ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4-ΩΡΟ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ

Σχετικά έγγραφα
ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ

ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ.

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ

Θέματα. Α1. Να δώσετε τον ορισμό της συχνότητας και της σχετικής συχνότητας μιας παρατήρησης x i. Σ Λ

την αρχή των αξόνων και ύστερα να υπολογίσετε το εμβαδόν του

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2019 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

P A B P(A) P(B) P(A. , όπου l 1

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

12, 16, 17, 8, 6, 9, 12, 11, 11, 9

Λύκειο Παραλιμνίου Σχολική Χρονιά Γενικές ασκήσεις επανάληψης Γ κατ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ

x. Αν ισχύει ( ) ( )

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k.

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 56)

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

< και δεδομένου ότι η f είναι γνησίως μονότονη, συμπεραίνουμε ότι

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ ΙΟΥΛΙΟΥ Β. α. ΛΑΘΟΣ, β. ΣΩΣΤΟ, γ. ΣΩΣΤΟ, δ. ΛΑΘΟΣ, ε. ΣΩΣΤΟ, στ. ΣΩΣΤΟ. α = 1 δ. im( f (x) x ) = im - 2βx x = - 4β 8 = 4α - 32β =

1 0, να βρείτε την τιμή του α. 4. Οι παραμετρικές εξισώσεις μιας καμπύλης είναι : χ=3(2θ ημ2θ) ψ=3(1 συν2θ) α) Να δείξετε ότι : =σφθ

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

ευτέρα, 18 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4

1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

2 η ΕΡΓΑΣΙΑ Παράδοση

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 B ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ / ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΑΠΟ ΤΗΝ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 1.Δίνεται η εξίσωση f x x 4x. Να βρείτε την τιμή του πραγματικού αριθμού λ για την οποία η

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn.

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

β) Αν υπάρχουν τα limf (x), και είναι γ) Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, τότε ισχύει: ( f g ) (x) = f (x) g (x), x

ΓΕΛ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

g x είναι συνάρτηση 1 1 στο Ag = R αλλά δεν είναι γνησίως

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ

Ασκήσεις επανάληψης στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου, χ. Έτος του Μανώλη Ψαρρά Άσκηση 1 η

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ κ.κ.

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ

2 3x 4 0, να υπολογίσετε χωρίς να λύσετε την

ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΒΑΣΙΛΕΙΟΣ ΝΤΑΙΦΩΤΗΣ

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ.

Transcript:

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 6, Γραφ. 102, Στρόβολος 200, Λευκωσία Τηλ. 7-2278101 Φαξ: 7-2279122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ -ΩΡΟ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ Ημερομηνία: Τρίτη, 2/0/2016 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΑΠΟ ΤΗΝ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΜΕΡΟΣ A : Να λύσετε και τις 10 ασκήσεις. Κάθε άσκηση βαθμολογείται με μονάδες. 1. Στο πιο κάτω ραβδόγραμμα παρουσιάζονται οι βαθμοί, σε ακέραιες μονάδες, που πήραν οι φοιτητές ενός τμήματος του ΤΕΠΑΚ, στην εξέταση του μαθήματος της Τεχνολογίας. Με βάση το πιο πάνω ραβδόγραμμα: (α) Να βρείτε πόσοι φοιτητές πήραν βαθμό 9. (β) Να βρείτε τον συνολικό αριθμό των φοιτητών που παρακάθισαν στην εξέταση. (γ) Αν ένας φοιτητής για να περάσει το μάθημα πρέπει να πάρει στην εξέταση βαθμό τουλάχιστον, να βρείτε πόσοι φοιτητές πέρασαν το μάθημα. (α) 6 φοιτητές πήραν βαθμό 9. (β) Συνολικός αριθμός φοιτητών που παρακάθισαν στην εξέταση: Σ + 1 + + + 10 + 8 + 6 + + 6 + + 6 + 2 0 (γ) Αριθμός φοιτητών με βαθμό τουλάχιστον : Σ 10 + 8 + 6 + + 6 + + 6 + 2 7 1

2. Να βρείτε την παράγωγο dy dx της συνάρτησης y x + x 2 1, όπου x R. Είναι: dy dx x + 10x. Ένας μαθητής της Θεωρητικής Κατεύθυνσης, στο μάθημα των Μαθηματικών, πήρε σε πέντε διαγωνίσματα τους εξής βαθμούς: 1, 17, 1, 18 και 16. Να υπολογίσετε τη μέση τιμή των βαθμών του. Είναι: x 1+17+1+18+16 80 16 2x. Να υπολογίσετε το όριο: 2 x + x 2 x + (2x2 ) + Είναι: { (x 2 ) + x + Συνεπώς, το όριο Επομένως, έχουμε: 2x 2 x + x 2 2x 2 x + x 2 είναι απροσδιόριστης μορφής + +. x + x 2 (2 x 2) 2 0 x 2 (1 x2) 1 0 2. Δίνεται η λέξη ΜΕΤΑΝΑΣΤΗΣ. Να βρείτε: (α) Το πλήθος των αναγραμματισμών της. (β) Το πλήθος των αναγραμματισμών που αρχίζουν και τελειώνουν σε Α. (α) Μ 10 ε 10! 628800 600 2!2!2! 8 (β) Τοποθετούμε τα δύο Α στα άκρα του κάθε αναγραμματισμού. Συνεπώς: Μ 8 ε 8! 2! 2! 020 10080 6. Να βρείτε το ολοκλήρωμα: (συνx 2x)dx Είναι: (συνx 2x)dx ημx 2 x2 2 + c ημx x2 + c 2

7. Να βρείτε τις συντεταγμένες του κέντρου και το μήκος της ακτίνας του κύκλου που έχει εξίσωση x 2 + y 2 + 2x y 20 0. Α τρόπος Είναι: { 2g 2 g 1 2f f 2 c 20 Επομένως, Κ( g, f) K( 1, 2) και R g 2 + f 2 c 1 2 + ( 2) 2 ( 20) 2 μον. Β τρόπος Είναι: x 2 + y 2 + 2x y 20 0 (x + 1) 2 1 + (y 2) 2 20 0 (x + 1) 2 + (y 2) 2 2 Επομένως, Κ(a, β) K( 1, 2) και R 2 μον. 8. Η συνάρτηση f(x) ax 2 + 8x + 11 όπου x R, παρουσιάζει τοπικό ακρότατο στο σημείο ( 2, β). Να βρείτε τις τιμές των a και β. Α τρόπος Το σημείο με συντεταγμένες ( 2, β) ανήκει στη γραφική παράσταση της συνάρτησης f. Επομένως, f( 2) β. Η συνάρτηση f παρουσιάζει τοπικό ακρότατο για x 0 2. Επομένως, f ( 2) 0. f( 2) β a 16 + 11 β β a (1) Είναι: { f ( 2) 0 2a( 2) + 8 0 a 8 a 2 (2) Από (1) και (2), έχουμε: β 2 β 8 β Β τρόπος Αν a 0, η γραφική παράσταση της συνάρτησης f με γενικό τύπο f(x) ax 2 + βx + γ παριστάνει παραβολή με άξονα συμμετρίας την ευθεία με εξίσωση: x β 2a Επομένως, ο άξονας συμμετρίας της συνάρτησης με τύπο f(x) ax 2 + 8x + 11 είναι η ευθεία με εξίσωση: x 8 2a Η ακρότατη τιμή της συνάρτησης f παρουσιάζεται για x 0 2. Επομένως, ο άξονας συμμετρίας της είναι η ευθεία με εξίσωση x 2. Δηλαδή, 8 2 a 8 a 2 2a Το σημείο με συντεταγμένες ( 2, β) ανήκει στη γραφική παράσταση της συνάρτησης f. Επομένως, f( 2) β. Δηλαδή, f( 2) β a 16 + 11 β β

9. Τα Α και Β είναι ενδεχόμενα του ίδιου δειγματικού χώρου Ω με P(A) 12, P(B) και P(A B) 1. Να υπολογίσετε τις πιθανότητες: (α) P(B ) (β) P(A B) (γ) P(A B) (δ) P(A/B) (α) P(B ) 1 P(B) 1 1 (β) P(A B) P(A) + P(B) P(A B) 12 + 1 6 (γ) P(A B) P(A) P(A B) 12 1 1 12 (δ) P(A/B) P(A B) P(B) 1 9 10. Δίνεται η καμπύλη με εξίσωση x 2 y 2 1. Να δείξετε ότι: (α) dy dx x y (β) y d2 y dy dx2 y + (x + 1) 0 dx (α) Παραγωγίζουμε τον κάθε όρο ως προς x και παίρνουμε: 6x 2y dy dy dy 0 2y 6x dx dx dx 6x 2y x y (β) Παραγωγίζουμε την πιο πάνω σχέση ως προς x και παίρνουμε: d 2 dy y y x dx dx2 y 2 y x x y y 2 y2 9x 2 Επομένως, από την πιο πάνω σχέση παίρνουμε ότι: y d2 y dx 2 Είναι: y d2 y dy dx2 y + (x + 1) y x dx y (1) y (x2 y 2 ) y y + x + x + x + 0

ΜΕΡΟΣ B : Να λύσετε και τις ασκήσεις. Κάθε άσκηση βαθμολογείται με 10 μονάδες. 1. Δίνεται η συνάρτηση με τύπο y. Να βρείτε το πεδίο ορισμού, τα σημεία τομής με τους άξονες, τα x 2 διαστήματα μονοτονίας, τα τοπικά ακρότατα, τις ασύμπτωτες της συνάρτησης και στη συνέχεια να την παραστήσετε γραφικά. Πεδίο ορισμού: Α R { 2,2} Σημεία τομής με άξονες συντεταγμένων: για x 0 έχουμε (0, 1 ) και για y 0 έχουμε (1,0) και ( 1,0). Μονοτονία-ακρότατα: Παραγωγίζοντας την συνάρτηση παίρνουμε f (x) 2x(x2 ) 2x(1 x 2 ) 6x (x 2 ) 2 (x 2 ) 2 Η μονοτονία και τα ακρότατα της f φαίνονται στον παρακάτω πίνακα. x 2 0 2 + f (x) 0 + + f(x) 1 min(0, 1 ) H f είναι: Γνησίως αύξουσα στα διαστήματα [0,2) και (2, + ) Γνησίως φθίνουσα στα διαστήματα (, 2) και ( 2, 0]. Ασύμπτωτες: Η f έχει τοπικό ελάχιστο το f(0) 1, δηλαδή Τ.Ε(0, 1 ). Οριζόντια ασύμπτωτη: Κατακόρυφες ασύμπτωτες: Γραφική παράσταση: 1 x 2 x ± x 2 x 2 1, Άρα, y 1 οριζόντια ασύμπτωτη όταν x ±. x ± x 2 και +, άρα x 2 κατακόρυφη ασύμπτωτη. x 2 x 2 x 2 + x 2 + και, άρα x 2 κατακόρυφη ασύμπτωτη. x +2 x 2 x +2 + x 2

2. Ο πιο κάτω πίνακας παρουσιάζει την κατανομή των 6 βουλευτικών εδρών που κατέχουν 8 πολιτικές παρατάξεις του Κοινοβουλίου μιας Ευρωπαϊκής χώρας. Αριθμός εδρών (x i ) 2 9 16 18 Αριθμός πολιτικών παρατάξεων (f i ) 2 1 1 1 Να βρείτε: (α) Την επικρατούσα τιμή (x ε ) των εδρών. (β) Τη μέση τιμή (x ) των εδρών. (γ) Την τυπική απόκλιση (σ) των εδρών. α) Επικρατούσα τιμή μιας μεταβλητής x είναι η τιμή με την μεγαλύτερη συχνότητα. Άρα, x ε. Συμπληρώνουμε τον παρακάτω πίνακα Αριθμός εδρών (x i ) Αριθμός πολιτικών παρατάξεων (f i ) x i f i (x i x ) 2 f i (x i x ) 2 2 2 (2 7) 2 2 0 9 ( 7) 2 16 8 9 1 9 (9 7) 2 16 1 16 (16 7) 2 81 81 18 1 18 (18 7) 2 121 121 Σf i 8 Σx i f i 6 Σf i (x i x ) 2 0 β) Η μέση τιμή των εδρών είναι x Σx if i Σf i 6 8 7. γ) Η τυπική απόκλιση των εδρών είναι σ Σf i (x i x ) 2 0 8 6,16 Σf i 8. Δίνεται η καμπύλη f(x) x 2 + ax + β. Να βρείτε τις τιμές των σταθερών α και β, αν η εφαπτομένη της καμπύλης στο σημείο Σ(0,1) είναι κάθετη στην ευθεία με εξίσωση (ε): x y + 1 0. Το σημείο Σ(0, 1) ανήκει στη γραφική παράσταση της f, άρα f(0) 1 β 1. f (x) 2x + α και, επειδή η εφαπτομένη στη γραφική παράσταση της f είναι κάθετη στην ευθεία (ε), ισχύει λ εφ λ ε 1 f (0) 1 1 α 6

. Από τους 12 μαθητές ενός τμήματος μιας Τεχνικής Σχολής, οι επέλεξαν Ελεύθερο Σχέδιο και οι υπόλοιποι Διακόσμηση Εσωτερικού Χώρου. Επιλέγουμε τυχαία 2 από τους μαθητές αυτούς. Να υπολογίσετε τις πιθανότητες των ενδεχομένων: Α: «Και οι δύο μαθητές να έχουν επιλέξει Ελεύθερο Σχέδιο». Β: «Μόνο ένας μαθητής να έχει επιλέξει Ελεύθερο Σχέδιο». Γ: «Τουλάχιστον ένας μαθητής να έχει επιλέξει Διακόσμηση Εσωτερικού Χώρου». Αν Ω είναι ο δ.χ, τότε Ν(Ω) ( 12 2 ) 66. Επίσης, Ν(Α) ( 2 ) 6 και Ν(Β) ( 1 )(8 1 ) 2. Άρα Ρ(Α) Ν(Α) 6 1 και Ρ(Β) Ν(Β) 2 16 Ν(Ω) 66 11 Ν(Ω) 66 Τέλος, Ρ(Γ) 1 Ρ(Γ ) 1 Ρ(Α) 1 1 11 10 11. Χρησιμοποιώντας την αντικατάστασηu x 2 + 16, ή με οποιονδήποτε άλλο τρόπο, να υπολογίσετε το ολοκλήρωμα 8x 0 dx x 2 +16 Έχουμε: u x 2 + 16 x 2 u 2 16 και 2xdx 2udu xdx udu. Επίσης, για x 0 u και για x u. Άρα 8x x 2 + 16 dx 8x2 x 2 + 16 xdx 8(u2 16 ) udu 8 (u 2 16 )du u 0 0 8 [ u 16u] 8 [( 10 16 ) ( 16 )] 7