αντίστροφος Μετασχηματισμός Laplace Μετασχηματισμός Laplace: Μια διαφορική εξίσωση γίνεται αλγεβρική. Αν αρχικές συνθήκες μηδενικές: Συνάρτηση Μεταφοράς του συστήματος. Δηλαδή σταθερή σχέση εισόδου - εξόδου του συστήματος εξαρτώμενης των δομικών χαρακτηριστικών του συστήματος. Y(s) U(s) = b ms m + b m 1 s m 1 + b 1 s + b 0 s n + α n 1 s n 1 + + α 1 s + α 0 9

Υπολογισμός της απόκρισης: Αντίστροφος Μετασχηματισμός Laplace Μετασχηματισμός Laplace: Μια διαφορική εξίσωση γίνεται αλγεβρική. Αν αρχικές συνθήκες μηδενικές: Συνάρτηση Μεταφοράς του συστήματος. Δηλαδή σταθερή σχέση εισόδου - εξόδου του συστήματος εξαρτώμενης των δομικών χαρακτηριστικών του συστήματος. Y(s) U(s) = b m s m +b m 1 s m 1 + b 1 s + b 0 s n + α n 1 s n 1 + + α 1 s + α 0 Αν είσοδος U(s), τότε μέσω Σ.Μ. βρίσκεται η απόκριση Y(s) συστήματος στο πεδίο Laplace και με αντίστροφο μετ/μο Laplace η y(t) στο πεδίο χρόνου. 10

Όμως Χρήση αντιστρόφου Laplace με συγκεκριμένο τρόπο: Η απόκριση Y(s) ανάγεται σε στοιχειώδεις Y 1 (s), Y 2 (s),,y k (s) για τις οποίες ο αντίστροφος Laplace είναι γνωστός, και δίδεται σε πίνακες. Άρα υπολογίζονται y 1 (t), y 2 (t),, y k (t), και χωρίς να εκτελέσουμε περίπλοκους υπολογισμούς, λαμβάνουμε y(t)=y 1 (t)+y 2 (t)+ +y k (t) 11

Ανάλυση σε στοιχειώδεις αποκρίσεις ανάλογα με το είδος πόλων Ι. Πόλοι πραγματικοί 12

Πως γίνεται Έστω απόκριση Y(s) από τη συνάρτηση μεταφοράς συστήματος Y s = b m s m +b m 1 s m 1 +b 1 s+b 0 s n +α n 1 s n 1 + +α 1 s+α 0 U s = P(s) Q(s) = P(s) s p 1 s p 2... (s p n ) με p 1,,p n τους πόλους του συστήματος. Η παραπάνω Y(s) αναλύεται σε στοιχειώδεις αποκρίσεις ανάλογα με το είδος των πόλων ως εξής: 13

Ι. Πόλοι πραγματικοί και p 1 p 2 p n Y s = A 1 s p 1 + A 2 s p 2 + + A n s p n L 1 y t = A 1 e p 1 t + A 2 e p 2 t + + A n e p n t A 1 = A 2 = A n = R 1 (s) s=p1 R 2 (s) s=p2 όπου: R i s = R n (s) s=pn s p 1 P(s) s p 2 (s p n ) (s p i) υπόλοιπο (residue) 14

Ανάλυση σε στοιχειώδεις αποκρίσεις ανάλογα με το είδος πόλων ΙΙ. Πόλοι πραγματικοί, αλλά κάποιος πολλαπλός 15

ΙΙ. Πόλοι πραγματικοί, αλλά κάποιος πολλαπλός p 1 = p 2 = = p r = p (από τους n) Y s = A 1 (s p 1 ) r + A 2 (s p 2 ) r 1 + + A r s p + A r+1 s p r+1 + + Α n s p n L 1 y t = A 1 t r 1 r 1! + A 2 t r 2 r 2! + + A r i t + A r e p t +A r+1 e p n t Τα A r+1,, Α n όπως στην προηγούμενη περίπτωση Τα A 1,, A r ως εξής: A 1 = R(s) s=p A r = A 2 = A 3 = 1 1 2! r 1! dr(s) ds d 2 R(s) ds 2 d r 1 s=p s=p ds r 1 R(s) s=p Όπου το υπόλοιπο R s = P s Q s (s p)r 16

Παράδειγμα 17

Παραδείγμα Έστω Y s = 1 s+1 3 (s+2). Σύμφωνα με όσα είπαμε: Y s = A 1 (s+1) 3 + A 2 (s+1) 2 + A 3 s+1 + A 4 s+2 Υπόλοιπα για πολλαπλούς πόλους R s = 1 (s + s+1 3 s+2 1)3 = 1 s+2 A 1 = R(s) s= 1 = 1 1+2 = 1 A 2 = dr(s) ds s= 1 = 1 (s+2) 2 s= 1 = 1 A 3 = 1 2! d 2 R(s) ds 2 s= 1 = 1 18

Υπόλοιπο για πόλο s=-2 R s = A 4 = R(s) s= 2 = 1 ( 2+1) 3 = 1 1 s+1 3 s+2 s + 2 = 1 (s+1) 3 Τελικά λοιπόν: y t = ( 1 t2 2! + 1 t 1! + 1 t 0 ) e t + 1 e 2t = 1 2 t2 t + 1 e t e 2t Σκίτσο Απόκρισης;; 19

Ανάλυση σε στοιχειώδεις αποκρίσεις ανάλογα με το είδος πόλων ΙΙΙ. Πόλοι μιγαδικοί σε ζεύγη 20

ΙΙΙ. Πόλοι μιγαδικοί σε ζεύγη p 1,2 = σ ± j ω Αν Y s = A 1 ω+a 2 (s σ) (s σ) 2 +ω 2 L 1 από πίνακες y t = {A 1 sin(ωt) + A 2 cos(ωt)} e σ t = M sin(ω t + φ) e σ t Ο υπολογισμός των Α 1, Α 2 και Μ, φ γίνεται ως εξής: Το υπόλοιπο των μιγαδικών πόλων R μ s = P(s) Q(s) s σ 2 + ω 2 Σχηματίζουμε A = 1 ω R μ(s) s=σ+jω = A 1 + j A 2 = M e j φ όπου A 1 = Re[A], A 2 =Im[A], M= A, φ = tan 1 Α 2 Α 1 21

Παράδειγματα 22

Παράδειγμα (1) Y s = 1 s 2 +2s+5 s+3. Σύμφωνα με όσα είπαμε: Πόλοι p 1,2 = 1 ± j2 και p 3 = 3. Θα έχουμε για τους p 1,2 : σ=-1, ω=2 Y s = 2 A 1 + A 2 (s + 1) (s + 1) 2 +2 2 + Α 3 s + 3 R μ s = 1 s 2 + 2s + 5 s + 3 s2 + 2s + 5 = 1 s + 3 Αφού (s+1) 2 +2 2 =(s-σ) 2 +ω 2 =s 2 +2s+5! 23

A = 1 2 1 = 1 = 1 j 1 s+3 s= 1+2j 4+4j 8 8 άρα και A 1 = 1 8, A 2 = 1 8 M = ( 1 8 )2 +( 1 8 )2 = 2, φ = tan 1 8 1 8 1 8 = 45 A 3 = R(s) s= 3 = 1 s 2 +2s+5 s+3 s + 3 s= 3 = 1 9 6+5 = 1 8 Y(t)= [ 1 8 sin 2 t 1 8 cos(2 t)] e t + 1 8 e 3t = 2 8 sin 2 t π 4 e t + 1 8 e 3 t Σκίτσο απόκρισης;; 24

Παράδειγμα (2) Υπολογισμός (στον πίνακα!) απόκρισης κυκλώματος RC για είσοδο Ε Volts. Ποια εξίσωση αναπαριστά τη λειτουργία του κυκλώματος; e(t)=i(t) R + u(t), u(0)=u 0 ή e t = R C d u t + u t, u 0 = U dt 0 25

Παράδειγμα (συνέχεια) Πώς προχωρούμε: Laplace, χρήση βηματικής εισόδου Ε s = Ε, s χωρισμός σε απλά κλάσματα, μέθοδος υπολοίπων και αντίστροφος Laplace Οπότε 26

Παράδειγμα (συνέχεια) Πώς προχωρούμε: Laplace, χρήση βηματικής εισόδου Ε s = Ε, s χωρισμός σε απλά κλάσματα, μέθοδος υπολοίπων και αντίστροφος Laplace Οπότε u t = E E U 0 e t R C 27

Παράδειγμα (συνέχεια) Πώς προχωρούμε: Laplace, χρήση βηματικής εισόδου Ε s = Ε, s χωρισμός σε απλά κλάσματα, και αντίστροφος Laplace Οπότε u t = E E U 0 e t R C = U0 e t R C + Ε 1 e t R C Εξετάσατε τις περιπτώσεις t, U 0 = 0. Ποιά η ελεύθερη και ποιά η εξαναγκασμένη απόκριση; 28

Παρατηρήσεις 29

ΠΑΡΑΤΗΡΗΣΕΙΣ Η ελεύθερη απόκριση εξαρτάται μόνο απο τις αρχ. συνθήκες: άρα τελικά, αν δεν μεσολαβεί συνεχώς διέγερση, για t u(t) 0, αν η απόκριση του συστήματος συγκλίνει [ όχι π.χ. sin(ω t)!!! ] 30

ΠΑΡΑΤΗΡΗΣΕΙΣ Η ελεύθερη απόκριση εξαρτάται μόνο απο τις αρχ. συνθήκες: άρα τελικά, αν δεν μεσολαβεί συνεχώς διέγερση, για t u(t) 0, αν η απόκριση του συστήματος συγκλίνει [ όχι π.χ. sin(ω t)!!! ] Η (λόγω διέγερσης) εξαναγκασμένη απόκριση u(t) 0 για t. Συνεπώς, από τη συνάρτηση μεταφοράς (=με μηδενικές αρχικές συνθήκες) υπολογίζεται, με L 1 η μόνιμη τιμή της απόκρισης (αν υπάρχει!) για t. 31

Εναλλακτικός τρόπος υπολογισμού της μόνιμης κατάστασης σήματος y(t) για t, αν το y(t) υπάρχει: Θεώρημα τελικής τιμής: Αν η συνάρτηση y(t) έχει όριο, τότε αυτό θα είναι y = y(t) t = lim s 0 s Y(s) Π.χ. για το κύκλωμα RC: U(s)= 1 R C s+1 E(s) u = lim s 0 s 1 R C s+1 Ε s = 1 E = E 32

Για είσοδο u(t), η εξαναγκασμένη απόκριση y(t) δίδεται στο πεδίο του χρόνου από το ολοκλήρωμα της ΣΥΝΕΛΙΞΗΣ (convolution): y εξ. t = 0 t g t τ u t dτ με g(t) τη βαρυτική συνάρτηση (ορισμός). 33

Για είσοδο u(t), η εξαναγκασμένη απόκριση y(t) δίδεται στο πεδίο του χρόνου από το ολοκλήρωμα της ΣΥΝΕΛΙΞΗΣ (convolution): y εξ. t = 0 t g t τ u t dτ με g(t) τη βαρυτική συνάρτηση (ορισμός). Αλλά η εξαναγκασμένη απόκριση δίδεται από τη Σ.Μ. στο πεδίο Laplace: Y s = G s U s 34

Για είσοδο u(t), η εξαναγκασμένη απόκριση y(t) δίδεται στο πεδίο του χρόνου από το ολοκλήρωμα της ΣΥΝΕΛΙΞΗΣ (convolution): y εξ. t = 0 t g t τ u τ dτ με g(t) τη βαρυτική συνάρτηση (ορισμός). Αλλά η εξαναγκασμένη απόκριση δίδεται από τη Σ.Μ. στο πεδίο Laplace: Y s = G s U s ΑΡΑ g t = L 1 G s ή g t = L 1 [Y s για U s = 1] «Η g t είναι ο L 1 της απόκρισης του συστήματος σε κρουστική δ(t)» 35

Αποκρίσεις συστημάτων σε τυπικές εισόδους Σύστημα 1 ου βαθμού 36

Αποκρίσεις συστημάτων σε τυπικές εισόδους: Σύστημα 1 ου βαθμού Δ.Ε.: d dt y t + a y t = b u(t) (1) 1 α d dt y t + y t = b α u t, 37

Αποκρίσεις συστημάτων σε τυπικές εισόδους: Σύστημα 1 ου βαθμού Δ.Ε.: d dt y t + a y t = b u(t) (1) 1 α d dt y t + y t = b α u t, T = 1 α σταθερά χρόνου, Α = b a ενισχυση ω n = 1 T φυσ. συχνότητα ή Τ d y t + y t = A u(t) (2) dt 38

Αποκρίσεις συστημάτων σε τυπικές εισόδους: Σύστημα 1 ου βαθμού Απόκριση σε βηματική είσοδο u(t) = U 0 για μηδενικές αρχικές συνθήκες: (2) L T s Y s + Y s = A U s Y s = A T s + 1 U 0 s = A U 0 s A U 0 s + 1 T L 1 y t = A U 0 (1 e t T) 39

Αποκρίσεις συστημάτων σε τυπικές εισόδους: Σύστημα 1 ου βαθμού Απόκριση σε βηματική είσοδο u(t) = U 0 για μηδενικές αρχικές συνθήκες: (2) L T s Y s + Y s = A U s Y s = A T s + 1 U 0 s = A U 0 s A U 0 s + 1 T L 1 y t = A U 0 (1 e t T) Υπολογίζεται ότι για t =Τ (δηλαδή χρόνο μιας χρονικής σταθεράς) y(t)=0.632 y = 0.632 A U 0 40

Αποκρίσεις συστημάτων σε τυπικές εισόδους: Σύστημα 1 ου βαθμού Απόκριση σε βηματική είσοδο u(t) = U 0 για μηδενικές αρχικές συνθήκες: (2) L T s Y s + Y s = A U s Y s = A T s + 1 U 0 s = A U 0 s A U 0 s + 1 T L 1 y t = A U 0 (1 e t T) Υπολογίζεται ότι για t =Τ (δηλαδή χρόνο μιας χρονικής σταθεράς) y(t)=0.632 y = 0.632 A U 0! Επίσης για t=4 T θα είναι y(4 T)=0.98 y = 0.98 A U 0! 41

Αποκρίσεις συστημάτων σε τυπικές εισόδους: Σύστημα 1 ου βαθμού u(t) y(t) A U 0 U 0 0.632 A U 0 t T t 42

Αποκρίσεις συστημάτων σε τυπικές εισόδους: Σύστημα 1 ου βαθμού Απόκριση σε είσοδο ράμπας u(t)=α t για μηδενικές αρχικές συνθήκες: (2) L T s Y s + Y s = A U s Y s = A T s + 1 α s 2 = A α s 2 A α T s + A α T s + 1 T L 1 y t = A α [t Τ + Τ e t T ]=A α [t-τ (1-e t T)] 43

Αποκρίσεις συστημάτων σε τυπικές εισόδους: Σύστημα 1 ου βαθμού Δηλαδή u(t) y(t) α t A α t T t Άσκηση για το σπίτι: Κάνατε υπολογισμό της απόκρισης συστήματος RL! 44

Τέλος Ενότητας