ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1o. ΘΕΜΑ 2o

Πέµπτη, 29 Μαΐου 2003 ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0.

A. Να αποδείξετε ότι, αν μία συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο x 0, τότε είναι και συνεχής στο σημείο αυτό. Μονάδες 8

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

( x) β ], παρουσιάζει ελάχιστη τιµή α, δηλαδή υπάρχει. ξ µε g( ξ ) = 0. Το ξ είναι ρίζα της δοσµένης εξίσωσης.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 27 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Μαθηµατικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ' Λυκείου 2001

z-4 =2 z-1. 2z1 2z2 β) -4 w 4. ( ) x 1 3 x 2 e t dt, x 0

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ/ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

9 ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim

Σάββατο, 24 Μαΐου 2008 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ. f (x) = ln x, x R* είναι παραγωγίσιµη στο R* και

3o Επαναληπτικό Διαγώνισμα 2016

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β:

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

1 ο Τεστ προετοιμασίας Θέμα 1 ο

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ).

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. ln = Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2005

ΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ


ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ. x x. = 3, x (2,5) 0 είναι η h. Α4. α) Σ β) Σ γ) Σ δ) Λ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, 2, 3)

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

AΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. ( t) f dt = G(β) G(α) A2. Πότε η γραφική παράσταση μιας συνάρτησης f λέμε ότι έχει:

ΓΕΝΙΚΕΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2009

Πανελλαδικές εξετάσεις Μαθηµατικά Προσανατολισµού Γ Λυκείου. Ενδεικτικές Απαντήσεις ϑεµάτων. Θέµα Β. (α) ϑεωρία. (ϐ) i, ii) ϑεωρία.

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ., τότε η f είναι πάντοτε συνεχής στο x., τότε η f είναι συνεχής στο x.

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

Σημειώσεις Μαθηματικών 2

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

6 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 51.

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Transcript:

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό. Β. Τι σηµαίνει γεωµετρικά το Θεώρηµα Μέσης Τιµής του ιαφορικού Λογισµού; Μονάδες 7 Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση. α. Αν z ένας µιγαδικός αριθµός και _ z ο συζυγής του, τότε ισχύει z = z = z. Μονάδες β. Έστω µία συνάρτηση f συνεχής σε ένα διάστηµα και δύο φορές παραγωγίσιµη στο εσωτερικό του. Αν f (x > για κάθε εσωτερικό σηµείο x του, τότε η f είναι κυρτή στο. γ. Για κάθε συνάρτηση f, παραγωγίσιµη σε ένα διάστηµα, ισχύει f (xdx = f (x + c, c IR. Μονάδες Μονάδες δ. Αν µια συνάρτηση f είναι κυρτή σε ένα διάστηµα, τότε η εφαπτοµένη της γραφικής παράστασης της f σε κάθε σηµείο του βρίσκεται «πάνω» από τη γραφική της παράσταση. Μονάδες ε. Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα και x ένα εσωτερικό σηµείο του. Αν η f είναι παραγωγίσιµη στο x και f (x =, τότε η f παρουσιάζει υποχρεωτικά τοπικό ακρότατο στο x. Μονάδες

ΘΕΜΑ ο _ ίνονται οι µιγαδικοί αριθµοί z = α + βi, όπου α, β IR και w = z iz + όπου z είναι ο συζυγής του z. α. Να αποδείξετε ότι Re(w = α β + Ιm(w = β α. Μονάδες 6 β. Να αποδείξετε ότι, αν οι εικόνες του w στο µιγαδικό επίπεδο κινούνται στην ευθεία µε εξίσωση y = x, τότε οι εικόνες του z κινούνται στην ευθεία µε εξίσωση y = x. Μονάδες 9 γ. Να βρείτε ποιος από τους µιγαδικούς αριθµούς z, οι εικόνες των οποίων κινούνται στην ευθεία µε εξίσωση y = x, έχει το ελάχιστο µέτρο. ΘΕΜΑ ο Έστω η συνάρτηση f(x = x 5 +x +x. Μονάδες α. Να µελετήσετε την f ως προς την µονοτονία και τα κοίλα και να αποδείξετε ότι η f έχει αντίστροφη συνάρτηση. Μονάδες 6 β. Να αποδείξετε ότι f(e x f(+x για κάθε x IR. Μονάδες 6 γ. Να αποδείξετε ότι η εφαπτοµένη της γραφικής παράστασης της f στο σηµείο (, είναι ο άξονας συµµετρίας των γραφικών παραστάσεων της f και της f. Μονάδες 5 δ. Να υπολογίσετε το εµβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της f, τον άξονα των x και την ευθεία µε εξίσωση x =. ΘΕΜΑ ο Έστω µια συνάρτηση f συνεχής σ ένα διάστηµα [α,β] που έχει συνεχή δεύτερη παράγωγο στο (α,β. Αν ισχύει f(α = f(β = και υπάρχουν αριθµοί γ (α,β, δ (α,β, έτσι ώστε f(γ f(δ, να αποδείξετε ότι: α. Υπάρχει µία τουλάχιστον ρίζα της εξίσωσης f(x = στο διάστηµα (α,β. β. Υπάρχουν σηµεία ξ, ξ (α,β τέτοια ώστε f (ξ και f (ξ >. γ. Υπάρχει ένα τουλάχιστον σηµείο καµπής της γραφικής παράστασης της f. Μονάδες 9

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ o α. Θεωρία: Θεώρηµα σελ. 7 σχολικού βιβλίου β. Θεωρία: Η απάντηση βρίσκεται στη σελ. 7 του σχολικού βιβλίου γ. α-σ β-σ γ-σ δ-λ ε-λ ΘΕΜΑ o α. Είναι: w = z iz + = ( α + βi i( α βi + = α + βi αi β + = (α β + + (β αi Έτσι Re(w = α - β + και Im(w = β -. β. Οι εικόνες του w στο µιγαδικό επίπεδο είναι τα σηµεία Μ(α-β+, β-α, όπου α, β R. Αφού ανήκουν σε ευθεία µε εξίσωση y = x - είναι: β - α = α - β + - β - α = -8 β - α = - β = α -. Από την τελευταία συνάγεται ότι τα σηµεία Ν(α,β που είναι οι εικόνες του z στο µιγαδικό επίπεδο ανήκουν στην ευθεία µε εξίσωση y = x -. γ. Από τις εικόνες των µιγαδικών αριθµών, των οποίων οι εικόνες κινούνται στην ευθεία (ε: y = x -, ελάχιστο µέτρο έχει εκείνος του οποίου η εικόνα Κ είναι τέτοια ώστε ΟΚ κάθετη στην (ε. Έτσι: λ ΟΚ = - και ΟΚ: y = -x Λύνοντας το σύστηµα: y = x -, y = -x προκύπτει x =, y = -. ηλαδή το σηµείο Κ έχει συντεταγµένες (,-. Άρα ο µιγαδικός µε το ελάχιστο µέτρο από αυτούς που κινούνται στην ευθεία µε εξίσωση y = x - είναι ο z = - i.

ΘΕΜΑ ο α. Η συνάρτηση f(x=x 5 +x +x είναι ορισµένη και παραγωγίσιµη φορές σε όλο το R µε: f (x = (x 5 +x +x = 5x +x + και f (x = (5x +x + = x +6x Επειδή είναι f (x = 5x +x + > για κάθε x R, προκύπτει ότι η f είναι γνησίως αύξουσα σε όλο το R. f (x= x +6x= x(x += x= εφόσον x +> για κάθε x R. Εποµένως η f είναι: κοίλη στο διάστηµα (-, ] και κυρτή στο διάστηµα [, +. Επειδή η συνάρτηση f είναι γνησίως µονότονη στο R θα είναι - σε αυτό και συνεπώς η f είναι αντιστρέψιµη στο R. β. Η συνάρτηση f είναι γνησίως αύξουσα στο R (ερώτηµα α. Προκειµένου να δείξουµε ότι f(e x f(+x για κάθε x R, αρκεί να δείξουµε ότι: e x +x για κάθε x R. Πράγµατι, θεωρούµε τη συνάρτηση g(x=e x --x στο R, η οποία είναι παραγωγίσιµη σ αυτό µε g (x=e x -. Από την εξίσωση g (x= έχουµε e x -= e x = x=. Έχουµε: ελάχ. g( = Εποµένως g(x g(= για κάθε x R ή e x --x για κάθε x R και άρα: e x +x για κάθε x R γ. Η εφαπτοµένη της C f στο σηµείο (, έχει εξίσωση y-f( = f ( (x- ή y- = (x- ή y=x που είναι η διχοτόµος της πρώτης και τρίτης γωνίας των αξόνων. Επειδή τώρα η f είναι αντιστρέψιµη (ερώτηµα α προκύπτει ότι υπάρχει η f - ή οποία (λόγω πρότασης σελ. 55 σχολ. βιβλ. έχει C f - συµµετρική την C f ως προς άξονα συµµετρίας την ευθεία y=x δ. Για κάθε x [,] είναι: x και επειδή η f - είναι γνησίως αύξουσα στο διάστηµα αυτό (*, θα είναι f - (x f - ( f - (x. (αφού f - ( = ** Έτσι το εµβαδόν του ζητουµένου χωρίου ισούται µε: f E = (ydy. Θέτουµε f - (y=x y=f(x. ( ιαφορίζοντας την ( λαµβάνουµε: dy=d[f(x]=f (xdx και

y 5 f (x = x + x + x= x x x f (x = x 5 + x + x= (***, άρα E = 5 5 5 x f '(xdx = x(x + x + x' dx = (5x + x + xdx = 5 x dx + x dx + xdx 6 x = 5 6 x + x + = 5 6 + + 5 = τ. µ. = Αιτιολογήσεις για το ερώτηµα δ του ου θέµατος: (* H f - είναι συνεχής και γνησίως µονότονη στο R, σύµφωνα µε την πρόταση που λέει ότι αν η f είναι συνεχής και γνησίως µονότονη σε διάστηµα τότε υπάρχει η αντίστροφή της η οποία είναι επίσης συνεχής στο f( και διατηρεί το ίδιο είδος µονοτονίας µε την f. (Η πρόταση αυτή, όµως, δεν υπάρχει στο σχολικό βιβλίο και αναφέρεται για λόγους µαθηµατικής πληρότητας. Έτσι, η µη αναφορά σε αυτήν από κάποιο µαθητή δεν έχει βαθµολογικές απώλειες. (** Ισχύει ότι: f - (=. Πράγµατι για x= έχουµε: f - (=y f(f - (=f(y =f(y =y 5 +y +y y(y +y += y=. (*** Η εξίσωση x 5 +x +x= έχει µοναδική λύση την x= γιατί η f(x είναι - στο R και εποµένως κάθε οριζόντια ευθεία, οπότε και η y=, τέµνει την C f σε µοναδικό σηµείο. Η εξίσωση x 5 +x +x= έχει µοναδική λύση την x=, γιατί x(x +x += x=, αφού x +x +> για κάθε x R. ΘΕΜΑ ο α. Αφού η f είναι συνεχής στο κλειστό διάστηµα µε άκρα γ, δ και f(γ. f(δ, εφαρµόζεται το θεώρηµα Bolzano από το οποίο συνάγεται ότι υπάρχει µία τουλάχιστον ρίζα x που ανήκει στο ανοιχτό διάστηµα µε άκρα γ, δ ώστε f(x =. β. Χωρίς βλάβη της γενικότητας υποθέτουµε ότι γ δ και f(γ >, f(δ, οπότε α γ x δ β. i Στο διάστηµα [α, γ] είναι: f(α =, f(γ >, άρα f(α f(γ και επειδή είναι α γ συνάγεται ότι: f (α f (γ > ( α γ Όµως από το θεώρηµα µέσης τιµής (ΘΜΤ για την f στο διάστηµα [α,γ], υπάρχει κ (α,γ f (α f (γ ώστε f (κ = και λόγω της ( f (κ >. α γ ii Εργαζόµενοι οµοίως, στο διάστηµα [γ,x ] έχουµε: f(γ >, f(x = άρα f(γ > f(x και επειδή είναι γ x συνάγεται: f (γ f (x γ x ( 5

Από το ΘΜΤ για την f στο διάστηµα [γ,x ] έχουµε ότι υπάρχει κ (γ,x ώστε f (γ f (x f (κ = γ x και λόγω της ( είναι f (κ. iii Για το διάστηµα [x, δ] όµοια έχουµε ότι υπάρχει κ (x,δ ώστε f (δ f (x = f (κ δ x iv Για το διάστηµα [δ,β] όµοια έχουµε ότι υπάρχει κ (δ,β ώστε f (β f (δ = f (κ > β δ v Είναι f (κ >, f (κ άρα f (κ > f (κ και επειδή κ κ, είναι: f (κ f (κ κ κ Όµως για την f εφαρµόζεται το ΘΜΤ στο διάστηµα [κ,κ ], οπότε υπάρχει ξ (κ,κ ώστε f (κ f (κ f (ξ = κ κ vi Είναι f (κ, f (κ >, άρα f (κ f (κ και επειδή κ κ είναι f (κ f (κ > κ κ Όµως για την f εφαρµόζεται το ΘΜΤ στο διάστηµα [κ,κ ], οπότε υπάρχει ξ (κ,κ ώστε f (κ f (κ f ( ξ = > κ κ είξαµε έτσι ότι υπάρχουν ξ, ξ (α,β ώστε f (ξ και f (ξ >. γ. Από το β ερώτηµα µε βάση το θεώρηµα Bolzano για την f στο κλειστό διάστηµα µε άκρα ξ, ξ προκύπτει ότι υπάρχει ένα τουλάχιστον σηµείο ξ που ανήκει στο ανοικτό διάστηµα µε άκρα ξ, ξ ώστε f (ξ =. Το σηµείο ξ θα ήταν σηµείο καµπής της συνάρτησης εφόσον η f άλλαζε πρόσηµο εκατέρωθεν αυτού. Όµως κάτι τέτοιο δεν εξασφαλίζεται από τα δεδοµένα του θέµατος. β τρόπος λύσης για το θέµα β: Από το θεώρηµα µέγιστης-ελάχιστης τιµής για την f που είναι συνεχής στο [α,β] εξασφαλίζεται ότι υπάρχουν δύο σηµεία x, x [α,β] µε x x ώστε f(x f(x f(x για κάθε x [α,β]. Εφόσον η f παίρνει µία τουλάχιστον αρνητική τιµή και µία τουλάχιστον θετική (πράγµα που συνεπάγεται από την δοσµένη σχέση f(γ. f(δ, η ελάχιστη τιµή f(x θα είναι αρνητική, ενώ η µέγιστη τιµή f(x θα είναι θετική. Η f είναι παραγωγίσιµη στο (α,β άρα και στα εσωτερικά σηµεία x,x, που επειδή είναι θέσεις ακρότατων από το θ. Fermat συνάγεται ότι f (x = f (x =. Στο διάστηµα [x,x ] η f δεν µπορεί να είναι η σταθερή µηδενική διότι τότε η f θα ήταν σταθερή και άρα f(x = f(x ή f max = f min άτοπο διότι υπάρχουν τα δοσµένα γ,δ για τα οποία ισχύει από υπόθεση f(γ. f(δ. Συνεπώς υπάρχει σηµείο x (x,x ώστε f (x > ή f (x. Έστω πχ f (x >. Τότε 6

από ΘΜΤ για την f στο [x,x ], υπάρχει ξ (x, x ώστε: f (x f (x f (x f (ξ = = x x x x > από ΘΜΤ για την f στο [x, x ], υπάρχει ξ (x, x ώστε: f (x f (x f (x f (ξ = = x x x x Αν υποθέταµε f(x θα προέκυπτε f (ξ, f (ξ >. 7