SEKOLAH MENENGAH KEBANGSAAN MENUMBOK. PEPERIKSAAN AKHIR TAHUN 2015 MATEMATIK TINGKATAN 4 Kertas 2 Oktober Dua jam tiga puluh minit

Σχετικά έγγραφα
SIJIL VOKASIONAL MALAYSIA A03101 PENILAIAN AKHIR SEMESTER 1 SESI 1/2015 Matematik Bahagian A Mei

SULIT 1449/2 1449/2 NO. KAD PENGENALAN Matematik Kertas 2 September ANGKA GILIRAN LOGO DAN NAMA SEKOLAH PEPERIKSAAN PERCUBAAN SPM 2007

SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 )

-9, P, -1, Q, 7, 11, R

Jawab semua soalan. P -1 Q 0 1 R 2

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan:

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini)

Kertas soalan ini mengandungi 20 halaman bercetak.

SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2005

Latihan PT3 Matematik Nama:.. Masa: 2 jam. 1 a) i) Buktikan bahawa 53 adalah nombor perdana. [1 markah]

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat:

FUNGSI P = {1, 2, 3} Q = {2, 4, 6, 8, 10}

UJIAN SUMATIF 2 SIJIL PELAJARAN MALAYSIA 2013 SAINS TAMBAHAN

2 m. Air. 5 m. Rajah S1

TOPIK 1 : KUANTITI DAN UNIT ASAS

JAWAPAN BAB 1 BAB 2 = = Bentuk Piawai

Disediakan oleh Guru Matematik Tingkatan 4 GEORGE DAVID

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.

PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari

tutormansor.wordpress.com

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh

KOLEJ VOKASIONAL MALAYSIA BAHAGIAN PENDIDIKAN TEKNIK DAN VOKASIONAL KEMENTERIAN PENDIDIKAN MALAYSIA

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR

Ukur Kejuruteraan DDPQ 1162 Ukur Tekimetri. Sakdiah Basiron

HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA

Bab 1 Mekanik Struktur

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia

TOPIK 2 : MENGGAMBARKAN OBJEK

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987).

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk

KEKUATAN KELULI KARBON SEDERHANA

ANALISIS LITAR ELEKTRIK OBJEKTIF AM

JAWAPAN. (b) Bilangan kad dalam Bentuk N = 3N 2 (c) (i) 148 (ii) Bentuk (a) 5, 5 6 (b) (i) 100, 101 (ii) 46, 46 (c) (i)

EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet

PEPERIKSAAN PERCUBAAN SPM /1 PRINSIP ELEKTRIK DAN ELEKTRONIK Kertas 1 September 2 ½ jam Dua jam tiga puluh minit

Matematika

Kalkulus Multivariabel I

Keterusan dan Keabadian Jisim

KEMENTERIAN PELAJARAN MALAYSIA

SIJIL VOKASIONAL MALAYSIA PENILAIAN AKHIR SEMESTER 3 SESI 1/2014 TEKNOLOGI ELEKTRIK Kertas Teori Mei

KONSEP ASAS & PENGUJIAN HIPOTESIS

JAWAPAN. Poligon II. 2.1 Poligon Sekata 1 (a) (b) (c) (d) 2 (a) (b) (c) 3 (a) 4, 4 (b) 5, 5 (c) 4 (d) 5 4 (a) (c)

Ciri-ciri Taburan Normal

JAWAPAN. (c) Hukum Kalis Agihan (d) Hukum Kalis Tukar Tertib (e) Hukum Kalis Sekutuan (f) Hukum Idemtiti

Kemahiran Hidup Bersepadu Kemahiran Teknikal 76

Tegangan Permukaan. Kerja

JAWAPAN. = (a + 2b) (a b) = 3b Jujukan ini bukan J.A. sebab beza antara sebarang dua sebutan berturutan adalah tidak sama. 3. d 1 = T 2 T 1 =

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN

Hendra Gunawan. 16 April 2014

EAS 353/3 Rekabentuk Struktur Konkrit Bertetulang

SESI: MAC 2018 DSM 1021: SAINS 1. Kelas: DCV 2

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat

KEMENTERIAN PENDIDIKAN MALAYSIA. Kurikulum Bersepadu Sekolah Menengah Huraian Sukatan Pelajaran

BAB 2 KEAPUNGAN DAN HIDROSTATIK

JAWAPAN BAB 1 BAB 2. x y x y x y Asas Nombor

SESI: MAC 2018 DSM 1021: SAINS 1 DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH

A. Distribusi Gabungan

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

BAB 4 HASIL KAJIAN. dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

S T A T I S T I K A OLEH : WIJAYA

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA /2 FIZIK Kertas 2 Ogos / Sept 2 ½ jam Dua jam tiga puluh minit

Transformasi Koordinat 2 Dimensi

EAG 345/2 - Analisis Geoteknik

Kuliah 4 Rekabentuk untuk kekuatan statik

BAB 4 ANALISIS DAN PENEMUAN KAJIAN. borang soal selidik yang telah diedarkan kepada responden dan hasil temu bual responden

EAL 572/4 Rekabentuk dan Perancangan Lebuhraya

Pembinaan Homeomorfisma dari Sfera ke Elipsoid

JANGAN BUKA KERTAS SOALAN SEBELUM DIARAHKAN

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK

Kalkulus Multivariabel I

Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia. Mekanik Bendalir I KERJA RUMAH. Sem II Sesi 2003/04

KANDUNGAN BAB PERKARA MUKA SURAT JUDUL PENGAKUAN PENGHARGAAN ABSTRAK ABSTRACT

Konvergen dalam Peluang dan Distribusi

Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND LOGO

Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua

SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia

STQS1124 STATISTIK II LAPORAN KAJIAN TENTANG GAJI BULANAN PENSYARAH DAN STAF SOKONGAN DI PUSAT PENGAJIAN SAINS MATEMATIK (PPSM), FST, UKM.

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H

Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2006 FIZIK

KALKULUS LANJUT. Integral Lipat. Resmawan. 7 November Universitas Negeri Gorontalo. Resmawan (Math UNG) Integral Lipat 7 November / 57

BAB 5 DAPATAN KAJIAN DAN PERBINCANGAN Pengenalan

CADASTRE SURVEY (SGHU 2313)

Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu.

Sebaran Peluang Gabungan

Transformasi Koordinat 3 Dimensi

Bahagian A [ 60 markah] Jawab semua soalan

Pemerihalan Data. Pemerihalan Data. Sukatan kecenderungan memusat. Pengenalan. Min. Min 1/14/2011

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan

Sudut positif. Sudut negatif. Rajah 7.1: Sudut

Pelajaran 9. Persamaan Bernoulli. Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat

Transcript:

NAMA TINGKATAN SEKOLAH MENENGAH KEBANGSAAN MENUMBOK PEPERIKSAAN AKHIR TAHUN 015 MATEMATIK TINGKATAN 4 Kertas Oktober ½ jam Dua jam tiga puluh minit JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU 1. Tulis nama dan tingkatan anda pada ruangan yang disediakan.. Kertas soalan ini mengandungi dua bahagian Bahagian A dan Bahagian B.. Jawab semua soalan dalam Bahagian A dan Bahagian B. Untuk Kegunaan Pemeriksa Kod Pemeriksa Bahagian 4. Tulis jawapan anda pada ruang yang disediakan dalam kertas soalan ini. Tunjukkan kerja mengira anda. Ini boleh membantu anda untuk mendapatkan markah. 5. Jika anda hendak menukar jawapan, batalkan jawapan yang telah dibuat. Kemudian tulis jawapan yang baru. A 6. Rajah yang mengiringi soalan tidak dilukis mengikut skala kecuali dinyatakan 7. Markah yang diperuntukkan bagi setiap soalan dan ceraian soalan ditunjukkan dalam kurungan. 8. Satu senarai rumus disediakan di halaman hingga. 9. Anda dibenarkan menggunakan kalkulator saintifik yang tidak boleh diprogram. 10. Serahkan kertas soalan ini kepada pengawas peperiksaan pada akhir masa peperiksaan. B 1 Markah Penuh 4 4 4 5 4 6 6 7 5 8 5 9 6 10 6 11 6 1 1 1 1 14 1 15 1 Soalan Markah Diperolehi Jumlah Kertas soalan ini mengandungi 18 halaman bercetak. Disediakan oleh Disemak oleh Disahkan oleh NANCY CHOONG SIEW LING Guru Mata Pelajaran SMK Menumbok MASINAU HUSIN PK Pentadbiran SMK Menumbok TN HJ MOHD ALI MD YASSIN Pengetua SMK Menumbok

RUMUS MATEMATIK Rumus-rumus berikut boloeh membantu anda menjawab soalan. Simbol-simbol yang diberi adalah yang biasa digunaan. 1 10 a m a n a m n Teorem Pithagoras c a b a m a n a m n 11 P ( A )= (a m ) n a mn P ( A' ) 1 P ( A) 1 d b A ad bc c a 1 4 5 n( A) n (S) 1 m y y1 x x1 1 Jarak ( x1 x ) ( y1 y ) 14 m= pintasan y pintasan x = 6 Titik tengah x1 x y1 y, ( x, y ) 7 Purata laju= jarak yang dilalu masa yang diambil 8 Min= hasil tambah nilai data bilangandata 9 Min= hasil tambah(nilai titik ten gah kelas x kekerapan) hasil tambah kekerapan

BENTUK DAN RUANG 1 hasil tambah dua sisi selari tinggi 1 Luas trapezium = Lilitan bulatan = d j j Luas bulatan = jt 4 Luas permukaan melengkung silinder = 4 j 5 Luas permukaan sfera = 6 Isipadu prisma tegak = luas keratan rentas panjang j t 7 Isipadu silinder = 1 j t 8 Isipadu kon = 4 j 9 Isipadu sfera = 1 10 11 tinggi Isipadu piramid tegak = luas tapak Hasil tambah sudut pedalaman poligon (n ) 180 = 1

4 panjang lengkok sudut pusat = lilitan bulatan 60o 1 luas sektor sudut pusat = o luas bulatan 60 k 14 PA ' PA Faktor skala, 15 Luas imej = k luas objek Bahagian A [5 markah] Jawab semua soalan dalam bahagian ini. 1. Gambar rajah Venn di ruang jawapan menunjukkan set P, set Q dan set R dengan keadaan set semesta, ε =P Q R. Pada rajah di ruang jawapan, lorekkan (a) P R (b) P ( Q R' ). [ markah] (a) (b). Harga 1 kg gula dan 1 kg tepung gandum ialah RM11. Beza harga antara kg dan 1 kg tepung gandum ialah RM5.

5 Berapakah harga, dalam RM, bagi 1 kg gula?. Seketul batu dilontarkan dari tebing sungai. Ketinggian, h dalam meter, batu itu pada masa t saat selepas dilontarkan ialah h=40 t 5 t. Bilakah batu itu mencecah permukaan air?

6 4. Rajah 4 menunjukkan sebuah kuboid dengan tapak mengufuk PQRS. X adalah titik tengah bagi QS. (a) Pada Rajah 4, tandakan sudut di antara satah XPQ dengan tapak PQRS. (b) Hitung sudut di antara satah XPQ dengan tapak PQRS. [ markah] (a) (b) 5. Rajah 5 (a) menunjukkan sebuah bekas berbentuk silinder berisi dengan air. Rajah 5(b) menunjukkan sebuah bekas berbentuk kuboid yang kosong. Ke semua air dalam bekas silinder itu dituangkan ke dalam kuboid itu. π = Dengan menggunakan 7, hitung tinggi air, dalam cm, dalam bekas kuboid itu.

7 6. (a) Nyatakan sama ada setiap pernyataan berikut adalah benar atau palsu. (i) (ii) 8 =4 atau 8=16 Unsur-unsur dalam set dalam set A={1,15,18 } boleh dibahagi tepat dengan atau unsur-unsur B={4,6,8 } adalah gandaan 4. (b) Tulis akas bagi implikasi berikut. Jika x=4, maka x =16 (c) Tuliskan Premis untuk melengkapkan hujah berikut Premis 1 Jika x lebih besar daripada sifar, maka x ialah nombor positif. Premis... Kesimpulan 6 ialah nombor positif. (d) Tuliskan dua implikasi daripada ayat berikut. m> 15 jika dan hanya jika m>5 [6 markah]

8 (a) (i)... (ii)... (b)... (c) Premis...... (d) Implikasi 1...... Implikasi...... 7. Dalam Rajah 7, graf menunjukkan PQ dan RS adalah garis lurus. Persamaan garis lurus RS ialah y= x+1.

9 Carikan (a) kecerunan garis lurus RS. (b) pintasan-x garis lurus RS. (c) persamaan garis lurus PQ [5 markah] 8. En Zulkifli merupakan seorang arkitek. Dia dikehendaki menyediakan satu pelan untuk pembinaan sebuah kolam renang yang berbentuk segi empat tepat. Diberi bahawa panjang kolam itu adalah 6 m lebih

10 daripada lebarnya dan satu lorong dengan lebar 1 m dibina disekeliling kolam renang itu. Jika luas kolam renang itu termasuk lorong sekelilingnya ialah 7m, cari panjang kolam renang yang akan dibina itu. [5 markah] 9. En Low menjual kedua-dua cat berwarana putih dan biru dalam tin besar dan kecil. Harga jualan tin besar bagi setiap warna ialah RM x dan tin kecil bagi setiap warna ialah RM y. Bilangan tin bagi setiap jenis cat yang dijual dalam sehari diberi dalam Jadual 11. 1 Warna Besar (1 kg) Kecil ( Putih 4 Biru 1 kg) Jumlah pendapatan hasil jualan cat putih ialah RM68 dan cat biru ialah RM. (a) Tulis dua persamaan yang menghubungkan data di atas. (b) Seterusnya, hitung nilai x dan nilai y. [6 markah] 10. Rajah 9 menunjukkan sektor OQPT dan ORS, dengan pusat sepunya O. OQS dan OTS ialah garis lurus. Q dan T adalah masing-masing titik tengah bagi OR dan OS dan =OS=14 cm.

11 Menggunakan π= 7, hitungkan (a) perimeter, dalam cm, kawasan yang berlorek itu. (b) luas, dalam cm, seluruh rajah itu. [6 markah]

1 11. (a) Nyatakan sama ada pernyataan berikut adalah benar atau palsu. Sebilangan garis lurus mempunyai kecerunan positif. (b) Tuliskan akas bagi implikasi berikut Jika m=, maka m=7 (c) Lengkapkan perkataan majmuk di ruang jawapan dengan menulis perkataan atau atau dan untuk membentuk satu pernyataan benar. (d) Tulis Premis untuk melengkapkan hujah berikut. A Premis 1 Jika A ialah satu nombor ganjil, maka ialah satu nombor genap. Premis... Kesimpulan ialah satu nombor genap. (e) Buat satu kesimpulan umum secara aruhan bagi urutan nombor, 15, 5, 6,... yang mengikut pola berikut = ( 4 1 ) 1 15=( 4 4 ) 1 5=( 4 9 ) 1 6= ( 4 16 ) 1 [6 markah] (a)...... (b)... (c) =8... (d) Premis 5 =10....... (e) Kesimpulan...

1 Bahagian B [48 markah] Jawab semua soalan daripada bahagian ini. 1. (a) Lengkapkan Jadual 1 di ruang jawapan bagi persamaan nilai y apabila x= 4 dan y=8 x x dengan menulis nilai- x=1. (b) Untuk ceraian soalan ini, guna kertas graf yang disediakan. Anda boleh guna pembaris fleksible. Dengan menggunakan skala cm kepada 1 unit pada paksi-x dan cm kepada 5 unit pada paksi-y, luksi graf y=8 x x bagi 5 x dan 7 y 9. (c) Daripada graf di 1 (b), cari x=.4 (i) nilai y apabila (ii) nilai positif x apabila y= 1 y=8 x x (a) x 5 y 7 4.5 1 0 6 6 9 8 1 6 19 (b) Rujuk graf (c) (i) y =... (ii) x =...

14 1. Rajah 14 menunjukkan umur, dalam tahun, bagi 0 orang peserta dalam suatu pertandingan. 5 41 40 6 7 7 1 40 45 4 5 0 8 14 6 44 4 8 9 0 5 17 19 7 4 Rajah 14 (a) Berdasrakan data pada Rajah 14, lengkapkan Jadual 14 di ruang jawapan. [ markah] (b) Nyatakan kelas mod. [1 markah] (c) Berdasarkan Jadual 14, hitung min anggaran umur bagi peserta dalam pertandingan tersebut. [ markah] (d) Untuk ceraian soalan ini, gunakan kertas graf yang disediakan. Dengan menggunakan skala cm kepada 5 tahun pada paksi mengufuk dan cm kepada 1 orang peserta pada paksi mencancang, lukis satu histogram bagi data tersebut. (e) Berdasarkan histogram di 14 (d), nyatakan bilangan peserta yang berumur kurang daripada 8 tahun. [1 markah] (a) Selang Kelas (Umur) Kekerapan Titik Tengah 11 15 16 0 1 5 6 0 1 5 6 40 41 45 (b) (c)

15 (d) Rujuk graf (e) 5 p 0 q. 14. (a) (i) Faktorkan selengkapnya (ii) Selesaikan persamaan x 15 x. [6 markah] (b) RAJAH 14 (b) Dalam Rajah 14 (b), PRS ialah garis lurus dan R ialah titik tengah PS. Diberi sin PRQ= 5, cari panjang, dalam cm, bagi QR. (c) RAJAH 14 (c) Rajah 14 (c) menunjukkan graf y=cos θ untuk 0 θ 60. Cari nilai p dan nilai q. [ markah]

16 (a) (i) (ii) (b)

17 (c) 15. Jadual kekerapan di bawah menunjukkan taburan jisim, dalam kg, bagi 80 orang pengakap. Jisim (kg) Kekerapan 5 9 4 40 44 9 45 49 10 50 54 55 59 1 60 64 11 (a) (i) Nyatakan kelas mod. (ii) Hitung min anggaran jisim bagi kumpulan pengakap itu. 65 69 (b) Berdasarkan jadual di (a), lengkapkan jadual di ruang jawapan untuk menunjukkan kekerapan longgakan taburan jisim itu. [ markah] (c) Untuk ceraian soalan ini, gunakan kertas graf yang disediakan. Dengan menggunakan skala cm kepada 5kg pada paksi mengufuk dan cm kepada 10 orang pengakap pada paksi mencancang, lukis sebuah ogif bagi data itu. (d) Diberi 5% daripada pengakap dalam kumpulan itu berjisim kurang daripada x kg. Dengan menggunakan ogif yang telah dilukis di (c), cari nilai x. [ markah] (a) (b) Sempadan atas (kg) 4.5 Kekerapan Longgakan 0 9.5

18 (d) KERTAS SOALAN TAMAT