ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΜΕΤΑΒΛΗΤΩΝ



Σχετικά έγγραφα
MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn)

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 )

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2. Στοιχεία Πολυδιάστατων Κατανοµών

ÈÅÌÁÔÁ 2005 ÏÅÖÅ ( ) ( ) 2 2 Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ. θ έ µ α τ α ΑΠΑΝΤΗΣΕΙΣ ( )( )( ) ( )( ) Επαναληπτικά Θέµατα ΟΕΦΕ 2005.


ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ

xp X (x) = k 3 10 = k 3 10 = 8 3

Β Λυκείου - Ασκήσεις Συναρτήσεις. x1+ 5 x2 + 5 (x1+ 5)(x2 2) (x2 + 5)(x1 2) = = = x 2 x 2 (x 2)(x 2) = = (x 2)(x 2) (x 2)(x 2)

Ζ ΕΝΟΤΗΤΑ. Μελέτη βασικών συναρτήσεων. Ζ.1 (7.1 παρ/φος σχολικού βιβλίου) Ζ.2 (7.2 παρ/φος σχολικού βιβλίου) Ζ.3 (7.3 παρ/φος σχολικού βιβλίου) 2

8 Ακρότατα και µονοτονία

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005

Το θεώρηµα αντίστροφης απεικόνισης. ) και ακόµη ότι η g f 1 1. g y

1 1 c c c c c c = 1 c = 1 28 P (Y < X) = P ((1, 2)) + P ((4, 1)) + P ((4, 3)) = 2 1/ / /28 = 18/28

4 Συνέχεια συνάρτησης

x. Αν ισχύει ( ) ( )

4 Συνέχεια συνάρτησης

f(x) = 2x+ 3 / Α f Α.

( x) β ], παρουσιάζει ελάχιστη τιµή α, δηλαδή υπάρχει. ξ µε g( ξ ) = 0. Το ξ είναι ρίζα της δοσµένης εξίσωσης.

Φροντιστήριο 3o. όπου x = max{m N 0 : m x} και N 0 = {0, 1, 2,...} Λύση. Ιδιότητες αθροιστικής: lim F (x) = 0 αφού F (x) = 0 για x < 1.

Το θεώρηµα πεπλεγµένων συναρτήσεων

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

c(x 1)dx = 1 xf X (x)dx = (x 2 x)dx = 2 3 x3 x 2 x 2 2 (x 1)dx x 2 f X (x)dx = (x 3 x 2 )dx = 2 4 x4 2 3 x3

Τυχαίες Μεταβλητές (τ.µ.)

( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε.

Κοιλότητα. Διαφορικός Λογισμός μιας μεταβλητής Ι

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΘΕΜΑ Α. Α1. Θεωρία -απόδειξη θεωρήματος στη σελίδα 262 (μόνο το iii) στο σχολικό βιβλίο.

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ

( ) ( ) ( ) ( ) ( ) Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A ΘΕΜΑ Β

1 Οι πραγµατικοί αριθµοί

4.3 Παραδείγµατα στην συνέχεια συναρτήσεων

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

Σχολικός Σύµβουλος ΠΕ03

P A B P(A) P(B) P(A. , όπου l 1

ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α1. Θεωρία (θεώρηµα Fermat) σχολικό βιβλίο, σελ Α2. Θεωρία (ορισµός) σχολικό βιβλίο, σελ Α3.

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

5 Παράγωγος συνάρτησης

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ

Κανόνες παραγώγισης ( )

ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1o. ΘΕΜΑ 2o

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

κυρτές συναρτήσεις. Αν η g είναι γνησίως αύξουσα τότε η gof : είναι κυρτή. . Θα δείξουμε ότι η h είναι γνησίως αύξουσα.


KΕΦΑΛΑΙΟ 3. Πλεγµένες συναρτήσεις- Ανάπτυγµα Taylor-Aκρότατα

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x

Μονοτονία - Ακρότατα Αντίστροφη Συνάρτηση

Τυχαίες Μεταβλητές Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

Λύσεις των θεμάτων 22/04/2013. Προσομοίωση 1 Πανελαδικών Εξετάσεων 2013 στα «Μαθηματικά και Στοιχεία Στατιστικής» Γ ΓΕ.Λ και ΕΠΑ.Λ.

c(2x + y)dxdy = 1 c 10x )dx = 1 210c = 1 c = x + y 1 (2xy + y2 2x + y dx == yx = 1 (32 + 4y) (2x + y)dxdy = 23 28

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k.

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

2018 Φάση 1 ιαγωνίσµατα Προετοιµασίας ΜΑΘΗΜΑΤΙΚΑ. Γ' Γενικού Λυκείου. Θετικών Σπουδών / Σπουδών Οικονοµίας & Πληροφορικής

x - 1, x < 1 f(x) = x - x + 3, x

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

ΘΕΩΡΙΑ 1ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις) ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ 1. Να δώσετε τον ορισμό της συνάρτησης

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι ( )

11 Το ολοκλήρωµα Riemann

f (x) 2e 5(x 1) 0, άρα η f

X:S X(S) Έστω ότι στρίβουµε ένα αµερόληπτο νόµισµα δύο φορές και ενδιαφερόµαστε για τον αριθµό των Κ που θα εµφανιστούν.

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

x, x (, x ], επειδή η f είναι γνησίως αύξουσα στο (, x0]

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

1. Δύο συναρτήσεις f,g είναι ίσες μόνο όταν έχουν ίδιο πεδίο ορισμού και ίδιο τύπο. Η πρόταση είναι Λάθος. Αντιπαράδειγμα:

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

Για να προσδιορίσουμε τη μονοτονία της συνάρτησης η πρέπει να βρούμε το πρόσημο της h, το οποίο εξαρτάται από τη συνάρτηση φ(x) = e x 1

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4-ΩΡΟ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ

Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac)

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ. 2.4: Ρυθμός Μεταβολής του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

g(x) =α x +β x +γ με α= 1> 0 και

ΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ)

f κυρτή στο [1,5] f x x f η Επαναληπτική f [ 2,10], επιπλέον για την f ισχύουν lim 2 x f 8 1,0 και

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

Transcript:

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΜΕΤΑΒΛΗΤΩΝ Όπως έχει αποδειχθεί (βλέπε π.χ. Ε. Ξεκαλάκη και Ι. Πανάρετο 993) οι αναµενόµενες τιµές E( ) και E( m ) παρέχουν σηµαντικές πληροφορίες σχετικά µε την κατανοµή µιας πραγµατικής τυχαίας µεταβλητής Χ. Επίσης οι s is αναµενόµενες τιµές E( s ) = G ( s) E( e ) = M ( s) και E( e ) = φ( s) έχουν ένα πολύ σηµαντικό ρόλο όσο αφορά τον µονοσήµαντο προσδιορισµό της κατανοµής της τυχαίας µεταβλητής Χ. Κάθε µία από αυτές αποτελεί την αναµενόµενη τιµή µιας συνάρτησης ή µετασχηµατισµού της τυχαίας µεταβλητής Χ είναι δηλαδή της µορφής E( g( )). Οι αναµενόµενες τιµές ως ολοκληρώµατα έχουν την µορφή µετασχηµατισµών οι οποίοι οδηγούν σε συναρτήσεις που περιέχουν µεγάλη ποσότητα πληροφόρησης για την κατανοµή της τυχαίας µεταβλητής. Οι µετασχηµατισµοί αυτοί βεβαίως σχετίζονται µε κατανοµές µάλλον παρά µε τυχαίες µεταβλητές. Συχνά όµως ενδιαφερόµαστε για ένα άλλο είδος µετασχηµατισµών οι οποίοι αναφέρονται στις τυχαίες µεταβλητές αυτές καθεαυτές. Ενδιαφερόµαστε δηλαδή για µετασχηµατισµούς της µορφής = g ( ) οι οποίοι οδηγούν από την τυχαία µεταβλητή Χ στην τυχαία µεταβλητή Υ. Η σηµασία και η χρησιµότητα αυτών των µετασχηµατισµών γίνεται φανερή στις περιπτώσεις όπου οι τυχαίες µεταβλητές που χρησιµοποιούµε σε σχέση µε κάποιο φαινόµενο δεν εκπροσωπούν πάντα τις µετρήσεις που ελήφθησαν. Συχνά χρησιµοποιούνται συναρτήσεις ή µετασχηµατισµοί αυτών των µετρήσεων. Για παράδειγµα κατά την µέτρηση µιας γωνίας συχνά καταγράφεται η εφαπτοµένη της γωνίας αυτής. Αντίστοιχα µία µέτρηση της θερµοκρασίας στην κλίµακα Fhrenheit µπορεί να απαιτείται να µετασχηµατισθεί σε µέτρηση της κλίµακας Κελσίου. Στη συνέχεια θα εξετάσουµε µεθόδους προσδιορισµού των κατανοµών µετασχηµατισµένων τυχαίων µεταβλητών = g ( ) µε βάση την γνώση της κατανοµής της αρχικής τυχαίας µεταβλητής Χ.

ΓΡΑΜΜΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ Ας θεωρήσουµε την ειδική περίπτωση όπου η τυχαία µεταβλητή Υ είναι ένας γραµµικός συνδυασµός = + b 0 της τυχαίας µεταβλητής Χ. Η συνάρτηση κατανοµής της τυχαίας µεταβλητής Υ µπορεί να προσδιορισθεί βάσει της συνάρτησης κατανοµής της τυχαίας µεταβλητής Χ ως εξής: Αν > 0 τότε F P P b P b F b ( ) = ( ) = ( + ) = ( ) = ( ). Αν < 0 τότε b b F + b ) ) = P( < ) b b b b = P( ) + P( = ) = F ( ) + P( = ). Προφανώς εάν η τυχαία µεταβλητή Χ διακριτή η συνάρτηση πιθανότητας της τυχαίας µεταβλητής Υ µπορεί να προσδιορισθεί µέσω της συνάρτησης πιθανότητας της τυχαίας µεταβλητής Χ είτε µε τη βοήθεια των παραπάνω τύπων είτε απευθείας ως αποτέλεσµα του γεγονότος ότι τα ενδεχόµενα {= } και {=(-b)/} ταυτίζονται έτσι ώστε b b P = ) = ) ). Με όµοιο τρόπο αν η τυχαία µεταβλητή Χ είναι συνεχής η συνάρτηση πυκνότητας πιθανότητας ( ) της τυχαίας µεταβλητής Υ µπορεί να προσδιορισθεί µε βάση την συνάρτηση πυκνότητας πιθανότητας ( x) της τυχαίας µεταβλητής Χ παραγωγίζοντας την συνάρτηση κατανοµής της τυχαίας µεταβλητής Υ ως προς. Έτσι αν >0 d d F F ' b d b d b ( ) = ( ) = ( ) ( ) = ( ) ενώ αν <0

b ( ) = ( ). ηλάδή τελικά b ( ) = ( ). Παράδειγµα (διακριτή περίπτωση): Έστω ότι η τυχαία µεταβλητή Χ έχει συνάρτηση πιθανότητας P 64 ( ) 85 4 (x) 0 x αν x = 0 3 Έστω = + 3. Τότε P = P 64 ( ) 3 85 4 ( ) 0 ( 3) / αν - 3 = 0 3 5 ( ) 85 0 αν = 3 5 7 9 Παράδειγµα (συνεχής περίπτωση): Έστω ότι η τυχαία µεταβλητή Χ έχει συνάρτηση πυκνότητας πιθανότητας -x e αν x > 0 (x) 0 5 Αν = 9 60 τότε 9 3

9 e 5 () 0 -(9+ 60) / 5 60 αν > 9 ΓΕΝΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΙΑΚΡΙΤΗ ΠΕΡΙΠΤΩΣΗ Όταν η τυχαία µεταβλητή Χ είναι διακριτή η πιο άµεση µέθοδος καθορισµού της κατανοµής της τυχαίας µεταβλητής = g() συνιστάται στον προσδιορισµό για κάθε τιµή της πιθανότητας του ενδεχοµένου {: g()=}. Προσδιορίζουµε δηλαδή για κάθε τιµή όλες τις δυνατές τιµές της τυχαίας µεταβλητής οι οποίες οδηγούν σε αυτήν την τιµή του και µετά προσθέτουµε τις πιθανότητες των τιµών αυτών. Η προκύπτουσα ποσότητα είναι η τιµή της πιθανότητας P ( ). Έτσι P = P ( x). { xg : ( x) = } Παράδειγµα: Έστω ότι η τυχαία µεταβλητή Χ έχει συνάρτηση πιθανότητας P 4 ( ) 3 ( x) 0 x αν x = - - 0 Αν = οι δυνατές τιµές της τυχαίας µεταβλητής είναι 0 4. Τότε P ( 0) = P ( x) = P ( 0) = { xx : = 0} 4 3 8 P() = P( x) ) + P() = + = 3 3 {: xx = } 0 3 6 7 P( 4) = P( x) ) + P( ) = + = 3 3 3 { xx : = 4} 4

και P = 0 για όλες τις άλλες τιµές του. ΣΥΝΕΧΗΣ ΠΕΡΙΠΤΩΣΗ Στην περίπτωση που η τυχαία µεταβλητή Χ είναι συνεχής για τον προσδιορισµό της τιµής της τυχαίας µεταβλητής = g() απαιτείται η πρόσθετη υπόθεση ότι η συνάρτηση g() είναι γνησίως µονότονη και διαφορίσιµη. Η υπόθεση αυτή γίνεται για να εξασφαλισθεί η ύπαρξη της αντίστροφης συνάρτησης = g ( x) = h( x). Στην περίπτωση αυτή έχουµε F g( ) ) ) P( h( )) = F )) P( h( )) = F )) αν η g είναι γνησίως αύξουσα αν η g είναι γνησίως φθίνουσα Τότε df = d dh( ) )) d dh( ) )) d αν η g είναι γνησίως αύξουσα αν η g είναι γνησίως φθίνουσα Κατά συνέπεια = dh d ( h). Παράδειγµα: Έστω ότι µία συνεχής τυχαία µεταβλητή Χ έχει συνάρτηση πυκνότητας πιθανότητας -θx θe αν x > 0 ( x) 0 5

όπου θ>0. Έστω = e. Έχουµε δηλαδή εδώ ένα µετασχηµατισµό της µορφής = g() όπου η συνάρτηση gx ( ) = e x είναι γνησίως αύξουσα και διαφορίσιµη. Εποµένως = e x τότε και µόνο τότε εάν x = g = h = log. Άρα σύµφωνα µε τα προηγούµενα η συνάρτηση πυκνότητας πιθανότητας της τυχαίας µεταβλητής είναι () = d d log x (log) θ e θ 0 -θlog αν 0 log < θ 0 θ αν < 6