ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 MAΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f ( ) 0 Έστω, Δ με Θα δείξουμε ότι f ( ) f ( ) Πράγματι, στο διάστημα [, ] η f ικανοποιεί τις προϋποθέσεις του ΘΜΤ Επομένως, υπάρχει ξ, ) τέτοιο, ώστε ( f ( ) f ( ) f ( ξ), οπότε έχουμε f ( ) f ( ) f ( ξ)( ) Επειδή f ( ξ) 0 και 0, έχουμε f ) f ( ) 0, οπότε f ) f ( ) ( ( Α Μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα,, όταν είναι συνεχής σε κάθε σημείο του ( α, β) και επιπλέον lim f () f ( ) lim f () f ( ) και Α3 Μια συνάρτηση f, με πεδίο ορισμού Α, θα λέμε ότι παρουσιάζει στο 0 A τοπικό μέγιστο, όταν υπάρχει 0, τέτοιο ώστε f () f ( 0) για κάθε A ( 0, 0 ) Το 0 λέγεται θέση ή σημείο τοπικού μεγίστου, ενώ το f ( 0) τοπικό μέγιστο της f Α4 α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Λάθος ΘΕΜΑ Β Β Είναι z z 4 ( z )( z ) ( z )( z ) 4 z z z z z z 4 z z Άρα, ο γεωμετρικός τόπος των εικόνων των μιγαδικών z είναι ο κύκλος με κέντρο το O (0,0) και ακτίνα 3
Β Έχουμε ότι z z Επίσης: z z z z ( ) z z R( z z ) R( z z ) 0 z z z z R( zz ) Άρα, zz Β3 Έστω w yi, όπου, y Τότε w5 w yi 5( yi) 4 6 iy άρα ισοδύναμα παίρνουμε y y y i 3 3 9 4 Συνεπώς ο γεωμετρικός τόπος της εικόνας (, y) του μιγαδικού w είναι η προηγούμενη έλλειψη Οι κορυφές της έλλειψης είναι A(3,0), A ( 3,0) και B(0,), B (0, ) Ο μεγάλος άξονας έχει μήκος a (AA ) 6 και ο μικρός άξονας (BB ) 4 Είναι γνωστό από τα μαθηματικά κατεύθυνσης της Β Λυκείου (σελίδα 04) ότι για οποιοδήποτε σημείο M της έλλειψης ισχύει ότι (MO) Άρα, w 3 Για w i ή w i έχουμε ότι min w και για w 3 ή w 3 έχουμε ότι ma w 3 Β4 Από την τριγωνική ανισότητα z w z w z w βάζοντας όπου w το w παίρνουμε την z w z w z w Άρα αφενός z w z w 3 4 και αφετέ- ρου z w z w w z έχουμε: w z w z w z 3 4 ΘΕΜΑ Γ Γ Η συνάρτηση f είναι παραγωγίσιμη για κάθε 0 διότι προκύπτει από πράξεις μεταξύ των παραγωγίσιμων συναρτήσεων f ( ) (πολυώνυμο), f ( ) ln (λογαριθμική συνάρτηση) ln Είναι f ( ) ln Έχουμε f () 0 Αν 0 τότε ln 0 ln 0 και 0 Επομένως ln 0 και έτσι f( ) 0 για 0 Άρα η f είναι γνησίως φθίνουσα στο 0, 4
Αν τότε ln 0 ln 0 και 0 Επομένως ln 0 και έτσι f( ) 0 για Άρα η f είναι γνησίως αύξουσα στο [, ) Η f είναι γνησίως φθίνουσα στο (0,] άρα f f f 0 lim f ( ) lim ( ) ln 0 0 Η f είναι γνησίως αύξουσα στο [, ) άρα f f f διότι lim f ( ) lim ( ) ln Οπότε τελικά το σύνολο τιμών της f είναι [, ) (0,] (), lim ( ) [, ) διότι [, ) (), lim ( ) [, ) Γ Η εξίσωση γράφεται ισοδύναμα: 03 ( ) ln 03 ( ) ln 0 f ( ) 0 Όμως επειδή f (0,] [, ), η f είναι συνεχής στο (0,] (0, ) και 0 [, ) άρα από το θεώρημα ενδιαμέσων τιμών υπάρχει (0,) ώστε f( ) 0 Επειδή επιπλέον η f είναι γνησίως φθίνουσα στο (0,], το είναι η μοναδική λύση της εξίσωσης f( ) 0 στο (0,) Πιο αναλυτικά: Αφού lim f( ) 0 τότε lim f( ) 0 0 οπότε f( ) 0 0 για κάθε κοντά στο 0 Συνεπώς υπάρχει k 0 κοντά στο 0 (άρα k ) ώστε f( k) 0 0 δηλαδή ( ) 0 k, και f k Η συνάρτηση f είναι συνεχής στο f k οπότε εφαρμόζοντας το θεώρημα ενδιαμέσων τιμών στο διάστημα k, f () 0 ( ) έχουμε το παραπάνω συμπέρασμα Όμοια αφού f [, ) [, ), η f είναι συνεχής στο [, ) (0, ) και 0 [, ) άρα από το θεώρημα ενδιαμέσων τιμών (η αναλυτική δικαιολόγηση είναι όμοια με την παραπάνω) υπάρχει (, ) ώστε f( ) 0 Επειδή επιπλέον η f είναι γνησίως αύξουσα στο (, ), άρα το είναι η μοναδική λύση της εξίσωσης f( ) 0 στο (, ) Άρα τελικά η αρχική εξίσωση έχει ακριβώς δύο θετικές λύσεις και Γ3 Θέλουμε να δείξουμε ότι η εξίσωση ( ) ( ) 0 ( ) ( ) 0 ( ) 0 f f f f f 0 έχει λύση στο διάστημα (, ) Θεωρούμε τη συνάρτηση H( ) f ( ) 0, [, ] Η συνάρτηση H είναι συνεχής στο [, ] διότι προκύπτει από πράξεις συνεχών και παραγωγίσιμη στο (, ) διότι προκύπτει από πράξεις παραγωγισίμων συναρτήσεων με H( ) f ( ) f ( ) 0 Επίσης H( ) H( ) 0 διότι από το προηγούμενο ερώτημα ισχύει f ( ) f ( ) 0 5
Συνεπώς ισχύουν οι προϋποθέσεις του θεωρήματος Roll για την H στο [, ] Άρα υπάρχει 0 (, ) ώστε 0 0 0 0 0 0 0 0 0 0 H( ) 0 f ( ) f ( ) 0 0 f ( ) f ( ) 0 Γ4 Επειδή το σύνολο τιμών της f είναι το [, ) άρα για κάθε 0 ισχύει f ( ) f ( ) 0 g( ) 0 Επίσης η μοναδική ρίζα της εξίσωσης f( ) άρα και της g ( ) 0 είναι το Συνεπώς το ζητούμενο εμβαδό είναι το ( ) E g( ) d ( )ln d ln d ( ) ( ) ( ) ln d d 0 ( ) ( ) d ln 3 4 ΘΕΜΑ Δ Δ Θεωρούμε συνάρτηση g( ) f ( t) dt, (0, ) Από την υπόθεση έχουμε ότι: g( ) 0 g( ) g() για κάθε (0, ), οπότε η g παρουσιάζει ολικό ελάχιστο για, οπότε παρουσιάζει και τοπικό ελάχιστο για H συνάρτηση g είναι συνεχής και παραγωγίσιμη στο (0, ) (ως διαφορά συνεχών και παραγωγίσιμων συναρτήσεων), παρουσιάζει και τοπικό ελάχιστο για που είναι εσωτερικό σημείο του Ag (0, ), οπότε από το θεώρημα του Frmat έχουμε ότι g '() 0 Όμως g '( ) f ( )( ), οπότε g'() f() και αφού g '() 0, έχουμε ότι f() 0 f() () Η συνάρτηση f είναι συνεχής στο (0, ) και ισχύει f( ) 0 για κάθε (0, ), οπότε διατηρεί πρόσημο και κατά συνέπεια λόγω της () έχουμε ότι f( ) 0 lnt t Τότε από την υπόθεση έχουμε ln dt f ( ) () f() t Αφού f( ) 0 για κάθε (0, ), από την () βρίσκουμε ότι ln lnt t dt f ( ) f ( t) (3) 6
Θέτουμε lnt t F( ) dt, η οποία είναι παραγωγίσιμη στο (0, ) [δικαιολόγηση: Η συ- f() t νάρτηση με τύπο lnt t είναι συνεχής στο (0, +) ως διαφορά συνεχών συναρτήσεων και α- φού η f είναι συνεχής στο (0, +) με f(t) 0, για κάθε t > 0, η συνάρτηση lnt t είναι επίσης f(t) συνεχής στο 0, ως πηλίκο συνεχών συναρτήσεων Επομένως ορίζεται η συνάρτηση lnt t ln dt στο 0, στο οποίο είναι παραγωγίσιμη] με F'() οπότε η (3) παίρνει τη μορφή: f(t) f () F '( ) F( ) F '( ) F( ) F( ) c, c (4) Για η (4) γίνεται: F c c (), άρα από την (4) έχουμε: lnt t ( ) ( ) (5) F F dt f() t Το πρώτο μέλος της (5) είναι παραγωγίσιμη συνάρτηση Επίσης παραγωγίσιμη είναι και η συνάρτηση ως διαφορά των παραγωγίσιμων συναρτήσεων (εκθετική) και (σταθερή) Παραγωγίζοντας την (5) βρίσκουμε ότι: ln f ( ) ( ln ) f( ) Η συνάρτηση f είναι παραγωγίσιμη στο 0, ως γινόμενο των παραγωγίσιμων συναρτήσεων [σύνθεση των παραγωγίσιμων (εκθετική) και (πολυωνυμική)] και ln των παραγωγίσιμων ln (λογαριθμική) και (πολυωνυμική)] ln Δ Για (0,) έχουμε ότι: lim f( ) lim, αφού 0 0 lim 0 Τότε για τον υπολογισμό του ορίου 0, άρα για (0,) έχουμε ότι: lim f ( ) f ( ) 0 f( ) lim ln, 0 θέτουμε 0 [διαφορά lim 0 και, οπότε f( ) lim f ( ) f ( ) lim lim 0 f ( ) 0 0 lim 0 0 αφού lim 0 και δεδομένου ότι για το όριο lim ικανοποιούνται οι προϋποθέσεις του θεωρήματος του D L Hospital, αφού lim( ) lim 0 και 0 0 υπάρχει το lim 0 0 ' ' lim 0 0 0 7
Δ3 Η συνάρτηση f είναι συνεχής στο (0, ), οπότε ορίζεται η F( ) f ( t) dt και είναι παραγωγίσιμη με F'() f () (ln ) H F' είναι παραγωγίσιμη αφού η f είναι παραγωγίσιμη στο (0, ) με F ''( ) f '( ) ( ln ) ln αφού ln 0, (0, ) Επιπλέον αφού ισχύει 0 για κάθε 0, έχουμε ότι F( ) 0 για κάθε (0, ), οπότε η συνάρτηση F είναι κυρτή στο (0, ) και η F' είναι γνησίως αύξουσα στο (0, ) Η συνάρτηση F είναι συνεχής στα [, ],[,3 ] (0, ) με 0 αφού είναι παραγωγίσιμη στο (0, ), είναι παραγωγίσιμη στα (, ),(,3 ) (0, ) με 0 αφού είναι παραγωγίσιμη στο (0, ), οπότε από το θεώρημα μέσης τιμής του διαφορικού λογισμού F( ) F( ) F( ) F( ) υπάρχουν (, ), (,3 ) ώστε F'( ) (6) και F(3 ) F( ) F(3 ) F( ) F'( ) (7) 3 Όμως και η F' είναι γνησίως αύξουσα στο (0, ), οπότε F '( ) F '( ) και από τις (6), (7) βρίσκουμε: F( ) F( ) F(3 ) F( ) F( ) F( ) F(3 ) F( ) F( ) F(3 ) F( ), αφού 0 Δ4 Έχουμε ότι: ln ln, 0 και 0, 0, άρα ( ln ) 0, 0, οπότε F '( ) f ( ) 0, 0, άρα η συνάρτηση F είναι γνησίως φθίνουσα στο (0, ) Θεωρούμε τη συνάρτηση h( ) F( ) F( ) F(3 ), [, ] (0, ) H συνάρτηση h είναι συνεχής στο [, ], ως άθροισμα των συνεχών συναρτήσεων F (αποδείξαμε νωρίτερα ότι είναι παραγωγίσιμη) και της σταθεράς F( ) F(3 ), με h( ) F( ) F( ) F(3 ) F( ) F(3 ) 0 (αφού η συνάρτηση F είναι γνησίως φθίνουσα στο (0, ) και 3 ) h( ) F( ) F( ) F(3 ) 0 (από το ερώτημα Δ3), οπότε h( ) h( ) 0, δηλαδή από το θεώρημα Bolzano υπάρχει (, ) έτσι ώστε h( ) 0 F( ) F( ) F(3 ) a 8