Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ



Σχετικά έγγραφα
Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Κατανομές Απώλειας. Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Κλασικη ιαφορικη Γεωµετρια

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

ιάνυσµα ονοµάζεται το µαθηµατικό µέγεθος που περιγράφεται από µιατριάδαστοιχείων: το

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 6

11. Βαθµίδα, Απόκλιση, Στροβιλισµός

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Εφαρμοσμένα Μαθηματικά ΙΙ

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

x 2 = x x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Διανύσµατα στο επίπεδο

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ. Καθ. Βλάσης Κουµούσης

ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΙΑΤΡΙΚΗ

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ

ΜΕΜ251 Αριθμητική Ανάλυση

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 3. Σύντομες Λύσεις

Γραµµική Αλγεβρα. Ενότητα 4 : Ορθογωνιότητα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Μ8 Η µερική παράγωγος

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ

10. Παραγώγιση διανυσµάτων

Χωρικές Περιγραφές και Μετασχηµατισµοί

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ ΠΙΝΑΚΩΝ. (ii) Αν ο Β m+1, με m N, αντιστρέφεται, τότε και ο Β αντιστρέφεται

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµικη Αλγεβρα Ι. Ακαδηµαϊκο Ετος Βοηθος Ασκησεων: Χ. Ψαρουδάκης

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ

x R 2 : (x 1 x 01 ) 2 + (x 2 x 02 ) 2 < ε}

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής


ΥΟ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΑΠΟ ΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ

Κεφάλαιο 7 Ορθογώνιοι Πίνακες

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( , c Ε. Γαλλόπουλος) ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Ε. Γαλλόπουλος. ΤΜΗΥΠ Πανεπιστήµιο Πατρών. ιαφάνειες διαλέξεων 28/2/12

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Γραµµική Αλγεβρα. Ενότητα 7 : Γραµµικοί Μετασχηµατισµοί. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

1.2 Συντεταγμένες στο Επίπεδο

Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

Στοχαστικά Σήµατα και Εφαρµογές

1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος

ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ. t 1 (x 1,y 1 ) Η αρχή ενός οποιουδήποτε ορθογωνίου xy συστήματος συντεταγμένων

ΙΑΛΕΞΕΙΣ ΜΗΧΑΝΙΚΗΣ. Την Κινηµατική (µελετάει την κίνηση των σωµάτων χωρίς να ενδιαφέρεται για τις δυνάµεις που ενεργούν στα σώµατα)

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )

Τίτλος Μαθήματος: Απειροστικός Λογισμός ΙΙΙ. Ενότητα: Όρια και συνέχεια συναρτήσεων. Διδάσκων: Ιωάννης Γιαννούλης. Τμήμα: Μαθηματικών

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 7

1.i) 1.ii) v 2. v 1 = (2) (1) + ( 2) ( 1) + (-2) (2) + (0) (-4) v 3. Βρίσκουµε πρώτα µία ορθογώνια βάση: u 1. . u 1 u. u 2

ΑΝΑΚΟΙΝΟΠΟΙΗΣΗ ΣΤΟ ΟΡΘΟ

14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών.

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

Transcript:

Χώροι Εσωτερικού Γινοµένου ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 12 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των διανυσµατικών χώρων εφοδιασµένων µε εσωτερικό γινόµενο. Το ϕυλλάδιο διατίθεται ΩΡΕΑΝ και απαγορεύεται η εµπορική εκµετάλλευση από οποιονδήποτε. email: kkiritsis@vitali.gr 1

Κ. Κυρίτσης 2 Χώροι Εσωτερικού Γινοµένου Περιεχόµενα 1 Ορισµός 3 2 Norm (Μέτρο) ιανύσµατος 3 3 Μοναδιαίο ιάνυσµα 3 4 Παραδείγµατα 3 4.1 K n................................. 3 4.2 M n,m............................... 4 4.3 C[a, b]............................... 4 5 Ανισότητα Cauchy-Schwarz 4 6 Γωνία Μεταξύ ιανυσµάτων 4 7 Ορθογωνιότητα 4 8 Ορθογώνιο Συµπλήρωµα 4 9 Ορθογώνια, Ορθοµοναδιαία Σύνολα ιανυσµάτων 4 10 Εξωτερικό Γινόµενο 5

Κ. Κυρίτσης 3 Χώροι Εσωτερικού Γινοµένου 1 Ορισµός Εστω V διανυσµατικός χώρος στο σώµα K. Ορίζουµε µια καινούργια πράξη που ϑα την ονοµάσουµε εσωτερικό γινόµενο,, : V V K έτσι ώστε v, u K και µε τις εξής ιδιότητες, v, u 1, u 2 V και λ, µ K. 1. 2. 3. v, λu 1 + µu 2 = λ v, u 1 + µ v, u 2. v, u = u, v. v, v 0 1. Επιπλέον v, v = 0 εάν και µόνο αν v = 0. 2 Norm (Μέτρο) ιανύσµατος Ορίζεται σε χώρους εσωτερικού γινοµένου και είναι 3 Μοναδιαίο ιάνυσµα v = v, v. (1) Λέγεται το διάνυσµα που έχει µέτρο µονάδα. Για το τυχόν διάνυσµα v, το έχει πάντα µέτρο µονάδα. 4 Παραδείγµατα ˆv = v v 4.1 K n Για διανύσµατα γραµµένα σε πίνακα γραµµή, v = (x 1, x 2,...) είναι v, v = x 2 1 + x 2 2 +. 1 Μερικές ϕορές αυτό το αξίωµα παραλείπεται.

Κ. Κυρίτσης 4 Χώροι Εσωτερικού Γινοµένου 4.2 M n,m Εδώ είναι A, B = tr(b T A). 4.3 C[a, b] b Εδώ είναι f(x), g(x) = a f(x)g(x)dx. 5 Ανισότητα Cauchy-Schwarz ή 6 Γωνία Μεταξύ ιανυσµάτων Ορίζεται να είναι 7 Ορθογωνιότητα v, u 2 u, u v, v (2) u, v u v. (3) u, v cosθ = u v ύο διανύσµατα είναι κάθετα όταν θ = 0. Αυτό είναι ισοδύναµο µε το u, v = 0. 8 Ορθογώνιο Συµπλήρωµα Εστω S V και V διανυσµατικός χώρος εσωτερικού γινοµένου. Το ορθογώνιο συµπλήρωµα του S ορίζεται να είναι S = {v V : v, u = 0 u S}. 9 Ορθογώνια, Ορθοµοναδιαία Σύνολα ιανυσµάτων Εστω τα διανύσµατα {v i }. Αν είναι v i, v j = { 0, i = j 0, i j (4) (5)

Κ. Κυρίτσης 5 Χώροι Εσωτερικού Γινοµένου ϑα λέµε ότι είναι ορθογώνια. Αν είναι { 1, i = j v i, v j = 0, i j = δ ij (6) ϑα λέµε ότι είναι ορθοµοναδιαία. Αντίστοιχα ϑα λέµε ότι µια ϐάση είναι ορθογώνια ή ορθοµοναδιαία. εδοµένης µιας ϐάσης, µε την µέθοδο Gram-Schmidt µπορούµε να κατασκευάασουµε µια ορθογώνια και κατόπιν να την κάνουµε ορθοµοναδιαία. Η ϐάση {e i = (0, 0,..., 1,...,0}) µε το 1 στην i ϑέση λέγεται κανονική ή συνήθης ϐάση ή Καρτεσιανή. 10 Εξωτερικό Γινόµενο Ορίζεται µόνο για διανύσµατα του R 3. Για τα u = (u x, u y, u z ) και v = (v x, v y, v z ) είναι i j k u v = u x u y u z v x v y v z. Για το µέτρο ισχύει u v = u v sinθ. Σαν διάνυσµα είναι κάθετο στο επίπεδο των u,v.

Κ. Κυρίτσης 6 Χώροι Εσωτερικού Γινοµένου ΕΚΠΑΙ ΕΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ Πανεπιστηµιακά Φροντιστήρια Μαθήµατα για: Πανεπιστήµιο Πειραιώς Οικονοµικό Πανεπιστήµιο Αθηνών Καποδιστριακό Πανεπιστήµιο Αθηνών Πάντειον Πανεπιστήµιο Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ) Ελληνικό Ανοικτό Πανεπιστήµιο (ΕΑΠ) ΤΕΙ Αθηνών ΤΕΙ Πειραιώς... Σεµινάρια για ιαγωνισµούς ηµοσίου Προετοιµασία για: Εθνική Σχολή ηµόσιας ιοίκησης Εθνική Σχολή Τοπικής Αυτοδιοίκησης Υπουργείο Οικονοµικών Υπουργείο Εξωτερικών Υπουργείο ικαιοσύνης ιαγωνισµός Εκπαιδευτικών ιαγωνισµός Ευρύτερου ηµόσιου Τοµέα.

Κ. Κυρίτσης 7 Χώροι Εσωτερικού Γινοµένου Ξένες Γλώσσες Αγγλικά Κινέζικα TOEFL (εξεταστικό κέντρο) GMAT IELTS TOEIC GRE Εξειδικευµένα Σεµινάρια Επίσηµο Εξεταστικό Κέντρο TOEFL Στατιστικά Προγράµµατα (SPSS, StatView,... ) Matlab Mathematica Autocad Μηχανογραφηµένη Λογιστική Γλώσσες Προγραµµατισµού (C, C++, Java, Php,... )

Κ. Κυρίτσης 8 Χώροι Εσωτερικού Γινοµένου Πληροφορική (Πιστοποιήσεις) Βασικό Επίπεδο (απαραίτητο στον ΑΣΕΠ) Προχωρηµένο Επίπεδο Εξειδικευµένο Επίπεδο Πιστοποιηµένο Εξεταστικό Κέντρο ECDL Πιστοποιηµένο Εξεταστικό Κέντρο keycert Επισκεφθείτε την ιστοσελίδα µας www.vitali.gr και ενηµερωθείτε για τα προγράµµατά µας. ιευθυντής Εκπαίδευσης ρ. Χόντας Στυλιανός ιδάκτωρ Μηχανικός ΕΜΠ Ηλεκτρολόγος Μηχανικός & Μηχανικός Η/Υ