ΓΔΧΜΔΣΡΗΑ ΓΗΑ ΟΛΤΜΠΗΑΓΔ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΓΔΧΜΔΣΡΗΑ ΓΗΑ ΟΛΤΜΠΗΑΓΔ"

Transcript

1 ΒΑΓΓΔΛΖ ΦΤΥΑ 011

2 1 ΒΑΗΚΟΗ ΟΡΗΜΟΗ 11 ΓΤΝΑΜΖ ΖΜΔΗΟΤ Έζησ P ηπρόλ ζεκείν ηνπ επηπέδνπ θύθινπ C (O,R ) (πνπ βξίζθεηαη εθηόο ηνπ θπθιηθνύ δίζθνπ C (O,R ) ) θαη PT ε εθαπηνκέλε από ην P (T ην ζεκείν επαθήο ) Αλ ηπρνύζεο επζείεο από ην P ηέκλνπλ ην θύθιν ζηα ζεκεία A, B θαη, (ρήκα 1) ηόηε: PA PB P P PT PO R ρήκα 1 Έζησ P ηπρόλ ζεκείν ηνπ επηπέδνπ θύθινπ C (O,R ) (πνπ βξίζθεηαη εληόο ηνπ θπθιηθνύ δίζθνπ C (O,R ) ) Αλ ηπρνύζεο επζείεο από ην P ηέκλνπλ ην θύθιν ζηα ζεκεία A, B θαη, (ρήκα ) ηόηε: PA PB P P R PO ρήκα ελίδα από 13

3 ΓΤΝΑΜΖ ΖΜΔΗΟΤ-ΡΗΕΗΚΟ ΑΞΟΝΑ Σε δηαθνξά θαη ηε ζπκβνιίδνπκε ζπλήζσο PO R ηελ νλνκάδνπκε Γύλακε ηνπ ζεκείνπ P ωο πξνο ην θύθιν C (O,R ) P D C( O,R ) Γηαλπζκαηηθά ε δύλακε ηνπ ζεκείνπ P σο πξνο ην θύθιν C (O,R ), εθθξάδεηαη από ηε ζρέζε: PA PB PO R Γίλεηαη ν θύθινο ( c ) κε εμίζσζε x y Ax By 0 Από ηπρόλ ζεκείν P( x, y ) (εθηόο ηνπ θύθινπ) ζεσξνύκε ηελ εθαπηνκέλε PT (T ην ζεκείν επαθήο ) Σόηε: PT x y Ax By Ζ ηειεπηαία ηζόηεηα εθθξάδεη ηε δύλακε ηνπ ζεκείνπ P σο πξνο ην θύθιν ( c ), κε ηε βνήζεηα ηεο αλαιπηηθήο γεωκεηξίαο Αλ νη πξνεθηάζεηο ησλ πιεπξώλ AB θαη ηνπ θπξηνύ ηεηξαπιεύξνπ AB ηέκλνληαη ζην ζεκείν P θαη ηζρύεη PA PB P P, ηόηε ην ηεηξάπιεπξν AB είλαη εγγξάςηκν (ηα ζεκεία A,B,, είλαη νκνθπθιηθά) (ρήκα 3) ρήκα 3 Αλ νη δηαγώληεο AB θαη ηνπ θπξηνύ ηεηξαπιεύξνπ A B ηέκλνληαη ζην ζεκείν P θαη ηζρύεη PA PB P P, ηόηε ην ηεηξάπιεπξν A B είλαη εγγξάςηκν (ηα ζεκεία A,B,, είλαη νκνθπθιηθά) (ρήκα 4) ρήκα 4 ελίδα 3 από 13

4 ΟΜΟΚΤΚΛΙΚΑ ΗΜΔΙΑ Γηα λα απνδείμνπκε όηη ηα ζεκεία A,B,, είλαη νκνθπθιηθά, αξθεί λα απνδείμνπκε όηη: PA PB P P (Πξνζέμηε ηα δύν πξνεγνύκελα ζρήκαηα: ρήκα 3 θαη ρήκα 4) 1 ΡΗΕΗΚΟ ΑΞΟΝΑ ην ίδην επίπεδν δίλνληαη νη θύθινη C1(O1,R1 ) θαη C (O,R ) Ο γεσκεηξηθόο ηόπνο ησλ ζεκείσλ πνπ έρνπλ ίζεο δπλάκεηο σο πξνο ηνπο δύν θύθινπο, είλαη επζεία θάζεηε πξνο ηε δηάθεληξν O 1O πνπ νλνκάδεηαη ξηδηθόο άμνλαο ησλ δύν θύθισλ ρήκα 5 Αλ M είλαη ηπρόλ ζεκείν ηνπ ξηδηθνύ άμνλα δύν θύθισλ, ηόηε ηα εθαπηόκελα ηκήκαηα από ην M πξνο ηνπο θύθινπο είλαη ίζα (ρήκα 5) Γηα λα βξνύκε ην ξηδηθό άμνλα δύν θύθισλ C1 (O1,R1 ) θαη C (O,R ), ζεσξνύκε θύθιν C(O,R ) πνπ ηέκλεη ηνπο δύν θύθινπο Ρηδηθόο άμνλαο ησλ δύν θύθισλ, είλαη ε θάζεηνο από ην ζεκείν ηνκήο ησλ θνηλώλ ρνξδώλ πξνο ηε δηάθεληξν O 1O (ρήκα 5) Αλ δύν θύθινη ηέκλνληαη ζηα ζεκεία A θαη B, ηόηε ξηδηθόο άμνλαο ησλ δύν θύθισλ είλαη ε επζεία πνπ νξίδνπλ ηα ζεκεία A θαη B (ρήκα 6) Ζ εμίζσζε ηνπ ξηδηθνύ άμνλα ησλ κε νκόθεληξσλ θύθισλ ( c1 ) : x y A1 x B1 y 1 θαη ( c ) : x y A x B y ελίδα 4 από 13

5 ΓΤΝΑΜΖ ΖΜΔΗΟΤ-ΡΗΕΗΚΟ ΑΞΟΝΑ είλαη ε επζεία πνπ έρεη εμίζσζε: ( A1 A )x ( B1 B )y ( 1 ) 0 (Όιεο νη εμηζώζεηο ελλννύληαη ζην Καξηεζηαλό επίπεδν) ρήκα 6 13 ΡΗΕΗΚΟ ΚΔΝΣΡΟ ην ίδην επίπεδν δίλνληαη νη θύθινη C1 (O1,R1 ), C (O,R ) θαη C3 (O3,R3 ) Οη ξηδηθνί άμνλεο (πνπ νξίδνπλ νη θύθινη αλά δύν), πεξλάλε από ην ίδην ζεκείν ην νπνίν νλνκάδνπκε ξηδηθό θέληξν ησλ ηξηώλ θύθισλ ρήκα 7 ελίδα 5 από 13

6 Γηα λα βξνύκε ην ξηδηθό θέληξν ησλ ηξηώλ θύθισλ C1 (O1,R1 ), C (O,R ) θαη C3 (O3,R3 ) ζεσξνύκε θύθιν C(O,R ) πνπ ηέκλεη ηνπο ηξείο θύθινπο ηε ζπλέρεηα ζεσξνύκε ηνπο ξηδηθνύο άμνλεο νη νπνίνη ζα ηέκλνληαη ζην ξηδηθό θέληξν (ρήκα 7) ΤΝΣΡΔΥΟΤΔ ΔΤΘΔΙΔ Γηα λα απνδείμνπκε όηη ηξεηο επζείεο πεξλάλε από ην ίδην ζεκείν, αξθεί λα απνδείμνπκε όηη είλαη νη ξηδηθνί άμνλεο ηξηώλ θύθισλ (πνπ ηνπο ζεσξνύκε αλά δύν), νπόηε ζα ζπληξέρνπλ ζην ξηδηθό θέληξν ελίδα 6 από 13

7 ΓΤΝΑΜΖ ΖΜΔΗΟΤ-ΡΗΕΗΚΟ ΑΞΟΝΑ ΑΚΖΔΗ-ΠΡΟΒΛΖΜΑΣΑ 1 ΠΡΟΒΛΖΜΑ Γίλνληαη νη θύθινη C 1, C θαη C 3 πνπ είλαη ζην ίδην επίπεδν θαη ηέκλνληαη αλά δύν Απνδείμηε όηη νη θνηλέο ρνξδέο ηνπο ζπληξέρνπλ (πεξλάλε από ην ίδην ζεκείν) Λύζε Όηαλ δύν θύθινη ηέκλνληαη, ξηδηθόο ηνπο άμνλαο είλαη ε επζεία πνπ νξίδνπλ ηα ζεκεία ηνκήο ηνπο ηε πξνθεηκέλε πεξίπησζε πνπ νη θύθινη ηέκλνληαη αλά δύν, ε θνηλή ρνξδή ηνπο βξίζθεηαη επάλσ ζην ξηδηθό άμνλά ηνπο Οη ηξείο ξηδηθνί άμνλεο πνπ δεκηνπξγνύληαη πεξλάλε από ην ίδην ζεκείν (ην ξηδηθό θέληξν ησλ ηξηώλ θύθισλ) Άξα θαη νη θνηλέο ρνξδέο ζα πεξλάλε από ην ξηδηθό θέληξν (δειαδή ζπληξέρνπλ) ΠΡΟΒΛΖΜΑ (ROMANIAN TST FOR JBMO) Γίλεηαη ηπρόλ ηξίγωλν Κύθινο πνπ πεξλά από ηα, ηέκλεη ηηο πιεπξέο θαη ζηα ζεκεία, αληίζηνηρα πκβνιίδνπκε κε, ηηο πξνβνιέο ηωλ,, επάλω ζηελ πκβνιίδνπκε κε, ηηο πξνβνιέο ηωλ,, επάλω ζηελ Απνδείμηε όηη ηα ζεκεία,, θαη είλαη νκνθπθιηθά Λύζε Σν ηεηξάπιεπξν είλαη εγγξάςηκν, νπόηε (1) Σν ηεηξάπιεπξν είλαη εγγξάςηκν, νπόηε ( ) Σν ηεηξάπιεπξν είλαη εγγεγξακκέλν, νπόηε ( 3) Πνιιαπιαζηάδνληαο ηηο ζρέζεηο ( 1),( ),( 3 ) έρνπκε: Άξα ην ηεηξάπιεπξν είλαη εγγξάςηκν ελίδα 7 από 13

8 3 ΠΡΟΒΛΖΜΑ (USAMO 1990) Γίλεηαη ηξίγωλν θαη νη θύθινη, C C κε δηακέηξνπο θαη αληίζηνηρα Ο θύθινο C ηέκλεη ηελ ζην ζεκείν 1 θαη ν θύθινο C ηέκλεη ηελ ζην ζεκείν 1 Αλ ε 1 ηέκλεη ηνλ θύθιν C ζηα ζεκεία, θαη ε 1 ηέκλεη ηνλ θύθιν C ζηα ζεκεία,, απνδείμηε όηη ηα ζεκεία,,, είλαη νκνθπθιηθά Λύζε Έζησ ην δεύηεξν θνηλό ζεκείν ησλ δύν θύθισλ θαη ην ζεκείν ηνκήο ησλ 1 θαη 1 ελίδα 8 από 13

9 ΓΤΝΑΜΖ ΖΜΔΗΟΤ-ΡΗΕΗΚΟ ΑΞΟΝΑ Δθόζνλ θαη είλαη δηάκεηξνη ησλ θύθισλ ηζόηεηεο: C θαη C αληίζηνηρα, ζα ηζρύνπλ νη ˆ ˆ ˆ ˆ (όιεο απηέο νη γσλίεο είλαη εγγεγξακκέλεο θαη βαίλνπλ ζε δηακέηξνπο) Από ηηο παξαπάλσ ηζόηεηεο ησλ γσληώλ πξνθύπηεη όηη ην ζεκείν T είλαη νξζόθεληξν ηνπ ηξηγώλνπ (νπόηε ) θαη ηα ζεκεία,, είλαη ζπλεπζεηαθά Δπίζεο πξνθύπηεη όηη θαη ηα ζεκεία,, είλαη ζπλεπζεηαθά Από ηηο ηεκλόκελεο ρνξδέο θαη ηνπ θύθινπ C έρνπκε: (1) Από ηηο ηεκλόκελεο ρνξδέο θαη ηνπ θύθινπ C έρνπκε: ( ) Από ηηο ζρέζεηο ( 1) θαη ( ) έρνπκε: νπόηε ην ηεηξάπιεπξν είλαη εγγξάςηκν 4 ΠΡΟΒΛΖΜΑ (IMO 005) Γίλεηαη ηζόπιεπξν ηξίγωλν ABC ηε πιεπξά BC ζεωξνύκε ζεκεία 1, ζηε πιεπξά AC ζεκεία B 1, B θαη ζηε πιεπξά AB ζεκεία C 1, C ώζηε ην θπξηό εμάγωλν 1 B1BC1C λα έρεη πιεπξέο ίζνπ κήθνπο Απνδείμηε όηη νη δηαγώληεο 1B, B 1C, C1 ζπληξέρνπλ Λύζε ην ηζνζθειέο ηξίγσλν A 1 ζέηνπκε ˆ 1 A 1Â xˆ ην ηζνζθειέο ηξίγσλν 1 1 ζέηνπκε ˆ 1A1 Â1 1 ŷ Από ην ηξίγσλν A B 1 C έρνπκε: xˆ ŷ Ĉ 180 xˆ ŷ 60 Kˆ 60 Kˆ 60 KĈB ŷ KB 1CA εγγξάςηκν KA1 KC KB Ĉ 60 KĈA xˆ Άξα K πεξίθεληξν ηνπ ηξηγώλνπ B KBˆ A KÂ B 30 (1) CA Όκνηα πεξίθεληξν ηνπ ηξηγώλνπ C Ĉ A Â C 30 ( ) 1 BA 1 1 Από ηηο ζρέζεηο ( 1) θαη ( ) έρνπκε: A 1C1B A εγγξάςηκν Όκνηα A 1B1BC εγγξάςηκν Όκνηα C 1B1 AC εγγξάςηκν Έζησ L 1, L, L 3 νη πεξηγεγξακκέλνη θύθινη ησλ παξαπάλσ εγγξάςηκσλ ηεηξαπιεύξσλ Σόηε ε θνηλή ρνξδή ησλ L 1 θαη L είλαη ε δηαγώληνο A 1B ηνπ εμαγώλνπ, ε θνηλή ρνξδή ησλ L 1 θαη L 3 είλαη ε δηαγώληνο C 1A ηνπ εμαγώλνπ θαη ε θνηλή ρνξδή ησλ L θαη L 3 είλαη ε δηαγώληνο B 1C ηνπ εμαγώλνπ ελίδα 9 από 13

10 Άξα νη δηαγώληεο ζπληξέρνπλ ζην ξηδηθό θέληξν ησλ ηξηώλ πεξηθεξεηώλ 5 ΠΡΟΒΛΖΜΑ (IMO 008) Έζηω H ην νξζόθεληξν νμπγωλίνπ ηξηγώλνπ ABC Ο θύθινο C A πνπ έρεη θέληξν ην κέζν ηεο BC θαη δηέξρεηαη από ην H ηέκλεη ηε πιεπξά BC ζηα ζεκεία 1 θαη Όκνηα νξίδνπκε ηα ζεκεία B 1, B, C 1 θαη C Απνδείμηε όηη ηα έμη ζεκεία 1,,B1,B, C1 θαη C είλαη νκνθπθιηθά Λύζε Οη κεζνθάζεηεο ησλ επζπγξάκκσλ ηκεκάησλ A1, 1 θαη 1 ηαπηίδνληαη κε ηηο κεζνθάζεηεο ησλ πιεπξώλ, θαη ηνπ ηξηγώλνπ αληίζηνηρα θαη ηέκλνληαη ζην πεξίθεληξν Άξα: Σα ζεκεία A1, ζα αλήθνπλ ζην θύθιν κε θέληξν ην θαη αθηίλα A1 Σα ζεκεία 1, ζα αλήθνπλ ζην θύθιν κε θέληξν ην θαη αθηίλα 1 Σα ζεκεία 1, ζα αλήθνπλ ζην θύθιν κε θέληξν ην θαη αθηίλα 1 Αξθεί λα απνδείμνπκε όηη A1 1 1 Έζησ,, ηα κέζα ησλ πιεπξώλ, θαη ηνπ ηξηγώλνπ αληίζηνηρα θαη,, ηα δεύηεξα θνηλά ζεκεία ησλ θύθισλ C, C θαη C Σα ζεκεία,, είλαη ζπλεπζεηαθά ελίδα 10 από 13

11 ΓΤΝΑΜΖ ΖΜΔΗΟΤ-ΡΗΕΗΚΟ ΑΞΟΝΑ Θεσξώληαο ηηο ηέκλνπζεο ησλ θύθισλ C θαη C από ην ζεκείν έρνπκε: Άξα ην ηεηξάπιεπξν 1 1 είλαη εγγξάςηκν, νπόηε A1 1 ΠΑΡΑΣΗΡΗΗ Σν παξαθάησ πξόβιεκα απνηειεί γελίθεπζε ηνπ πξνεγνπκέλνπ πξνβιήκαηνο 6 ΠΡΟΒΛΖΜΑ (ΔΤΚΛΔΗΓΖ 009- Γ ΛΤΚΔΗΟΤ) Έζηω H ην νξζόθεληξν θαη ην πεξίθεληξν νμπγωλίνπ ηξηγώλνπ ABC Έζηω αθόκε,, ηα κέζα ηωλ πιεπξώλ ηνπ, θαη αληίζηνηρα Θεωξνύκε ηα ζεκεία 1, 1, 1 έηζη ώζηε: 1, 1 θαη 1 κε 1 Ο θύθινο C A πνπ έρεη θέληξν ην ζεκείν 1 θαη δηέξρεηαη από ην H ηέκλεη ηε πιεπξά BC ζηα ζεκεία 1 θαη Όκνηα νξίδνπκε ηα ζεκεία B 1, B, C 1 θαη C Απνδείμηε όηη ηα έμη ζεκεία 1,,B1,B, C1 θαη C είλαη νκνθπθιηθά Λύζε Έζησ ην νξζόθεληξν ηνπ ηξηγώλνπ ελίδα 11 από 13

12 Δθόζνλ ηα ζεκεία,, είλαη ηα κέζα ησλ πιεπξώλ ηνπ, θαη αληίζηνηρα, ηα ηξίγσλα θαη ζα έρνπλ ηηο πιεπξέο ηνπο παξάιιειεο Σα ηξίγσλα θαη έρνπλ επίζεο ηηο πιεπξέο ηνπο παξάιιειεο, δηόηη 1, 1 θαη 1 Ζ 1 1 είλαη κεζνθάζεηνο ηεο θνηλήο ρνξδήο ησλ θύθισλ C θαη C Ζ 1 1 είλαη παξάιιειε κε ηελ Άξα Δπεηδή όκσο, θαηαιήγνπκε ζην ζπκπέξαζκα, όηη ηα ζεκεία,, είλαη ζπλεπζεηαθά Με όκνην ηξόπν θαηαιήγνπκε όηη ηα ζεκεία,, θαη ηα ζεκεία,, είλαη ζπλεπζεηαθά Από ηε δύλακε ηνπ ζεκείνπ σο πξνο ηνπο θύθινπο C θαη C, έρνπκε: 1 1 Οπόηε ηα ζεκεία 1,, 1, είλαη νκνθπθιηθά ζην θύθιν κε θέληξν ην, πνπ είλαη ην ζεκείν ηνκήο ησλ κεζνθαζέησλ ησλ ηκεκάησλ 1 θαη 1 Όκνηα θαη κε ηα άιια δεπγάξηα ζεκείσλ ελίδα 1 από 13

13 ΓΤΝΑΜΖ ΖΜΔΗΟΤ-ΡΗΕΗΚΟ ΑΞΟΝΑ ΠΔΡΗΔΥΟΜΔΝΑ 1 ΒΑΙΚΟΙ ΟΡΙΜΟΙ 11 ΓΤΝΑΜΖ ΖΜΔΗΟΤ 1 ΡΗΕΗΚΟ ΑΞΟΝΑ 4 13 ΡΗΕΗΚΟ ΚΔΝΣΡΟ 5 ΑΚΗΔΙ-ΠΡΟΒΛΗΜΑΣΑ 7 1 ΠΡΟΒΛΖΜΑ 7 ΠΡΟΒΛΖΜΑ (ROMANI AN TST FOR JBMO) 7 3 ΠΡΟΒΛΖΜΑ (USAMO 1990) 8 4 ΠΡΟΒΛΖΜΑ (IMO 005) 9 5 ΠΡΟΒΛΖΜΑ (IMO 008) 10 6 ΠΡΟΒΛΖΜΑ (ΔΤΚΛΔΗΓΖ 009- Γ ΛΤΚΔΗΟΤ) 11 ελίδα 13 από 13

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ ΒΑΓΓΔΛΗ ΦΤΥΑ 2009 ελίδα 2 από 9 ΔΤΘΔΙΔ SIMSON 1 ΒΑΙΚΔ ΠΡΟΣΑΔΙ 1.1 ΔΤΘΔΙΑ SIMSON Γίλεηαη ηξίγσλν AB θαη ηπρόλ ζεκείν ηνπ πεξηγεγξακκέλνπ θύθινπ ηνπ. Αλ 1, 1 θαη 1 είλαη νη πξνβνιέο ηνπ ζηηο επζείεο πνπ

Διαβάστε περισσότερα

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ ΒΑΓΓΔΛΗ ΦΤΥΑ 0 ΒΑΙΚΟΙ ΟΡΙΜΟΙ ΟΜΟΙΟΘΔΣΟ ΗΜΔΙΟΤ Ολνκάδνπκε ομοιοθεζία με κένηπο ηο ζημείο και λόγο ην γεωκεηξηθό κεηαζρεκαηηζκό κε ηνλ νπνίν ζε θάζε ζεκείν ηνπ επηπέδνπ αληηζηνηρνύκε έλα θαη κόλν ζεκείν

Διαβάστε περισσότερα

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ() ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΘΔΜΑ : Αλ ηζρύεη 3 3, λα δείμεηε όηη ηα ζεκεία Μ, Ν ηαπηίδνληαη. ΘΔΜΑ : Α Β Μ Γ Σην παξαπάλσ ζρήκα είλαη 3. α) Γείμηε όηη

Διαβάστε περισσότερα

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο : ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ Ον/μο:.. Γ Λσκείοσ Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη. 11-1-11 Εήηημα 1 ο : Α. Γηα ηελ ζπλάξηεζε f, λα βξείηε ην δηάζηεκα ζην νπνίν είλαη παξαγσγίζηκε θαζώο θαη

Διαβάστε περισσότερα

όπου R η ακηίνα ηου περιγεγραμμένου κύκλου ηου ηριγώνου.

όπου R η ακηίνα ηου περιγεγραμμένου κύκλου ηου ηριγώνου. ΕΩΜΕΤΡΙ ΛΥΚΕΙΟΥ - ΕΜΔ ΝΩΣΕΙΣ ΘΕΩΡΙΣ Ι ΤΗΝ ΛΥΣΗ ΣΚΗΣΕΩΝ ΕΜΔ Πρόηζε Ίζ πολυγωνικά χωρί έχουν ίζ εμβδά Το νηίζηροθο δεν ιζχύει ηλδή δύο ιζοεμβδικά χωρί δεν είνι κηά νάγκη ίζ Εκβδόλ ηεηργώλοσ πιεσράς Εκβδόλ

Διαβάστε περισσότερα

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013 ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 7 ΜΑΪΟΥ 13 ΘΔΜΑ Α : (Α1) Σρνιηθό βηβιίν ζειίδα 33-335 (Α) Σρνιηθό βηβιίν ζειίδα 6 (Α3) Σρνιηθό βηβιίν ζειίδα (Α) α) Λάζνο β) Σωζηό γ) Σωζηό

Διαβάστε περισσότερα

Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1.

Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1. ΘΕΜΑ. Γηα ηελ ζπλάξηεζε f : IR IR ηζρύεη + f() f(- ) = γηα θάζε IR. Να δείμεηε όηη f() =, ΙR. Να βξείηε ηελ εθαπηόκελε (ε) ηεο C f πνπ δηέξρεηαη από ην ζεκείν (-,-) 3. Να βξείηε ην εκβαδόλ Δ(α) ηνπ ρωξίνπ

Διαβάστε περισσότερα

ΓΔΧΜΔΣΡΗΑ ΓΗΑ ΟΛΤΜΠΗΑΓΔ

ΓΔΧΜΔΣΡΗΑ ΓΗΑ ΟΛΤΜΠΗΑΓΔ Βαγγέλης Φύχας 0 ΒΑΗΚΟΗ ΟΡΗΜΟΗ ΗΟΓΧΝΗΔ ΔΤΘΔΗΔ Γύν επζείεο θαη (πνπ δηέξρνληαη από ηε θνξπθή ηεο γωλίαο ιέγνληαη ηζνγώληεο, όηαλ δεκηνπξγνύλ ίζεο γωλίεο κε ηηο πιεπξέο ηεο γωλίαο ηζνδύλακα όηαλ δεκηνπξγνύλ

Διαβάστε περισσότερα

α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο

α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο Έξγν ελέξγεηα 3 (Λύζε) Σώκα κάδαο m = 4Kg εξεκεί ζηε βάζε θεθιηκέλνπ επηπέδνπ γσλίαο θιίζεο ζ κε εκζ = 0,6 θαη ζπλζ = 0,8. Τν ζώκα αξρίδεη λα δέρεηαη νξηδόληηα δύλακε θαη μεθηλά λα αλεβαίλεη ζην θεθιηκέλν

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. καινούργιο σχολ. σελ 35 / παλιό σχολ. 53 Α. Ψευδής, σελ.99 / παλιό σχολ. σελ. 7 αντιπαράδειγμά, f ( ) Α3. σελ 73, παλιό σχολ. σελ. 9 Α. α) Λάθος β)

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΠΡΟΒΛΗΜΑ Σε έλα ηνπξλνπά βόιετ δήισζαλ ζπκκεηνρή νκάδεο Γπκλαζίσλ ηεο Κύπξνπ.

Διαβάστε περισσότερα

Τράπεζα Θεμάτωμ Γεωμετρία Α Λσκείοσ

Τράπεζα Θεμάτωμ Γεωμετρία Α Λσκείοσ Τράπεζα Θεμάτωμ Γεωμετρία Α Λσκείοσ Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς www.askisopolis.gr Οη αζθήζεης ηες ηράπεδας ζεμάηωκ απαιιαγμέκες από ηα ζτήμαηα (όποσ ήηακ δσκαηόκ) β έθδοζε 0/11/015 ΗΡΖΣΕΡΖΑ

Διαβάστε περισσότερα

Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε:

Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε: 1 ΟΡΙΜΟΙ MONOTONIA AKΡOTATA Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε: Σν ιέγεηαη ζέζε ή ζεκείν ηνπ ηνπηθνύ κεγίζηνπ θαη ην ( ηνπηθό κέγηζην.

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΔΤΡΙΚΔΣ ΔΞΙΣΩΣΔΙΣ

ΤΡΙΓΩΝΟΜΔΤΡΙΚΔΣ ΔΞΙΣΩΣΔΙΣ 1.1 Μονάδερ μέηπηζηρ ηόξων (γωνιών) ΤΡΙΓΩΝΟΜΔΤΡΙΚΔΣ ΔΞΙΣΩΣΔΙΣ Ωο κνλάδα κέηξεζεο ησλ ηόμσλ εθηόο από ηελ κνίξα (1 ν ) πνπ είλαη ην 1/360 ηνπ θύθινπ ρξεζηκνπνηνύκε θαη ην αθηίλην (1rad). Τν αθηίλην είλαη

Διαβάστε περισσότερα

H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ

H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ Φξεζηκόηεηα καζεκαηηθώλ Αξρή θαηακέηξεζεο Όζα έδσζαλ νη Έιιελεο... Τξίγσλνη αξηζκνί Τεηξάγσλνη αξηζκνί Δπηκήθεηο αξηζκνί Πξώηνη αξηζκνί Αξηζκνί κε μερσξηζηέο ηδηόηεηεο Γίδπκνη πξώηνη

Διαβάστε περισσότερα

Μεζνδνινγία Κύθινπ. Η εμίζσζε ελόο θύθινπ πνπ έρεη θέληξν ηελ αξρή ησλ αμόλσλ είλαη ηεο κνξθήο:

Μεζνδνινγία Κύθινπ. Η εμίζσζε ελόο θύθινπ πνπ έρεη θέληξν ηελ αξρή ησλ αμόλσλ είλαη ηεο κνξθήο: Μεζνδνινγία Κύθινπ Κύθινο νλνκάδεηαη ν γεσκεηξηθόο ηόπνο ελόο ζπλόινπ άπεηξσλ ζεκείσλ ηα νπνία ηζαπέρνπλ από έλα ζηαζεξό ζεκείν, ην θέληξν ηνπ. Άξα, έλαλ θύθιν ηνλ ραξαθηεξίδνπλ δύν ζηνηρεία, ην θέληξν

Διαβάστε περισσότερα

ΣΑΞΗ Α - ΜΑΘΗΜΑΣΙΚΑ ΘΕΜΑΣΑ ΘΕΩΡΙΑ (ΓΙΑ ΣΗΝ ΣΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΣΑΞΗ Α - ΜΑΘΗΜΑΣΙΚΑ ΘΕΜΑΣΑ ΘΕΩΡΙΑ (ΓΙΑ ΣΗΝ ΣΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) ΣΑΞΗ Α - ΜΑΘΗΜΑΣΙΚΑ ΘΕΜΑΣΑ ΘΕΩΡΙΑ (ΓΙΑ ΣΗΝ ΣΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟ- ΑΛΓΕΒΡΑ ΕΡΩΣΗΗ 1 Πνηνη αξηζκνί νλνκάδνληαη πξώηνη θαη πνηνη ζύλζεηνη; Να δώζεηε παξαδείγκαηα. ΑΠΑΝΣΗΗ 1 Όηαλ έλαο αξηζκόο δηαηξείηαη

Διαβάστε περισσότερα

ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000.

ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000. ΔΕΟ 13 Ποσοτικές Μέθοδοι Σσνάρηηζη Κόζηοσς C(), μέζο κόζηος C()/. Παράδειγμα 1 Μηα εηαηξεία δαπαλά γηα θάζε πξντόλ Α πνπ παξάγεη 0.0 λ.κ. Τα πάγηα έμνδα ηεο εηαηξείαο είλαη 800 λ.κ. Ζεηείηαη 1) Να πεξηγξάςεηε

Διαβάστε περισσότερα

Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2

Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2 ΣΡΙΓΩΝΟΜΔΣΡΙΚΔ EΞΙΩΔΙ Πνηα παξαδείγκαηα εμηζώζεσλ ή θαη πξνβιεκάησλ πηζηεύεηαη όηη είλαη θαηάιιεια γηα ηελ επίιπζε ηνπο θαηά ηελ δηάξθεηα ηεο δηδαθηηθήο δηαδηθαζίαο κέζα ζηελ ηάμε; 1 ε ΓΙΓΑΚΣΙΚΗ ΩΡΑ Α.

Διαβάστε περισσότερα

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Μονοψϊνιο Ολιγοψώνιο Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Οπιακή αξία Δπηπξόζζεηα νθέιε από ηελ ρξήζε/θαηαλάισζε κηαο επηπξόζζεηε

Διαβάστε περισσότερα

Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ.

Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ. Απαντήσεις θέματος 2 Απηά πνπ έπξεπε λα γξάςεηε (δελ ρξεηαδόηαλ δηθαηνιόγεζε εθηόο από ην Γ) Α return a*b; Β 0:acegf2, 1: acegf23, 2: acegf234, 3:acegf2345, 4:acegf23456, 5:acegf234567, 6:acegf2345678,

Διαβάστε περισσότερα

1. Η απιή αξκνληθή ηαιάλησζε πνπ εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη πιάηνο Α = 20 cm θαη

1. Η απιή αξκνληθή ηαιάλησζε πνπ εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη πιάηνο Α = 20 cm θαη ΛΤΜΔΝΔ ΑΚΖΔΗ ΣΖΝ ΔΤΡΔΖ ΑΡΥΗΚΖ ΦΑΖ 1. Η αιή αξκνληθή ηαιάλησζε ν εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη ιάηνο Α = cm θαη ζρλόηεηα f = 5 Hz. Τε ρξνληθή ζηηγκή = ην κηθξό ζώκα δηέξρεηαη αό ηε ζέζε ανκάθξλζεο

Διαβάστε περισσότερα

Σημεία Ασύπματηρ Ππόσβασηρ (Hot-Spots)

Σημεία Ασύπματηρ Ππόσβασηρ (Hot-Spots) Σημεία Ασύπματηρ Ππόσβασηρ (Hot-Spots) 1.1 Σςνοπτική Πεπιγπαυή Hot Spots Σα ζεκεία αζύξκαηεο πξόζβαζεο πνπ επηιέρζεθαλ αλαθέξνληαη ζηνλ επόκελν πίλαθα θαη παξνπζηάδνληαη αλαιπηηθά ζηηο επόκελεο παξαγξάθνπο.

Διαβάστε περισσότερα

Κόληξα πιαθέ ζαιάζζεο κε δηαζηάζεηο 40Υ40 εθ. Καξθηά 3 θηιά πεξίπνπ κε κήθνο ηξηπιάζην από ην πάρνο ηνπ μύινπ θπξί κεγάιν θαη ππνκνλή

Κόληξα πιαθέ ζαιάζζεο κε δηαζηάζεηο 40Υ40 εθ. Καξθηά 3 θηιά πεξίπνπ κε κήθνο ηξηπιάζην από ην πάρνο ηνπ μύινπ θπξί κεγάιν θαη ππνκνλή Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΙΩΝ ΠΡΩΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ ΔΝΟΣΗΣΑ 10 ε : ΜΗΥΑΝΙΚΗ ΜΔΡΟ Β ΠΙΔΗ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Καξέθια θαθίξε Όξγαλα Τιηθά Κόληξα πιαθέ ζαιάζζεο κε δηαζηάζεηο 40Υ40 εθ.

Διαβάστε περισσότερα

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ Εδώ ζα ππνινγίζνπκε ην κεηαζρεκαηηζκό Fourier κεξηθώλ αθόκα ζεκάησλ, πξνζπαζώληαο λα μεθηλήζνπκε από ην κεηαζρεκαηηζκό Fourier γλσζηώλ ζεκάησλ

Διαβάστε περισσότερα

ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) =

ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) = ΘΔΜΑΣΑ Α επηέκβξηνο 9. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(,y) = y.. Να ππνινγηζηνύλ ηα νινθιεξώκαηα: a) ln b) a) 3cos b) e sin 4. Να ππνινγηζηεί ην νινθιήξσκα: S ( y) 3

Διαβάστε περισσότερα

Ευκλείδεια Γεωμετρία Α τάξης Γενικού Λυκείου ΓΩΝΗΔ

Ευκλείδεια Γεωμετρία Α τάξης Γενικού Λυκείου ΓΩΝΗΔ Ευκλείδεια εωμετρία τάξης ενικού Λυκείου ΩΝΗΔ Οξηζκόο: Έζησ Ορ θαη Ος δύν εκηεπζείεο πνπ δελ έρνπλ θνηλό θνξέα θαη έζησ p ην εκηεπίπεδν πνπ έρεη αθκή ηνλ θνξέα ηεο Oρ θαη πεξηέρεη ηελ Ος θαη q ην εκηεπίπεδν

Διαβάστε περισσότερα

Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12

Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12 Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 11-12 Project 6: Ταμίδη κε ηε Μεραλή ηνπ Φξόλνπ Υπεύζπλνη Καζεγεηέο: Ε. Μπηιαλάθε Φ. Αλησλάηνο Δρώηηζη 3: Πνηα από ηα παξαθάησ ΜΜΕ ηεξαξρείηε από πιεπξάο ζεκαζίαο;

Διαβάστε περισσότερα

Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ

Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική Δίζηε μησανικόρ διοίκηζηρ μεγάληρ καηαζκεςαζηικήρ εηαιπείαρ και καλείζηε να ςλοποιήζεηε ηο έπγο πος πεπιγπάθεηαι από ηον Πίνακα 1. Κωδ.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 204-205 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/204 A ΟΜΑΓΑ Οδηγία: Να γράυεηε ζηο ηεηράδιο ζας ηον αριθμό κάθε μιας από ηις παρακάηφ ερφηήζεις Α.-Α.8 και

Διαβάστε περισσότερα

Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis

Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training Dipl.Biol.cand.med. Stylianos Kalaitzis Stylianos Kalaitzis Μνλνϋβξηδηζκνο 1 Γπν γνλείο, εηεξόδπγνη γηα ηνλ αιθηζκό θάλνπλ παηδηά. Πνία ε πηζαλόηεηα

Διαβάστε περισσότερα

Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα!

Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα! Cpyright 2013 Λόγος & Επικοινωνία // All rights Reserved Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα! Αυηό ηο παιχνίδι έχει ζηόχους: 1. ηελ εθγύκλαζε ηεο αθνπζηηθήο κλήκεο ησλ παηδηώλ 2. ηελ εμάζθεζε ζηελ

Διαβάστε περισσότερα

ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη:Γςνάμειρ μεταξύ ηλεκτπικών φοπτίων

ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη:Γςνάμειρ μεταξύ ηλεκτπικών φοπτίων ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. Ύλη:Γςνάμειρ μεταξύ ηλεκτπικών φοπτίων Είμαζηε ηυχεροί που είμαζηε δάζκαλοι 58 Β Λςκείος Γεν. Παιδείαρ 9-11-2014 Θέμα 1 ο : 1. Γύν ζεηηθά θνξηία πνπ βξίζθνληαη ζε απόζηαζε

Διαβάστε περισσότερα

Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα

Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα Κοιμωμικά δίκτυα (multiplex network) Έρεηε ινγαξηαζκό ζην Facebook? Έρεηε ινγαξηαζκό ζην LinkedIn? Έρεηε ινγαξηαζκό ζην Twitter? Αεροπορικές γραμμές της Ευρώπης(multiplex

Διαβάστε περισσότερα

Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο:

Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Σύνθεζη ηαλανηώζεων Α. Σύλζεζε δύν α.α.η ηεο ίδιας ζστνόηηηας Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Η απνκάθξπλζε

Διαβάστε περισσότερα

Δπηιέγνληαο ην «Πξνεπηινγή» θάζε θνξά πνπ ζα ζπλδέεζηε ζηελ εθαξκνγή ζα βξίζθεζηε ζηε λέα ρξήζε.

Δπηιέγνληαο ην «Πξνεπηινγή» θάζε θνξά πνπ ζα ζπλδέεζηε ζηελ εθαξκνγή ζα βξίζθεζηε ζηε λέα ρξήζε. ΑΝΟΙΓΜΑ ΝΔΑ ΥΡΗΗ 1. Γεκηνπξγείηε ηε λέα ρξήζε από ηελ επηινγή «Παξάκεηξνη/Παξάκεηξνη Δηαηξίαο/Γηαρείξηζε Δηαηξηώλ». Πιεθηξνινγείηε ηνλ θσδηθό ηεο εηαηξίαο ζαο θαη παηάηε Enter. Σηελ έλδεημε «Υξήζεηο» παηάηε

Διαβάστε περισσότερα

Ασκήσεις Οπτική και Κύματα

Ασκήσεις Οπτική και Κύματα Παλεπηζηήκην Κξήηεο Τκήκα Επηζηήκεο θαη Τερλνινγίαο Υιηθώλ Ασκήσεις Οπτική και Κύματα Δηδάζθσλ: Δεκήηξεο Παπάδνγινπ Email: dpapa@materials.uc.gr Άλυτες Ασκήσεις: 1. Να πξνζδηνξίζεηε αλ νη αθόινπζεο ζπλαξηήζεηο

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ιήμεο 11.00 Κάπνηνο άξρηζε λα δηαβάδεη έλα βηβιίν ηελ 1 ε Δεθεκβξίνπ. Κάζε κέξα δηάβαδε ηνλ ίδην αξηζκό ζειίδσλ

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο

Διαβάστε περισσότερα

ΤΠΟΤΡΓΔΗΟ ΔΘΝΗΚΖ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΧΝ ΠΑΗΓΑΓΧΓΗΚΟ ΗΝΣΗΣΟΤΣΟ. Α θαη Β Γεληθνύ Λπθείνπ. ε 3. ε 2. Γ ε 1

ΤΠΟΤΡΓΔΗΟ ΔΘΝΗΚΖ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΧΝ ΠΑΗΓΑΓΧΓΗΚΟ ΗΝΣΗΣΟΤΣΟ. Α θαη Β Γεληθνύ Λπθείνπ. ε 3. ε 2. Γ ε 1 ΤΠΟΤΡΓΔΗΟ ΔΘΝΗΚΖ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΧΝ ΠΑΗΓΑΓΧΓΗΚΟ ΗΝΣΗΣΟΤΣΟ Α θαη Β Γεληθνύ Λπθείνπ ε 3 Κ Δ Γ ε 1 ε 2 Η Ο Ε κ α Φ Θ Ζ Α ε 4 Β Σόκνο 3νο ΤΠΟΤΡΓΔΗΟ ΔΘΝΗΚΖ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΧΝ ΠΑΗΓΑΓΧΓΗΚΟ ΗΝΣΗΣΟΤΣΟ

Διαβάστε περισσότερα

ζρήκα 1 β τπόπορ (από σύγκπιση τπιγώνων):

ζρήκα 1 β τπόπορ (από σύγκπιση τπιγώνων): o Λύκειο Εακύνθος Γεσκεηξία Α Λπθείνπ Κεθάιαην 3ν Άζθεζε Α Γίλεηαη νξζνγώλην ηξίγσλν ΑΒΓ 90 0 θαη ΓΓ δηρνηόκνο ηεο γσλίαο. Να δείμεηε όηη:. Τν ζεκείν Γ απέρεη ηελ ίδηα απόζηαζε από ηηο πιεπξέο ΑΓ θαη ΒΓ.

Διαβάστε περισσότερα

Β. Να δώσετε τον ορισμό του τοπικού ελαχίστου μιας συνάρτησης f με πεδίο ορισμού το σύνολο Α. ΜΟΝΑΔΕΣ 5

Β. Να δώσετε τον ορισμό του τοπικού ελαχίστου μιας συνάρτησης f με πεδίο ορισμού το σύνολο Α. ΜΟΝΑΔΕΣ 5 ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΥΡΙΑΚΗ ΜΑΡΤΙΟΥ 5 ΘΕΜΑ Α Α. Έστω μια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () > σε κάθε

Διαβάστε περισσότερα

Κϊλυψη ενόσ κυρτού ςχήματοσ F με ομοιόθετα ίςα προσ kf. Γεωρ.Τςίντςιφασ

Κϊλυψη ενόσ κυρτού ςχήματοσ F με ομοιόθετα ίςα προσ kf. Γεωρ.Τςίντςιφασ 1 Κϊλυψη ενόσ κυρτού ςχήματοσ F με ομοιόθετα ίςα προσ kf Γεωρ.Τςίντςιφασ Πξνθαλώο γηα k 1 δελ ππάξρεη θάπνην πξόβιεκα. Αο δνύκε ην πξόβιεκα αλαιπηηθά θαη αο ππνζέζνπκε νηη έρνπκε λα θαιύςνπκε έλα ηεηξάγσλν

Διαβάστε περισσότερα

Θέμα 3 ο v. Θέμα 5 ο Να βξεζεί ν γεσκεηξηθόο ηόπνο ησλ εηθόλσλ ησλ κηγαδηθώλ z γηα ηνπο νπνίνπο

Θέμα 3 ο v. Θέμα 5 ο Να βξεζεί ν γεσκεηξηθόο ηόπνο ησλ εηθόλσλ ησλ κηγαδηθώλ z γηα ηνπο νπνίνπο ΜΑΘΗΜΑΣΙΚΑ Γ ΛΤΚΕΙΟΤ ΘΔΤΙΚΗ & ΤΔΦΝΟΛΟΓΙΚΗ ΚΑΤΔΥΘΥΝΣΗ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Δπαλαιεπηηθέο αζθήζεηο θαη ζύλζεηα ζέκαηα Δπηκέιεηα: Άιθεο Τδειέπεο Αζήλα 0 Θέμα ο Έζησ νη α, β R. Να δείμεηε όηη ν κηγαδηθόο αξηζκόο

Διαβάστε περισσότερα

Τν Πξόγξακκα ζα αλαθνηλσζεί, ακέζσο κεηά ηηο γηνξηέο ηνπ Πάζρα.

Τν Πξόγξακκα ζα αλαθνηλσζεί, ακέζσο κεηά ηηο γηνξηέο ηνπ Πάζρα. Οι Πανελλαδικέρ Δξεηάζειρ για ηην ειζαγωγή ζηην ηπιηοβάθμια εκπαίδεςζη θα ππαγμαηοποιηθούν ππιν ηιρ απολςηήπιερ ενδοζσολικέρ εξεηάζειρ ηων μαθηηών και ηων μαθηηπιών. Τν Πξόγξακκα ζα αλαθνηλσζεί, ακέζσο

Διαβάστε περισσότερα

ΠΔΡΗΓΡΑΦΖ ΛΔΗΣΟΤΡΓΗΚΟΣΖΣΑ ΥΔΓΗΟΤ ΑΡΗΘΜ. 1

ΠΔΡΗΓΡΑΦΖ ΛΔΗΣΟΤΡΓΗΚΟΣΖΣΑ ΥΔΓΗΟΤ ΑΡΗΘΜ. 1 ΠΔΡΗΓΡΑΦΖ ΛΔΗΣΟΤΡΓΗΚΟΣΖΣΑ ΥΔΓΗΟΤ ΑΡΗΘΜ. 1 ΒΟΤΣΑΗΟ 7,5Υ40m ΑΓΔΛΑΓΩΝ ΓΑΛΑΚΣΟΠΑΡΑΓΩΓΖ ΔΛΔΤΘΔΡΟΤ ΣΑΒΛΗΜΟΤ ΜΔ 48 ΑΣΟΜΗΚΔ ΘΔΔΗ Τν άξκεγκα ελδείθλπηαη λα γίλεηαη ζε αξκεθηήξην ηύπνπ ςαξνθόθθαιν 2Χ4 ζέζεσλ. Οη

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ

ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ ΘΔΜΑ Α Α1. α. Σ β. Σ γ. Λ δ. Λ ε. Λ ζη. Σ Α2. Γ Α3. 1. γ 2. ε 3. δ 4. α Β1. ΘΔΜΑ Β Οη ηειηθνί ππνινγηζηέο παίξλνπλ απνθάζεηο δξνκνιόγεζεο κόλν γηα ηα δηθά ηνπο απηνδύλακα

Διαβάστε περισσότερα

Κεθάιαην 20. Ελαχιστοποίηση του κόστους

Κεθάιαην 20. Ελαχιστοποίηση του κόστους Κεθάιαην 0 Ελαχιστοποίηση του κόστους Ειαρηζηνπνίεζε ηνπ θόζηνπο Μηα επηρείξεζε ειαρηζηνπνηεί ην θόζηνο ηεο αλ παξάγεη νπνηνδήπνηε δεδνκέλν επίπεδν πξντόληνο y 0 ζην κηθξόηεξν δπλαηό ζπλνιηθό θόζηνο. Τν

Διαβάστε περισσότερα

ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KARNAUGH

ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KARNAUGH ΑΠΛΟΠΟΙΗΗ ΛΟΓΙΚΩΝ ΤΝΑΡΣΗΕΩΝ ΜΕ ΠΙΝΑΚΕ KRNUGH Γηα λα θάλνπκε απινπνίεζε κηαο ινγηθήο ζπλάξηεζεο κε πίλαθα (ή ράξηε) Karnaugh αθνινπζνύκε ηα παξαθάησ βήκαηα:. Η ινγηθή ζπλάξηεζε ζα πξέπεη λα είλαη ζε πιήξε

Διαβάστε περισσότερα

Δξγαιεία Καηαζθεπέο 1 Σάμε Σ Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ. ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Φαθόο κε ζσιήλα.

Δξγαιεία Καηαζθεπέο 1 Σάμε Σ Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ. ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Φαθόο κε ζσιήλα. Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΙΧΝ ΠΡΧΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ ΔΝΟΣΗΣΑ 11 ε : ΦΧ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Φαθόο κε ζσιήλα Γηαθξάγκαηα Δξγαιεία Καηαζθεπέο 2 Η θαηαζθεπή πεξηγξάθεηαη ζηελ αληίζηνηρε ελόηεηα

Διαβάστε περισσότερα

ΑΛΓΔΒΡΑ Α ΓΤΜΝΑΗΟΤ. ΚΔΦΑΛΑΗΟ 1 ν Φπζηθνί Αξηζκνί

ΑΛΓΔΒΡΑ Α ΓΤΜΝΑΗΟΤ. ΚΔΦΑΛΑΗΟ 1 ν Φπζηθνί Αξηζκνί ΚΔΦΛΗΟ 1 ν Φπζηθνί ξηζκνί ΛΓΔΒΡ ΓΤΜΝΗΟΤ 1.Πνηνί αξηζκνί νλνκάδνληαη θπζηθνί, πνηνί άξηηνη θαη πνηνί πεξηηηνί; Φπζηθνί αξηζκνί νλνκάδνληαη νη αξηζκνί,1,2,3.1,11.1. Κάζε θπζηθόο αξηζκόο έρεη έλαλ επόκελν

Διαβάστε περισσότερα

T A E K W O N D O. Δ. ΠπθαξΨο. ΔπΫθνπξνο ΘαζεγεηΪο ΑζιεηηθΪο ΦπζηθνζεξαπεΫαο ΡΔΦΑΑ - ΑΞΘ

T A E K W O N D O. Δ. ΠπθαξΨο. ΔπΫθνπξνο ΘαζεγεηΪο ΑζιεηηθΪο ΦπζηθνζεξαπεΫαο ΡΔΦΑΑ - ΑΞΘ T A E K W O N D O Δ. ΠπθαξΨο ΔπΫθνπξνο ΘαζεγεηΪο ΑζιεηηθΪο ΦπζηθνζεξαπεΫαο ΡΔΦΑΑ - ΑΞΘ ΦΠΗΘΝΘΔΟΑΞΔΗΑ Ο Ρ Ι Μ Ο Φπζη(θ)νζεξαπεΫα εϋλαη ε επηζηϊκε, ε νπνϋα κόλν κε θπζηθψ κωζα θαη κεζόδνπο πξνζπαζεϋ λα ζεξαπεύζεη

Διαβάστε περισσότερα

Σήκαηα Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) ΕΙΣΑΓΨΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΨΝΙΕΣ

Σήκαηα Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) ΕΙΣΑΓΨΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΨΝΙΕΣ Σήκαηα 1 Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) Σήκαηα Οξηζκόο ζήκαηνο Ταμηλόκεζε ζεκάησλ Σεηξέο Fourier Μεηαζρεκαηηζκόο Fourier Σπλέιημε Σπζρέηηζε θαη Φαζκαηηθή Ππθλόηεηα 2 Οξηζκόο Σήκαηνο

Διαβάστε περισσότερα

ΣΟ ΤΣΖΜΑ ΔΛΑΣΖΡΗΟ - ΩΜΑ

ΣΟ ΤΣΖΜΑ ΔΛΑΣΖΡΗΟ - ΩΜΑ ΣΟ ΤΣΖΜΑ ΔΛΑΣΖΡΗΟ - ΩΜΑ Σε όια ηα πξνβιήκαηα πνπ ζα αληηκεηωπίζνπκε, ην ειαηήξην ζα είλαη αβαξέο θαη ζα ηθαλνπνηεί ην λόκν ηνπ Hooke (ηδαληθό ειαηήξην), δειαδή ε δύλακε πνπ αζθεί έλα ηδαληθό ειαηήξην έρεη

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΑΣΚΗΣΕΙΣ ΟΜΑΔΑ 1 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΑΣΚΗΣΕΙΣ ΟΜΑΔΑ 1 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΑΣΚΗΣΕΙΣ ΟΜΑΔΑ 1 ΟΝΟΜΑ : ΒΡΤΩΝΗ ΥΑΡΑΛΑΜΠΟΤ ΑΕΜ : 12781 ΕΞΑΜΗΝΟ: 5 ν Άσκηση 1: ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ (α) Έλα αζηέξη θηλείηαη παξάιιεια κε ηνλ ηζεκεξηλό θαη δεκηνπξγεί έλα ζθαηξηθό ηξίγσλν

Διαβάστε περισσότερα

ΑΡΥΔ ΟΙΚΟΝΟΜΙΚΗ ΘΔΩΡΙΑ ΛΤΔΙ ΓΙΑΓΩΝΙΜΑΣΟ ΚΔΦΑΛΑΙΟΤ 2

ΑΡΥΔ ΟΙΚΟΝΟΜΙΚΗ ΘΔΩΡΙΑ ΛΤΔΙ ΓΙΑΓΩΝΙΜΑΣΟ ΚΔΦΑΛΑΙΟΤ 2 ΑΥΔ ΟΙΚΟΝΟΜΙΚΗ ΘΔΩΙΑ ΛΤΔΙ ΙΑΩΝΙΜΑΣΟ ΚΔΦΑΛΑΙΟΤ 2 1: Λάζος (είλαη ηζνζθειήο ππεξβνιή) Α2: Λάζος (ην ζεηηθό πξόζεκν ζεκαίλεη όηη ε Πνζνζηηαία Μεηαβνιή Δηζνδήκαηνο θαη ε Πνζνζηηαία Μεηαβνιή Πνζόηεηαο ήηαλ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. ΜΕΤΑΣΦΗΜΑΤΙΣΜΟΣ Laplace

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. ΜΕΤΑΣΦΗΜΑΤΙΣΜΟΣ Laplace ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΦΗΜΑΤΙΣΜΟΣ Laplac Δηεπξύλεη ηε θιάζε ηωλ ζεκάηωλ γηα ηα νπνία κπνξεί λα επηηεπρζεί ε κεηάβαζε από ην πεδίν ηνπ ρξόλνπ ζην πεδίν ηεο ζπρλόηεηαο. Παξέρεη ηε

Διαβάστε περισσότερα

ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ

ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ ΦΤΛΛΟ ΕΡΓΑΙΑ (Θεοδώρα Γιώηη, Νικόλας Καραηάζιος- Τπεύθσνη εκ/κος Λ. Παπαηζίμπα) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ:.., ΗΜΕΡΟΜΗΝΙΑ:.// Σε ακαμίδην πνπ κπνξεί λα θηλείηαη ρσξίο ηξηβέο πάλσ

Διαβάστε περισσότερα

ΤΝΟΠΣΙΚΗ ΜΔΘΟΓΟΛΟΓΙΑ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Γ ΛΤΚΔΙΟΤ ΘΔΣΙΚΗ ΚΑΙ ΣΔΥΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ

ΤΝΟΠΣΙΚΗ ΜΔΘΟΓΟΛΟΓΙΑ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Γ ΛΤΚΔΙΟΤ ΘΔΣΙΚΗ ΚΑΙ ΣΔΥΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ ΤΝΟΠΣΙΚΗ ΜΔΘΟΓΟΛΟΓΙΑ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Γ ΛΤΚΔΙΟΤ ΘΔΣΙΚΗ ΚΑΙ ΣΔΥΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ ΜΙΓΑΓΙΚΟΙ ΑΡΙΘΜΟΙ. Γηα λα βξνύκε ηε δύλακε i (θ αθέξαηνο) δηαηξνύκε ην θ κε ην 4 θαη ζύκθσλα κε ηελ ηαπηόηεηα ηεο δηαίξεζεο

Διαβάστε περισσότερα

Constructors and Destructors in C++

Constructors and Destructors in C++ Constructors and Destructors in C++ Σύνθεζη Πνιύ ζπρλά ζηε C++ κία θιάζε κπνξεί λα πεξηέρεη ζαλ κέιεδεδνκέλα αληηθείκελα άιισλ θιάζεσλ. Πνηα είλαη ε ζεηξά κε ηελ νπνία δεκηνπξγνύληαη θαη θαηαζηξέθνληαη

Διαβάστε περισσότερα

ΕΞΟΡΤΞΗ & ΚΑΣΑΚΕΤΕ ΣΗΝ ΕΤΡΩΠΗ ΜΑΘΗΜΑ 43

ΕΞΟΡΤΞΗ & ΚΑΣΑΚΕΤΕ ΣΗΝ ΕΤΡΩΠΗ ΜΑΘΗΜΑ 43 ΕΞΟΡΤΞΗ & ΚΑΣΑΚΕΤΕ ΣΗΝ ΕΤΡΩΠΗ ΜΑΘΗΜΑ 43 Κα ακαθένεηε 5 εονςπασθέξ πώνεξ θαη κα βνείηε ημ είδμξ ημο μνοθημύ ημοξ πιμύημο. Πμημη πανάγμκηεξ επηηνέπμοκ ηεκ θαηαζθεοή μεγάιςκ ηεπκηθώκ ένγςκ; Ε ελόνολε (ελαγςγή

Διαβάστε περισσότερα

3. Τα ΑΒΓΓ θαη ΔΒΕΖ είλαη ηεηξάγσλα, ΑΔ=2cm θαη ΔΒ=5cm. Τν εκβαδόλ ηνπ γξακκνζθηαζκέλνπ ζρήκαηνο είλαη: είλαη: (Γ) 10

3. Τα ΑΒΓΓ θαη ΔΒΕΖ είλαη ηεηξάγσλα, ΑΔ=2cm θαη ΔΒ=5cm. Τν εκβαδόλ ηνπ γξακκνζθηαζκέλνπ ζρήκαηνο είλαη: είλαη: (Γ) 10 Α, υμναςίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιοσ 0. Πνηνο από ηνπο πην θάησ αξηζκνύο είλαη ν κεγαιύηεξνο; (Α) 0 0 () 00 () ( 0) ( 0) () 0 0 () ( 0) ( 0). Σην πην θάησ ζρήκα νη επζείεο ε θαη ε είλαη

Διαβάστε περισσότερα

Ποιοηικός έλεγτος καρεκλών γραθείοσ - διαζηαζιακές μεηρήζεις ΔΗΖΓΖΣΖ : ΝΣΑΛΟ ΓΔΧΡΓΗΟ

Ποιοηικός έλεγτος καρεκλών γραθείοσ - διαζηαζιακές μεηρήζεις ΔΗΖΓΖΣΖ : ΝΣΑΛΟ ΓΔΧΡΓΗΟ Ποιοηικός έλεγτος καρεκλών γραθείοσ - διαζηαζιακές μεηρήζεις ΔΗΖΓΖΣΖ : ΝΣΑΛΟ ΓΔΧΡΓΗΟ ΖΜΔΗΟ Α Τν νκνίσκα πξέπεη λα ηνπνζεηείηαη ζηελ επηθάλεηα ηνπ θαζίζκαηνο ζπκκεηξηθά ζην ελδηάκεζν επίπεδν κε ηέηνην ηξόπν

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο

Διαβάστε περισσότερα

ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ

ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ 1.Απηόο πνπ ζα αλαγλσξηζηεί απνπζηάδεη γηα πνιύ θαηξό. 2.Δπηζηξέθεη κε πιαζηή ηαπηόηεηα ή κεηακνξθσκέλνο. 3.Απνκνλώλνληαη ηα δύν πξόζσπα 4.Άξζε κεηακόξθσζεο 5.Απνθάιπςε 6.Ακθηβνιίεο-απνδεηθηηθά

Διαβάστε περισσότερα

Ηλεκηπονικά Απσεία και Διεπαθέρ

Ηλεκηπονικά Απσεία και Διεπαθέρ MENU ΑΝΑΦΟΡΕΣ Ηλεκηπονικά Απσεία και Διεπαθέρ Σε απηό ην ζεκείν ηεο εθαξκνγήο δεκηνπξγνύκε ηα δηάθνξα Ηιεθηξνληθά Αξρεία έηζη ώζηε λα ηα ππνβάινπκε ζηνπο δηάθνξνπο θνξείο. Γηα λα επηιέμνπκε έλα είδνο αξρείνπ

Διαβάστε περισσότερα

Η. ΣΟΗΥΔΗΑ ΠΟΤ ΓΗΑΣΖΡΟΤΝΣΑΗ

Η. ΣΟΗΥΔΗΑ ΠΟΤ ΓΗΑΣΖΡΟΤΝΣΑΗ Αγαπεηέ αξρεγέ, Τν λέν ζύζηεκα ησλ playoff πνπ πηινηηθά ζα εθαξκνζηεί ζηε θεηηλή πεξίνδν 2013 14 απνηειεί κηα βειηίσζε ηνπ πθηζηάκελνπ ζπζηήκαηνο πνπ κε επηηπρία εθαξκόζηεθε ζηηο πξώηεο έμη δηνξγαλώζεηο

Διαβάστε περισσότερα

ΥΔΣΙΚΟΣΗΣΑ Μεηαζρεκαηηζκνί Γαιηιαίνπ. (Κιαζηθή ζεώξεζε) v t. αθνύ ζύκθσλα κε ηα πεηξάκαηα Mickelson-Morley είλαη c =c.

ΥΔΣΙΚΟΣΗΣΑ Μεηαζρεκαηηζκνί Γαιηιαίνπ. (Κιαζηθή ζεώξεζε) v t. αθνύ ζύκθσλα κε ηα πεηξάκαηα Mickelson-Morley είλαη c =c. ΥΔΣΙΚΟΣΗΣΑ Μεηαζρεκαηηζκνί Γαιηιαίνπ. (Κιαζηθή ζεώξεζε) y y z z t t Σν νπνίν νδεγεί ζην όηη = - π.(άηνπν), αθνύ ζύκθσλα κε ηα πεηξάκαηα Mikelson-Morley είλαη =. Δπίζεο y = y, z = z, t = t Σν νπνίν ( t

Διαβάστε περισσότερα

Διαηιμήζεις για Αιολικά Πάρκα. Κώδικες 28, 78 και 84

Διαηιμήζεις για Αιολικά Πάρκα. Κώδικες 28, 78 και 84 Διαηιμήζεις για Αιολικά Πάρκα Κώδικες 28, 78 και 84 Διαηιμήζεις για Αιολικά Πάρκα Οη Διαηιμήζεις για Αιολικά Πάρκα εθαξκόδνληαη γηα ηελ απνξξνθνύκελε ελέξγεηα από Αηνιηθά Πάξθα πνπ είλαη ζπλδεδεκέλα ζην

Διαβάστε περισσότερα

ΓΕ. Λ. ΘΡΑΚΟΜΑΚΕΔΟΝΩΝ

ΓΕ. Λ. ΘΡΑΚΟΜΑΚΕΔΟΝΩΝ ΔΙΑΝΥΣΜΑΤΑ Θεσξία Μαζεκαηηθώλ Καηεύζπλζεο Β Λπθείνπ Ιδιόηηηερ Ππόζθεζηρ Διανςζμάηων Γηα ηελ πξόζζεζε ησλ δηαλπζκάησλ ηζρύνπλ νη γλσζηέο ηδηόηεηεο ηεο πξόζζεζεο πξαγκαηηθώλ αξηζκώλ Γειαδή, αλ,, είλαη ηξία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΦΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Μάθημα: Πιθανόηηηες και Σηαηιζηική Διδάζκων: Σ. Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΦΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Μάθημα: Πιθανόηηηες και Σηαηιζηική Διδάζκων: Σ. Γ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Τρίπολη 06/07/2007 Τα θέμαηα 1-5 είναι σποτρεωηικά και έτοσν ηοσς ίδιοσς (ίζοσς) ζσνηελεζηές βαρύηηηας Το θέμα 6 δίνει επιπλέον βαθμούς με βαρύηηηα 10% για βεληίωζη ηης βαθμολογίας ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP

ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP ηότοι εργαζηηρίοσ ην πιαίζην ηνπ ζπγθεθξηκέλνπ εξγαζηεξίνπ ζα παξνπζηαζηνύλ βαζηθέο ιεηηνπξγίεο ησλ Windows XP πνπ ζρεηίδνληαη

Διαβάστε περισσότερα

Δξγαιεία Καηαζθεπέο 1 Σάμε Δ Δ.Κ.Φ.Δ. ΥΑΝΗΩΝ ΠΡΩΣΟΒΑΘΜΗΑ ΔΚΠΑΗΓΔΤΖ. ΔΝΟΣΖΣΑ 2 ε : ΤΛΗΚΑ ΩΜΑΣΑ ΔΡΓΑΛΔΗΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Ογθνκεηξηθό δνρείν

Δξγαιεία Καηαζθεπέο 1 Σάμε Δ Δ.Κ.Φ.Δ. ΥΑΝΗΩΝ ΠΡΩΣΟΒΑΘΜΗΑ ΔΚΠΑΗΓΔΤΖ. ΔΝΟΣΖΣΑ 2 ε : ΤΛΗΚΑ ΩΜΑΣΑ ΔΡΓΑΛΔΗΑ ΚΑΣΑΚΔΤΔ. Καηαζθεπή 1: Ογθνκεηξηθό δνρείν Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΗΩΝ ΠΡΩΣΟΒΑΘΜΗΑ ΔΚΠΑΗΓΔΤΖ ΔΝΟΣΖΣΑ 2 ε : ΤΛΗΚΑ ΩΜΑΣΑ ΔΡΓΑΛΔΗΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Ογθνκεηξηθό δνρείν Καηαζθεπάδνπκε έλα νγθνκεηξηθό δνρείν από πιαζηηθό κπνπθάιη λεξνύ

Διαβάστε περισσότερα

ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Αθροίσματα, Γινόμενα και Ασσμπτωτικές Εκτιμήσεις

ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Αθροίσματα, Γινόμενα και Ασσμπτωτικές Εκτιμήσεις ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ Αθροίσματα, Γινόμενα και Ασσμπτωτικές Εκτιμήσεις Ο Δηζνδεκαηίαο Σην ηειεπαηρλίδη «Ο Δηζνδεκαηίαο» ν Αξλανύηνγινπ γηα πξώηε θνξά δίλεη δύν επηινγέο: Να πάξεηο 50.000 Δπξώ θάζε ρξόλν

Διαβάστε περισσότερα

ΔΠΑΝΑΛΗΠΤΙΚΟ ΓΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΣΤΟΚΔΦΑΛΑΙΟ ΤΩΝ ΚΥΜΑΤΩΝ

ΔΠΑΝΑΛΗΠΤΙΚΟ ΓΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΣΤΟΚΔΦΑΛΑΙΟ ΤΩΝ ΚΥΜΑΤΩΝ ΔΠΑΝΑΛΗΠΤΙΚΟ ΓΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΣΤΟΚΔΦΑΛΑΙΟ ΤΩΝ ΚΥΜΑΤΩΝ ΘΔΜΑ Α Γπάτηε ζηην κόλλα ζαρ ηον απιθμό καθεμιάρ από ηιρ παπακάηυ επυηήζειρ 1-3 και δίπλα ηο γπάμμα πος ανηιζηοισεί ζηη ζυζηή απάνηηζη. Α1. Καηά

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑΣΑ ΤΝΕΥΩΝ ΤΝΑΡΣΗΕΩΝ

ΘΕΩΡΗΜΑΣΑ ΤΝΕΥΩΝ ΤΝΑΡΣΗΕΩΝ Οη ζπλερείο ζπλαξηήζεηο είλαη κία ζεκαληηθή θιάζε ηωλ πξαγκαηηθώλ ζπλαξηήζεωλ κηάο πξαγκαηηθήο κεηαβιεηήο Τα βαζηθά ζεωξήκαηα ηωλ ζπλερώλ ζπλαξηήζεωλ ζε ζπλδπαζκό κε ηε κνλνηνλία, καο βνεζνύλ λα βγάινπκε

Διαβάστε περισσότερα

ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ

ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ 61 Ον/μο:.. Β Λσκείοσ Ύλη: Ηλεκηρικό ρεύμα Το Φως Γενικής Παιδείας 22-3-2015 Θέμα 1 ο : 1. Μία ειεθηξηθή ζπζθεπή ιεηηνπξγεί γηα ρξνληθή δηάξθεηα 0,5h θαη θαηαλαιώλεη 2kWh ειεθηξηθήο

Διαβάστε περισσότερα

ΑΝΤΗΛΙΑΚΑ. Η Μηκή ζθέθηεθε έλαλ ηξόπν, γηα λα ζπγθξίλεη κεξηθά δηαθνξεηηθά αληειηαθά πξντόληα. Απηή θαη ν Νηίλνο ζπλέιεμαλ ηα αθόινπζα πιηθά:

ΑΝΤΗΛΙΑΚΑ. Η Μηκή ζθέθηεθε έλαλ ηξόπν, γηα λα ζπγθξίλεη κεξηθά δηαθνξεηηθά αληειηαθά πξντόληα. Απηή θαη ν Νηίλνο ζπλέιεμαλ ηα αθόινπζα πιηθά: ΑΝΤΗΛΙΑΚΑ Η Μηκή θαη ν Νηίλνο αλαξσηήζεθαλ πνην αληειηαθό πξντόλ παξέρεη ηελ θαιύηεξε πξνζηαζία ζην δέξκα ηνπο. Τα αληειηαθά πξντόληα έρνπλ έλα δείθηε αληειηαθήο πξνζηαζίαο (SPF), ν νπνίνο δείρλεη πόζν

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΜΕ ΑΡΧΙΚΗ ΦΑΗ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΜΕ ΑΡΧΙΚΗ ΦΑΗ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΜΕ ΑΡΧΙΚΗ ΦΑΗ Αρχική θάζε Οη ζρέζεηο x= Aεκσt π = π max ζπλσt α = - α max εκσt ηζρύνπλ, όηαλ ηε ρξνληθή ζηηγκή t=0 ην ζώκα δηέξρεηαη από ηε ζέζε ηζνξξνπίαο (x=0) θαη θηλείηαη θαηά

Διαβάστε περισσότερα

ΕΙΑΓΩΓΗ ΣΗ ΘΕΩΡΙΑ ΗΜΑΣΩΝ & ΤΣΗΜΑΣΩΝ. ΜΕΣΑΥΗΜΑΣΙΜΟ Laplace

ΕΙΑΓΩΓΗ ΣΗ ΘΕΩΡΙΑ ΗΜΑΣΩΝ & ΤΣΗΜΑΣΩΝ. ΜΕΣΑΥΗΜΑΣΙΜΟ Laplace ΕΙΑΓΩΓΗ ΣΗ ΘΕΩΡΙΑ ΗΜΑΣΩΝ & ΤΣΗΜΑΣΩΝ ΜΕΣΑΥΗΜΑΣΙΜΟ plce Αηηηαηόηεηα Με-Αηηηαηόηεηα. Επζηάζεηα. Πεξηνρή ύγθιηζεο Μεηαζρεκαηηζκνύ plce ηωλ Επζηαζώλ & Αηηηαηώλ πζηεκάηωλ. Εθζεηηθά ήκαηα. Πνιπωλπκηθά Εθζεηηθά

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ Μάθημα: ΜΑΘΗΜΑΤΙΚΑ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 9 Ημερομηνία και ώρα εξέτασης: ευτέρα, Ιουνίου 9 7: : ΤΟ ΕΞΕΤΑΣΤΙΚΟ

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης

Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Εισαγωγή στη C++ Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Αριθμοί κινητής υποδιαστολής (float) στη C++ (1)

Διαβάστε περισσότερα

Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση

Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέρξη ζηηγκήο ην κνλνπώιην έρεη ζεσξεζεί ζαλ κηα επηρείξεζε ε νπνία πσιεί ην πξντόλ ηεο ζε θάζε πειάηε ζηελ

Διαβάστε περισσότερα

ΓΗΑΓΩΛΗΠΚΑ ΠΡΝ ΚΑΘΖΚΑ ΔΞΗΙΝΓΖΠ ΑΟΣΔΠ ΝΗΘΝΛΝΚΗΘΖΠ ΘΔΩΟΗΑΠ

ΓΗΑΓΩΛΗΠΚΑ ΠΡΝ ΚΑΘΖΚΑ ΔΞΗΙΝΓΖΠ ΑΟΣΔΠ ΝΗΘΝΛΝΚΗΘΖΠ ΘΔΩΟΗΑΠ ΓΗΑΓΩΛΗΠΚΑ ΠΡΝ ΚΑΘΖΚΑ ΔΞΗΙΝΓΖΠ ΑΟΣΔΠ ΝΗΘΝΛΝΚΗΘΖΠ ΘΔΩΟΗΑΠ ΝΚΑΓΑ Α ΔΡΩΣΖΔΗ ΩΣΟΤ- ΙΑΘΟΤ 1. Γηα έλα αγαζό όηαλ ε ζηαζεξά γ είλαη ίζε κε ην κεδέλ ηόηε ε θακπύιε πξνζθνξάο δηέξρεηαη από ηελ αξρή ηωλ αμόλωλ.

Διαβάστε περισσότερα

Οργάνωση και Δομή Παρουσιάσεων

Οργάνωση και Δομή Παρουσιάσεων Οργάνωση και Δομή Παρουσιάσεων Οη παξνπζηάζεηο κε βνήζεηα ηνπ ππνινγηζηή γίλνληαη κε πξνγξάκκαηα παξνπζηάζεσλ, όπσο ην OpenOffice.org Impress [1] θαη ην Microsoft Office PowerPoint [2]. Απηά ηα πξνγξάκκαηα

Διαβάστε περισσότερα

Δξγαζηεξηαθή άζθεζε 2: Μέηξεζε ηεο επηηάρπλζεο ηεο βαξύηεηαο κε ηε κέζνδν ηνπ θπζηθνύ εθθξεκνύο Ζκεξνκελία δηεμαγσγήο: 12/5/2005

Δξγαζηεξηαθή άζθεζε 2: Μέηξεζε ηεο επηηάρπλζεο ηεο βαξύηεηαο κε ηε κέζνδν ηνπ θπζηθνύ εθθξεκνύο Ζκεξνκελία δηεμαγσγήο: 12/5/2005 Δξγαζηεξηαθή άζθεζε : Μέηξεζε ηεο επηηάρπλζεο ηεο βαξύηεηαο κε ηε κέζνδν ηνπ θπζηθνύ εθθξεκνύο Ζκεξνκελία δηεμαγσγήο: /5/005 ΕΙΑΓΩΓΗ Ζ εξγαζηεξηαθή άζθεζε πεξηιακβάλεη έλα πείξακα θαη ζθνπόο ηεο είλαη

Διαβάστε περισσότερα

1 Είζοδορ ζηο Σύζηημα ΣΔΕΔ ή BPMS

1 Είζοδορ ζηο Σύζηημα ΣΔΕΔ ή BPMS ΟΤΑ Επισειπηζιακή Νοημοζύνη: Οδεγίεο πξνο ηνπο εθπαηδεπόκελνπο γηα ηε ζύλδεζε κε ην ύζηεκα Γηαρείξηζεο Δπηρεηξεζηαθώλ Γηαδηθαζηώλ γηα ηελ εθηέιεζε ηωλ Πξαθηηθώλ Αζθήζεωλ ηωλ ππν(δλνηήηωλ) Bc1.1.4, Bc1.1.5,

Διαβάστε περισσότερα

TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΠΡΟΑΡΜΟΓΗ: ΒΑΛΚΑΝΙΩΣΗ ΔΗΜ. ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 TOOLBOOK ΜΑΘΗΜΑ 2

TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΠΡΟΑΡΜΟΓΗ: ΒΑΛΚΑΝΙΩΣΗ ΔΗΜ. ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 TOOLBOOK ΜΑΘΗΜΑ 2 TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 Δημιουργία σελίδων και βιβλίων Έλα θαηλνύξην βηβιίν πεξηέρεη κία άδεηα ζειίδα κε έλα άδεην background. Δελ κπνξνύκε λα μερσξίζνπκε

Διαβάστε περισσότερα

6 η Εργαζηηριακή Άζκηζη Επαλήθεσζη Λειηοσργίας Βαζικών Φλιπ-Φλοπ

6 η Εργαζηηριακή Άζκηζη Επαλήθεσζη Λειηοσργίας Βαζικών Φλιπ-Φλοπ 6 η Εργαζηηριακή Άζκηζη Επαλήθεσζη Λειηοσργίας Βαζικών Φλιπ-Φλοπ Σηα πιαίζηα ηεο έθηεο εξγαζηεξηαθήο άζθεζεο ζα ρξεζηκνπνηεζεί απνθιεηζηηθά ην πεξηβάιινλ αλάπηπμεο νινθιεξσκέλσλ θπθισκάησλ IDL-800 Digital

Διαβάστε περισσότερα

B-Δέλδξα. Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν.

B-Δέλδξα. Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν. B-Δέλδξα Τα B-δέλδξα ρξεζηκνπνηνύληαη γηα ηε αλαπαξάζηαζε πνιύ κεγάισλ ιεμηθώλ πνπ είλαη απνζεθεπκέλα ζην δίζθν. Δέλδξα AVL n = 2 30 = 10 9 (πεξίπνπ). 30

Διαβάστε περισσότερα

Λεκηική έκθραζη, κριηική, οικειόηηηα και ηύπος δεζμού ζηις ζηενές διαπροζωπικές ζτέζεις

Λεκηική έκθραζη, κριηική, οικειόηηηα και ηύπος δεζμού ζηις ζηενές διαπροζωπικές ζτέζεις Λεκηική έκθραζη, κριηική, οικειόηηηα και ηύπος δεζμού ζηις ζηενές διαπροζωπικές ζτέζεις Μαξία-Ησάλλα Αξγπξνπνύινπ Βαζίιεο Παπιόπνπινο Τνκέαο Ψπρνινγίαο, Παλεπηζηήκην Αζελώλ Αλαθνίλσζε ζην 5 ν Παλειιήλην

Διαβάστε περισσότερα

γηα ηνλ Άξε Κσλζηαληηλίδε

γηα ηνλ Άξε Κσλζηαληηλίδε γηα ηνλ Άξε Κσλζηαληηλίδε γηα «ην θνηλό θαη ην θύξην» (Γ.νισκόο) γηα λα ρηίδω πάληα κε ηνλ ίδηνλε ηξόπν, κε ηηο ίδηεο θαηαζθεπαζηηθέο θαη πιαζηηθέο πξννπηηθέο, κε ηελ ίδηαλε πάληνηε πίζηε θαη αγάπε.. Α.Κ.

Διαβάστε περισσότερα

Η ΒΙΟΓΡΑΦΙΑ ΣΟΤ ΘΑΛΗ

Η ΒΙΟΓΡΑΦΙΑ ΣΟΤ ΘΑΛΗ Η ΒΙΟΓΡΑΦΙΑ ΣΟΤ ΘΑΛΗ Ο Θαιήο ν Μηιήζηνο, ν νπνίνο γελλήζεθε από αξηζηνθξαηηθή νηθνγέλεηα ην 624π.Υ θαη πέζαλε ην 543π.Υ, ήηαλ αξραίνο Έιιελαο, έλαο από ηνπο 7 ζνθνύο ηεο αξραηόηεηαο θαη ζεσξείηαη παηέξαο

Διαβάστε περισσότερα

Η επιζκόπηζη ηης έμμιζθης ενηολής ζηην Αλλοδαπή. Καηεξίλα Γαιαλνπνύινπ, Intellectual Property Manager, Microsoft Ειιάο Α.Ε.

Η επιζκόπηζη ηης έμμιζθης ενηολής ζηην Αλλοδαπή. Καηεξίλα Γαιαλνπνύινπ, Intellectual Property Manager, Microsoft Ειιάο Α.Ε. Η επιζκόπηζη ηης έμμιζθης ενηολής ζηην Αλλοδαπή Καηεξίλα Γαιαλνπνύινπ, Intellectual Property Manager, Microsoft Ειιάο Α.Ε. Παξάκεηξνη πξνο αμηνιόγεζε Ννκνζεηηθή ζσξάθηζε Κνηλόο Σύιινγνο Ακνηβή Καηαγγειία/Λύζε

Διαβάστε περισσότερα

Αντί προλόγου. Να παρουσιάσει στους μαθητές την θεωρία κάθε μαθήματος χωρίς να χάνουν χρόνο αντιγράφοντας από τον πίνακα σε κάθε παράδοση.

Αντί προλόγου. Να παρουσιάσει στους μαθητές την θεωρία κάθε μαθήματος χωρίς να χάνουν χρόνο αντιγράφοντας από τον πίνακα σε κάθε παράδοση. Αντί προλόγου Σν βηβιηνηεηξάδην ησλ Μαζεκαηηθώλ απεπζύλεηαη ζηνπο καζεηέο ησλ «Δθπαηδεπηεξίσλ Καίζαξε» θαη ρξεζηκνπνηείηαη απνθιεηζηηθά κέζα ζηελ ζρνιηθή αίζνπζα. θνπνί ηεο ζπγγξαθήο ηνπ είλαη: Να παρουσιάσει

Διαβάστε περισσότερα

Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ

Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ Αιγόξηζκνη 2.2.7.4 Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Υ 1 Άζθεζε 34 ζει 53 Έλα ςεθηαθό θσηνγξαθηθό άικπνπκ έρεη απνζεθεπηηθό ρώξν N Mbytes. Να αλαπηύμεηε

Διαβάστε περισσότερα

Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ _ Ι ε ο α μ ε ι κ ό π

Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ _ Ι ε ο α μ ε ι κ ό π Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ _ Ι ε ο α μ ε ι κ ό π Α ο υ ι ς ε κ ς ξ μ ι κ ή ρ ύ μ θ ε ρ η 6 Τ ξ μ έ α π ΘΘΘ, X ώ ο ξ π κ α ι Δ π ι κ ξ ι μ χ μ ί α Η έ μ α : Διδάρκξμςεπ: Τξ εύοξπ ςξσ ξοίξσ Ιεοαμεικόπ

Διαβάστε περισσότερα

A. Αιιάδνληαο ηε θνξά ηνπ ξεύκαηνο πνπ δηαξξέεη ηνλ αγωγό.

A. Αιιάδνληαο ηε θνξά ηνπ ξεύκαηνο πνπ δηαξξέεη ηνλ αγωγό. ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ ΚΑΙ ΠΟΛΙΣΙΜΟΤ ΛΔΤΚΩΙΑ ΦΤΛΛΟ ΔΡΓΑΙΑ Μειέηε ηωλ παξαγόληωλ από ηνπο νπνίνπο εμαξηάηαη ε ειεθηξνκαγλεηηθή δύλακε. Τιηθά - πζθεπέο: Ηιεθηξνληθή δπγαξηά, ηξνθνδνηηθό ηάζεο, ξννζηάηεο, ακπεξόκεηξν,

Διαβάστε περισσότερα

ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ Α ΛΤΚΕΙΟΤ

ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ Α ΛΤΚΕΙΟΤ ΜΑΘΗΜΑ : ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ Α ΛΤΚΕΙΟΤ Α/Α : 0_1382/153 1. Καη όηαλ έγηλε ε ππνρώξεζε αξγά ην απόγεπκα, επεηδή θνβήζεθαλ νη νιηγαξρηθνί κήπσο νη δεκνθξαηηθνί, αθνύ θάλνπλ επίζεζε, θαηαιάβνπλ

Διαβάστε περισσότερα