Εισαγωγή στην Τεχνολογία Αυτοματισμού

Σχετικά έγγραφα
Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 8: Αντίστροφος μετασχηματισμός Laplace Εφαρμογή σε απόκριση συστήματος: Σύστημα 1 ης τάξης

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 9: Σύστημα 2 ης τάξης: Χρονική απόκριση και χαρακτηριστικά μεγέθη (φυσικοί συντελεστές)

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 7: Άλγεβρα βαθμίδων (μπλόκ) Ολική συνάρτηση μεταφοράς

HMY 220: Σήματα και Συστήματα Ι

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει.

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Συστήματα Αυτομάτου Ελέγχου Ι

Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Επίλυση Δ.Ε. με Laplace

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τίτλος Μαθήματος

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Κλασσική Θεωρία Ελέγχου

Συστήματα Αυτομάτου Ελέγχου II

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Ανάλυση συστημάτων με χρήση μετασχηματισμού Laplace

Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί

Συστήματα Αυτομάτου Ελέγχου II

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Συστήματα Αυτομάτου Ελέγχου II

Συστήματα Αυτομάτου Ελέγχου Ι

Αυτόματος Έλεγχος. Ενότητα 3 η : Δυναμικά Χαρακτηριστικά Τυπικών Συστημάτων Ευστάθεια Δυναμικών Συστημάτων. Παναγιώτης Σεφερλής

ΑΝΑΛΥΣΗ ΤΟ ΓΕΝΙΚΟ ΠΛΑΝΟ 2019Κ7-1

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων

Συστήματα Αυτομάτου Ελέγχου Ι Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου 1

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Aνάλυση Σήματος. 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ

Κλασσική Θεωρία Ελέγχου

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

Μετασχηματισμοί Laplace

7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου 2

HMY 220: Σήματα και Συστήματα Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 5: Χρήση μετασχηματισμού Laplace για επίλυση ηλεκτρικών κυκλωμάτων Μέθοδοι εντάσεων βρόχων και τάσεων κόμβων

website:

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =

Κεφάλαιο 7. Μετασχηματισμός Laplace. 7.1 Εισαγωγή στον μετασχηματισμό Laplace

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα

Συστήματα Αυτομάτου Ελέγχου ΙΙ

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα

ΑΠΑΝΤΗΣΕΙΣ. z x y 2xyi. Re z x y. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι. z z zz. zz zz z z 1 0 z z 1 (1)

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου

Σήματα και Συστήματα. Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Κλασσική Θεωρία Ελέγχου

. Σήματα και Συστήματα

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας

Κλασσική Θεωρία Ελέγχου

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.

Σήματα και Συστήματα. Διάλεξη 5: Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Συστήματα Αυτομάτου Ελέγχου ΙΙ

Θέματα Εξετάσεων Ιουνίου 2003 στο μάθημα Σήματα και Συστήματα και Λύσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Συστήματα Αυτομάτου Ελέγχου ΙΙ

7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

3. Κεφάλαιο Μετασχηματισμός Fourier

Μάθημα: Θεωρία Δικτύων

ΣΑΕ 1. Σημειώσεις από τις παραδόσεις. Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις:

Συστήματα Αυτομάτου Ελέγχου

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Μαθηματικά μοντέλα συστημάτων

e 5t (sin 5t)u(t)e st dt e st dt e 5t e j5t e st dt s j5 j10 (s + 5 j5)(s j5)

HMY 220: Σήματα και Συστήματα Ι

Επικοινωνίες στη Ναυτιλία

Συστήματα Αυτομάτου Ελέγχου Θεωρία και Εφαρμογές

HMY 220: Σήματα και Συστήματα Ι

( s ) Παραγώγιση στο χρόνο. Ολοκλήρωση στο χρόνο. Θεώρηµα αρχικής και τελικής τιµής Ο ΜΟΝΟΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Σεραφείµ Καραµπογιάς

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016

HMY 220: Σήματα και Συστήματα Ι

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου v 3 (t) - i 2 (t)

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

ΜΜ803 ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών

HMY 220: Σήματα και Συστήματα Ι

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 2 η : ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 2. ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

Συστήματα Αυτόματου Ελέγχου

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 4: Αποκρίσεις χαρακτηριστικών συστημάτων με χρήση του αντίστροφου μετασχηματισμού Laplace Δ. Δημογιαννόπουλος, dimogian@teipir.gr Επ. Καθηγητής Τμήματος Μηχανικών Αυτοματισμού Τ.Ε Σ. Βασιλειάδου, svasil@teipir.gr Καθηγήτρια Εφαρμογών Τμήματος Μηχανικών Αυτοματισμού Τ.Ε

Σκοποί ενότητας Υπολογισμός απόκρισης σε τυπικές εισόδους με χρήση μετασχηματισμού Laplace: ΚΑΝΟΝΕΣ. Η συνάρτηση μεταφοράς και η σχέση της με τα είδη αποκρίσεων. Τυπικές αποκρίσεις συστημάτων 1 ου και 2 ου βαθμού. 2

Περιεχόμενα ενότητας Υπολογισμός της απόκρισης Ανάλυση σε στοιχειώδεις αποκρίσεις ανάλογα με το είδος πόλων: Πόλοι πραγματικοί Πόλοι πραγματικοί, αλλά κάποιος πολλαπλός Παράδειγμα Πόλοι μιγαδικοί σε ζεύγη Παράδειγμα 3

Περιεχόμενα ενότητας Παρατηρήσεις Αποκρίσεις συστημάτων σε τυπικές εισόδους: Σύστημα 1 ου βαθμού Αποκρίσεις συστημάτων σε τυπικές εισόδους: Σύστημα 2 ου βαθμού με βηματική είσοδο Απόκριση συστήματος με συντελεστή απόσβεσης ζ >1 Απόκριση συστήματος με συντελεστή απόσβεσης ζ =1 Απόκριση συστήματος με συντελεστή απόσβεσης ζ <1 4

Περιεχόμενα ενότητας Χαρακτηριστικά μεγέθη βηματικής απόκρισης συστήματος όταν ζ <1 Παράδειγμα 5

Υπολογισμός της απόκρισης Αντίστροφος Μετασχηματισμός Laplace 6

Υπολογισμός της απόκρισης: Αντίστροφος Μετασχηματισμός Laplace Μετασχηματισμός Laplace: Μια διαφορική εξίσωση γίνεται αλγεβρική. 7

Υπολογισμός της απόκρισης: Αντίστροφος Μετασχηματισμός Laplace Μετασχηματισμός Laplace: Μια διαφορική εξίσωση γίνεται αλγεβρική. Αν αρχικές συνθήκες μηδενικές: Συνάρτηση Μεταφοράς του συστήματος. Δηλαδή σταθερή σχέση εισόδου - εξόδου του συστήματος εξαρτώμενης των δομικών χαρακτηριστικών του συστήματος. Y(s) U(s) = b ms m + b m 1 s m 1 + b 1 s + b 0 s n + α n 1 s n 1 + + α 1 s + α 0 8

Υπολογισμός της απόκρισης: Αντίστροφος Μετασχηματισμός Laplace Μετασχηματισμός Laplace: Μια διαφορική εξίσωση γίνεται αλγεβρική. Αν αρχικές συνθήκες μηδενικές: Συνάρτηση Μεταφοράς του συστήματος. Δηλαδή σταθερή σχέση εισόδου - εξόδου του συστήματος εξαρτώμενης των δομικών χαρακτηριστικών του συστήματος. Y(s) U(s) = b m s m +b m 1 s m 1 + b 1 s + b 0 s n + α n 1 s n 1 + + α 1 s + α 0 Αν είσοδος U(s), τότε μέσω Σ.Μ. βρίσκεται η απόκριση Y(s) συστήματος στο πεδίο Laplace και με αντίστροφο μετ/μο Laplace η y(t) στο πεδίο χρόνου. 9

Όμως Χρήση αντιστρόφου Laplace με συγκεκριμένο τρόπο: Η απόκριση Y(s) ανάγεται σε στοιχειώδεις Y 1 (s), Y 2 (s),,y k (s) για τις οποίες ο αντίστροφος Laplace είναι γνωστός, και δίδεται σε πίνακες. Άρα υπολογίζονται y 1 (t), y 2 (t),, y k (t), και χωρίς να εκτελέσουμε περίπλοκους υπολογισμούς, λαμβάνουμε y(t)=y 1 (t)+y 2 (t)+ +y k (t) 10

Ανάλυση σε στοιχειώδεις αποκρίσεις ανάλογα με το είδος πόλων Ι. Πόλοι πραγματικοί 11

Πως γίνεται Έστω απόκριση Y(s) από τη συνάρτηση μεταφοράς συστήματος Y s = b m s m +b m 1 s m 1 +b 1 s+b 0 s n +α n 1 s n 1 + +α 1 s+α 0 U s = P(s) Q(s) = P(s) s p 1 s p 2... (s p n ) με p 1,,p n τους πόλους του συστήματος. Η παραπάνω Y(s) αναλύεται σε στοιχειώδεις αποκρίσεις ανάλογα με το είδος των πόλων ως εξής: 12

Ι. Πόλοι πραγματικοί και p 1 p 2 p n Y s = A 1 s p 1 + A 2 s p 2 + + A n s p n L 1 y t = A 1 e p 1 t + A 2 e p 2 t + + A n e p n t A 1 = A 2 = A n = R 1 (s) s=p1 R 2 (s) s=p2 όπου: R i s = R n (s) s=pn s p 1 P(s) s p 2 (s p n ) (s p i) υπόλοιπο (residue) 13

Ανάλυση σε στοιχειώδεις αποκρίσεις ανάλογα με το είδος πόλων ΙΙ. Πόλοι πραγματικοί, αλλά κάποιος πολλαπλός 14

ΙΙ. Πόλοι πραγματικοί, αλλά κάποιος πολλαπλός p 1 = p 2 = = p r = p (από τους n) Y s = A 1 (s p 1 ) r + A 2 (s p 2 ) r 1 + + A r s p + A r+1 s p r+1 + + Α n s p n L 1 y t = A 1 t r 1 r 1! + A 2 t r 2 r 2! + + A r i t + A r e p t +A r+1 e p n t Τα A r+1,, Α n όπως στην προηγούμενη περίπτωση Τα A 1,, A r ως εξής: A 1 = R(s) s=p A r = A 2 = A 3 = 1 1 2! r 1! dr(s) ds d 2 R(s) ds 2 d r 1 s=p s=p ds r 1 R(s) s=p Όπου το υπόλοιπο R s = P s Q s (s p)r 15

Παράδειγμα 16

Παραδείγμα Έστω Y s = 1 s+1 3 (s+2). Σύμφωνα με όσα είπαμε: Y s = A 1 (s+1) 3 + A 2 (s+1) 2 + A 3 s+1 + A 4 s+2 Υπόλοιπα για πολλαπλούς πόλους R s = 1 (s + s+1 3 s+2 1)3 = 1 s+2 A 1 = R(s) s= 1 = 1 1+2 = 1 A 2 = dr(s) ds s= 1 = 1 (s+2) 2 s= 1 = 1 A 3 = 1 2! d 2 R(s) ds 2 s= 1 = 1 17

Υπόλοιπο για πόλο s=-2 R s = A 4 = R(s) s= 2 = 1 ( 2+1) 3 = 1 1 s+1 3 s+2 s + 2 = 1 (s+1) 3 Τελικά λοιπόν: y t = ( 1 t2 2! + 1 t 1! + 1 t 0 ) e t + 1 e 2t = 1 2 t2 t + 1 e t e 2t Σκίτσο Απόκρισης;; 18

Ανάλυση σε στοιχειώδεις αποκρίσεις ανάλογα με το είδος πόλων ΙΙΙ. Πόλοι μιγαδικοί σε ζεύγη 19

ΙΙΙ. Πόλοι μιγαδικοί σε ζεύγη p 1,2 = σ ± j ω Αν Y s = A 1 ω+a 2 (s σ) (s σ) 2 +ω 2 L 1 από πίνακες y t = {A 1 sin(ωt) + A 2 cos(ωt)} e σ t = M sin(ω t + φ) e σ t Ο υπολογισμός των Α 1, Α 2 και Μ, φ γίνεται ως εξής: Το υπόλοιπο των μιγαδικών πόλων R μ s = P(s) Q(s) s σ 2 + ω 2 Σχηματίζουμε A = 1 ω R μ(s) s=σ+jω = A 1 + j A 2 = M e j φ όπου A 1 = Re[A], A 2 =Im[A], M= A, φ = tan 1 Α 2 Α 1 20

Παράδειγματα 21

Παράδειγμα (1) Y s = 1 s 2 +2s+5 s+3. Σύμφωνα με όσα είπαμε: Πόλοι p 1,2 = 1 ± j2 και p 3 = 3. Θα έχουμε για τους p 1,2 : σ=-1, ω=2 Y s = 2 A 1 + A 2 (s + 1) (s + 1) 2 +2 2 + Α 3 s + 3 R μ s = 1 s 2 + 2s + 5 s + 3 s2 + 2s + 5 = 1 s + 3 Αφού (s+1) 2 +2 2 =(s-σ) 2 +ω 2 =s 2 +2s+5! 22

A = 1 2 1 = 1 = 1 j 1 s+3 s= 1+2j 4+4j 8 8 άρα και A 1 = 1 8, A 2 = 1 8 M = ( 1 8 )2 +( 1 8 )2 = 2, φ = tan 1 8 1 8 1 8 = 45 A 3 = R(s) s= 3 = 1 s 2 +2s+5 s+3 s + 3 s= 3 = 1 9 6+5 = 1 8 Y(t)= [ 1 8 sin 2 t 1 8 cos(2 t)] e t + 1 8 e 3t = 2 8 sin 2 t π 4 e t + 1 8 e 3 t Σκίτσο απόκρισης;; 23

Παράδειγμα (2) Υπολογισμός (στον πίνακα!) απόκρισης κυκλώματος RC για είσοδο Ε Volts. Ποια εξίσωση αναπαριστά τη λειτουργία του κυκλώματος; e(t)=i(t) R + u(t), u(0)=u 0 ή e t = R C d u t + u t, u 0 = U dt 0 24

Παράδειγμα (συνέχεια) Πώς προχωρούμε: Laplace, χρήση βηματικής εισόδου Ε s = Ε, s χωρισμός σε απλά κλάσματα, μέθοδος υπολοίπων και αντίστροφος Laplace Οπότε 25

Παράδειγμα (συνέχεια) Πώς προχωρούμε: Laplace, χρήση βηματικής εισόδου Ε s = Ε, s χωρισμός σε απλά κλάσματα, μέθοδος υπολοίπων και αντίστροφος Laplace Οπότε u t = E E U 0 e t R C 26

Παράδειγμα (συνέχεια) Πώς προχωρούμε: Laplace, χρήση βηματικής εισόδου Ε s = Ε, s χωρισμός σε απλά κλάσματα, και αντίστροφος Laplace Οπότε u t = E E U 0 e t R C = U0 e t R C + Ε 1 e t R C Εξετάσατε τις περιπτώσεις t, U 0 = 0. Ποιά η ελεύθερη και ποιά η εξαναγκασμένη απόκριση; 27

Παρατηρήσεις 28

ΠΑΡΑΤΗΡΗΣΕΙΣ Η ελεύθερη απόκριση εξαρτάται μόνο απο τις αρχ. συνθήκες: άρα τελικά, αν δεν μεσολαβεί συνεχώς διέγερση, για t u(t) 0, αν η απόκριση του συστήματος συγκλίνει [ όχι π.χ. sin(ω t)!!! ] 29

ΠΑΡΑΤΗΡΗΣΕΙΣ Η ελεύθερη απόκριση εξαρτάται μόνο απο τις αρχ. συνθήκες: άρα τελικά, αν δεν μεσολαβεί συνεχώς διέγερση, για t u(t) 0, αν η απόκριση του συστήματος συγκλίνει [ όχι π.χ. sin(ω t)!!! ] Η (λόγω διέγερσης) εξαναγκασμένη απόκριση u(t) 0 για t. Συνεπώς, από τη συνάρτηση μεταφοράς (=με μηδενικές αρχικές συνθήκες) υπολογίζεται, με L 1 η μόνιμη τιμή της απόκρισης (αν υπάρχει!) για t. 30

Εναλλακτικός τρόπος υπολογισμού της μόνιμης κατάστασης σήματος y(t) για t, αν το y(t) υπάρχει: Θεώρημα τελικής τιμής: Αν η συνάρτηση y(t) έχει όριο, τότε αυτό θα είναι y = y(t) t = lim s 0 s Y(s) Π.χ. για το κύκλωμα RC: U(s)= 1 R C s+1 E(s) u = lim s 0 s 1 R C s+1 Ε s = 1 E = E 31

Για είσοδο u(t), η εξαναγκασμένη απόκριση y(t) δίδεται στο πεδίο του χρόνου από το ολοκλήρωμα της ΣΥΝΕΛΙΞΗΣ (convolution): y εξ. t = 0 t g t τ u t dτ με g(t) τη βαρυτική συνάρτηση (ορισμός). 32

Για είσοδο u(t), η εξαναγκασμένη απόκριση y(t) δίδεται στο πεδίο του χρόνου από το ολοκλήρωμα της ΣΥΝΕΛΙΞΗΣ (convolution): y εξ. t = 0 t g t τ u t dτ με g(t) τη βαρυτική συνάρτηση (ορισμός). Αλλά η εξαναγκασμένη απόκριση δίδεται από τη Σ.Μ. στο πεδίο Laplace: Y s = G s U s 33

Για είσοδο u(t), η εξαναγκασμένη απόκριση y(t) δίδεται στο πεδίο του χρόνου από το ολοκλήρωμα της ΣΥΝΕΛΙΞΗΣ (convolution): y εξ. t = 0 t g t τ u τ dτ με g(t) τη βαρυτική συνάρτηση (ορισμός). Αλλά η εξαναγκασμένη απόκριση δίδεται από τη Σ.Μ. στο πεδίο Laplace: Y s = G s U s ΑΡΑ g t = L 1 G s ή g t = L 1 [Y s για U s = 1] «Η g t είναι ο L 1 της απόκρισης του συστήματος σε κρουστική δ(t)» 34