SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

Σχετικά έγγραφα
Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare

PROBLEME CU PARTEA ÎNTREAGĂ ŞI

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

CLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea

Examenul de bacalaureat nańional 2013 Proba E. c) Matematică M_mate-info. log 2 = log x. 6 j. DeterminaŃi lungimea segmentului [ AC ].

PENTRU CERCURILE DE ELEVI

Algebră 1. Disciplină obligatorie; Anul I, Sem. 1, ore săptămânal, învăţământ de zi: 2 curs, 2 seminar, total ore semestru 56; 6 credite; examen.

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

Concursul Naţional Al. Myller Ediţia a VI - a Iaşi, 2008

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Polinoame Fibonacci, polinoame ciclotomice

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE

2.1. DEFINIŢIE. EXEMPLE

OLIMPIADA DE MATEMATICĂ FAZA LOCALĂ CLASA a V-a

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Inegalitati. I. Monotonia functiilor

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

BAREM DE CORECTARE CLASA A IX A

4. Ecuaţii diferenţiale de ordin superior

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

CAPITOLUL III FUNCŢII CONTINUE

Curs 4 Serii de numere reale

Curs 1 Şiruri de numere reale

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

Spaţii topologice. Spaţii metrice. Spaţii normate. Spaţii Hilbert

CURS III, IV. Capitolul II: Serii de numere reale. a n sau cu a n. Deci lungimea segmentului este suma lungimilor sub-segmentelor obţinute, adică

PENTRU CERCURILE DE ELEVI

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

Varianta 1

Analiza matematica Specializarea Matematica vara 2010/ iarna 2011

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Clasa a IX-a. 1. Rezolvaţi în R ecuaţiile: (3p) b) x x x Se consideră mulţimile A = { }, (2p) a) Determinaţi elementele mulţimii A

Varianta 1. SUBIECTUL I (30p) Varianta 001 5p 1. Să se determine numărul natural x din egalitatea x = p

Structuri algebrice, grupuri, probleme bacalaureat 2009

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :

Seria MATEMATICĂ ANALIZĂ MATEMATICĂ Calcul diferenţial

5.1. ŞIRURI DE FUNCŢII

CAPITOLUL 4 SPAŢII VECTORIALE EUCLIDIENE/UNITARE Produs scalar. Spaţii euclidiene şi spaţii unitare-definiţie

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

Criterii de comutativitate a grupurilor

MATEMATICĂ. Manual pentru clasa a XII-a. Trunchi comun + curriculum diferenţiat

Metode iterative pentru probleme neliniare - contractii

1. Mulţimi. Definiţia mulţimii.

Integrala nedefinită (primitive)

CAPITOLUL IV CALCULUL DIFERENŢIAL PENTRU FUNCŢII REALE DE O VARIABILA REALĂ

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

lim = dacă se aplică teorema lui 3. Derivate de ordin superior. Aplicaţii.

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

Partea întreagă, partea fracţionară a unui număr real

3.1. DEFINIŢII. PROPRIETĂŢI

1. ŞIRURI ŞI SERII DE NUMERE REALE

Sisteme diferenţiale liniare de ordinul 1

Capitolul II. Grupuri. II.1. Grupuri; subgrupuri; divizori normali; grupuri factor

EXAMENE ŞI CONCURSURI

6.1. DERIVATE ŞI DIFERENŢIALE PENTRU FUNCŢII REALE DE O VARIABILĂ REALĂ. APLICAŢII

3. Serii de puteri. Serii Taylor. Aplicaţii.

Subiecte Clasa a VII-a

matricelor pătratice de ordinul 2, cu elemente numere reale; a11 a12 a13, mulńimea matricelor pătratice de ordinul 3, cu elemente

Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5

SOCIETATEA DE ŞTIINŢE MATEMATICE DIN ROMÂNIA- FILIALA CLUJ

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Formula lui Taylor. 25 februarie 2017

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

Curs 2 Şiruri de numere reale

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

DUMITRU BUŞNEAG PROBLEME ALGEBRĂ

CAPITOLUL I CAPITOL INTRODUCTIV

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Analiză I Curs 1. Curs 1., a n. dacă ε, ( )N ( ε ) a.î. n x n ε ; ε sunt numere reale şi deci (a n. şi fie

Subiecte Clasa a VIII-a

CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI"

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

MATEMATICĂ. - frecvenţă redusă - clasa a IX a. Prof. Baran Mihaela Gabriela

Clasa a V-a. Clasa a VI-a. Clasa a VII-a

Geometrie afină. Conf. Univ. Dr. Cornel Pintea

1. ŞIRURI ŞI SERII DE NUMERE REALE

Asupra unei inegalităţi date la barajul OBMJ 2006

Profesor Blaga Mirela-Gabriela DREAPTA

DEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0

O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita

CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ Ediţia a XI-a, 6 7 MAI CLASA a IV-a

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI"

Capitolul 2 ŞIRURI DE NUMERE REALE. 2.1 Proprietăţi generale Moduri de definire a unui şir. (x n ) n 0 : x n =

Transcript:

SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema. Dacă (G,) este rup iar H o parte evidă a sa, atuci următoarele afirmaţii sut echivalete:. H este subrup al rupului (G,); Observaţie: Eemple : Propoziţia.: Defiiţia. : -., y H y H şi H H; 3., y H y H. Dacă H este o mulţime fiită atuci afirmaţia. di teorema precedetă se poate rezuma la:., y H y H ( GL R { R GL ( R) = A M ( ) A 0 ( ), rupul eeral liiar de rad. t { A GL R A = A. O()= ( ) este subrup al rupului GL ( R), umit rup ortooal. { A O A =. SO()= () este subrup al rupului GL ( R), umit rup ortooal special. { 3. Dacă Z, 0, mulţimea Z= h h Z este subrup al rupului ( Z,+). Reciproc, dacă H este subrup al rupului ( Z,+), atuci Z, 0, astfel îcât H = Z. = { C = ( C k { C N, este subrup al rupului ( C, 4. Mulţimea U z z este subrup al rupului, H = z k z = şi H U Dacă H şi H sut subrupuri ale rupului G, atuci H H este subrup al rupului G. Fie (G, u rup fiit cu elemete, N. Numărul se umeşte ordiul rupului G. Notaţii: ordg=, G =. Teorema. ( Larae) Fie (G, ) u rup fiit şi H u subrup al său. Atuci: a) orh ordg b) ordg=ordh ord(g/h)

. CENTRUL UNUI GRUP Fie (G, u rup şi X G o submulţime evidă a sa. { = { = Defiiţia.: Mulţimea Z( X)= G, X se umeşte cetralizatorul mulţimii X. Defiiţia.: Mulţimea Z(G)= G, G se umeşte cetrul rupului G. Propoziţia.: Petru orice mulţime X G, Z( X ) este subrup al rupului G. Observaţia.: Elemetele cetralizatorului comută cu toate elemetele rupului. Observaţia.: Z( X )= Fi(i ), ude Fi(i ) este mulţimea puctelor fie ale X automorfismului iterior i : G G, i ( ) = Observaţia. 3 : Dacă X X, atuci Z( X ) Z( X ) Observaţia.4 : Cum X G Z(G) Z( X ) Z(G)= Z( X ). i i i X i G 3. NORMALIZATORUL UNEI MULŢIMI { = Defiiţia 3.: Mulţimea N( X)= G X X se umeşte ormalizatorul mulţimii X. Propoziţia 3.: Petru orice submulţime X G, N( X ) este subrup al rupului G. { = Observaţia 3. : N( X )= G i ( X ) X Normalizatorul mulţimii X este format di elemetele petru care mulţimea X este ivariată faţă de automorfismul iterior i. Observaţia 3. : Z( X ) este subrup al rupului G. Observaţia 3.3 : Dacă H este subrup al rupului G, atuci H este subrup al lui N( H ). Propoziţia 3. : Fie (G, u rup şi H u subrup al său.fie, p Z şi d = (, p). p d Dacă G, iar, H, atuci H. p Coseciţa : Fie (G, u rup şi, p Z, d = (, p). Dacă,, Z( G), d atuci Z( G). Coseciţa p : Fie (G, u rup şi, p Z, (, p) =. Dacă, Z( G), atuci (G, este rup abelia. Propoziţia 3.3 : Fie (G, u rup şi Z. Dacă f : G G, f ( ) = este morfism - surjectiv, atuci Z( G).

3 4. SUBGRUPURI NORMALE Defiiţia 4.: Fie (G, u rup şi (H, u subrup al său. H este u subrup ormal (sau ivariat) al rupului G: Observaţia 4. y y y - H, G H - : Codiţia di defiiţie se mai scrie : H H { = - - ude H = y G y h, G, h G ( { e Observaţia 4. :, este subrup ormal al rupului G, ude e este elemetul eutru al rupului. Observaţia 4.3 : H este subrup ormal al rupului G dacă H rămâe ivariat la orice automorfism iterior al rupului G: Observaţia 4.4 i (H) H,, ude i : G G,i ( ) = : H este subrup ormal H H ( Dacă i este automorfism atuci şi i - este automorfism ) Observaţia 4.5 : H este subrup ormal H =H Observaţia 4.6 : Deoarece petru u rup abelia siurul automorfism este cel idetic, atuci orice subrup al uui rup abelia este subrup ormal. Propoziţia 4.: Subrupul H al rupului G este subrup ormal N(H)=G Propoziţia 4. : Fie ϕ:g G' u morfism de rupuri şi H' u subrup ormal î G'. - ( ϕ Atuci (H '), este subrup ormal î G. Dacă î plus, ϕ este surjectiv şi H este subrup ormal î G, atuci ( ϕ (H), este subrup ormal î G'. Eemplu de subrup ormal : { A M ( R ) A { A A G = det( ) 0 H = G det( ) = Eemplu de subrup ce u este ormal : { f f = ( Î rupul permutărilor de ordi, ( 3) S, cosiderăm subrupul H= S ( ) 5. NUCLEUL, IMAGINEA UNUI MORFISM Fie (G, şi (G, două rupuri cu elemetele eutre e, respsctiv e şi f : G G u morfism de rupuri. ( ( ( f ( Teorema 5.: a) Dacă H, este subrup al rupului G,, atuci (H), este subrup al rupului G, ( ( ( f b) Dacă K, este subrup al rupului G,, atuci (K), este subrup ( al rupului G,

4 Defiiţia 5.: Se umeşte ucleul morfismului f mulţimea: { Kerf = G f ( ) = e = f ( e ) Defiiţia 5. : Se umeşte imaiea morfismului f mulţimea: Im f = { y G astfel ca f ( ) = y = f (G ) ( f ( ( f ( f f = { e Proprietatea 5.: Ker, este subrup ormal al rupului G,. Proprietatea 5. : Im, este subrup al rupului G,. Proprietatea 5.3 : este morfism ijectiv de rupuri Ker. Proprietatea 5.4 : f este morfism surjectiv de rupuri Im f = G. Proprietatea 5.5 : f este izomorfism de rupuri Ker f = e şi Im f = G. { 6. PROBLEME. Fie (G, u rup şi H o submulţime a lui G, evidă şi diferită de G, avâd proprietatea : H, y/h y/h. Să se demostreze că H este subrup al lui G.. Să se arate că u rup cu cel puţi elemete u poate fi scris ca reuiuea a două subrupuri proprii ale sale. 3. Fie (G, u rup şi H u subrup al său. Dacă a astfel îcât m, Z, m prime ître ele cu a H şi a H a H. 4. Fie (G, u rup astfel îcât,y, y, eistă subrupurile H, H cu { e H, y H şi H H =. a) Să se arate că (G, este comutativ. b) Să se rezolve ecuaţia = a, a, N. este subrup al rupului ( R,. 5. Fie f : R R. Despre u umăr real eul p spuem că are proprietatea () dacă f ( p)= f (), R. Demostraţi că mulţimea umerelor reale cu proprietatea () 6. Să se arate că dacă îtr-u rup fiit mai mult de jumătate di elemetele rupului comută cu toate elemetele di rup, atuci rupul este abelia. 7. Fie (G, u rup comutativ fiit cu elemetul eutru e şi fie G. Dacă = petru mai mult di jumătate di elemetele rupului, atuci = e. 8. Fie (G, u rup. Dacă,y G astfel ca y Z(G), atuci y=y. G { 9. Fie (G, u rup şi G. Demostraţi că C ()= y G y=y este subrup al lui G. 0. Fie (G, u rup şi H u subrup al său astfel îcât dacă M este subrup î G şi (M, (H,, atuci M=H. Arătaţi că H este subrup ormal al rupului G.. Cosiderăm rupurile ( R, + ) şi ( C, şi fucţia f : R C, f ()=cosπ +isiπ Arătaţi că: a) f morfism de rupuri b) Kerf = Z c) Determiaţi Im f şi arătaţi că este subrup al rupului ( C,. e

5 { fa fa = aa a. Fie (G, u rup şi F= : G G ( ), G a) (F, rup umit rupul automorfismelor iterioare b) ϕ:g F, ϕ(a)= f este izomorfism Ker ϕ=z(g) { a 3. Dacă (G, este u rup, atuci fucţia F:G I(G), F()=i este u morfism surjectiv de rupuri şi ucleul său este Ker(F)=Z(G) I(G)= i Aut(G) G, i ( ) =, 4. Fie (G, u rup de ordi p N, p impar. Dacă fucţia f f 5 : G G, ( ) = este morfism surjectiv, atuci (G, este abelia. 5. Fie (G, u rup şi N, astfel îcât fucţia f f + : G G, ( ) = este u automorfism al lui G.Să se demostreze că: a) fucţia : G G, ( ) = este u edomorfism al lui G; b) dacă este ijectivă sau surjectivă, atuci este rup abelia. - Material selectat de: profesor Maria Tache Bibliorafie: Adrei Gh. şi alţii. Alebră. Bucureşti. Ed. Scorpio7. 995 Năstăsescu C şi alţii. Probleme de structuri alebrice. Bucureşti. Ed. Academiei. 988 Pop Vasile şi alţii. Matematică petru rupele de performaţă. Cluj-Napoca. Ed Dacia 004 Gh. Eckstei şi alţii. Olimpiadele şi cocursurile de matematică. Timişoara. Ed. Bîrchi 003 Gh. Eckstei şi alţii. Olimpiadele şi cocursurile de matematică. Timişoara. Ed. Bîrchi 004 Colecţia RMT Colecţia Gazeta Matematică