ζρήκα 1 β τπόπορ (από σύγκπιση τπιγώνων):

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ζρήκα 1 β τπόπορ (από σύγκπιση τπιγώνων):"

Transcript

1 o Λύκειο Εακύνθος Γεσκεηξία Α Λπθείνπ Κεθάιαην 3ν Άζθεζε Α Γίλεηαη νξζνγώλην ηξίγσλν ΑΒΓ 90 0 θαη ΓΓ δηρνηόκνο ηεο γσλίαο. Να δείμεηε όηη:. Τν ζεκείν Γ απέρεη ηελ ίδηα απόζηαζε από ηηο πιεπξέο ΑΓ θαη ΒΓ. 2. ΑΓ < ΓΒ 3. Γελ ππάξρεη εζσηεξηθό ζεκείν ηεο ΓΓ πνπ λα ηζαπέρεη από ηα ζεκεία Α, Β. Απόδεημε (Καηαζθεπή άζθεζεο: Μάθεο Χαηδόπνπινο). α τπόπορ (από θεωπία): Γλσξίδνπκε όηι κάθε ζημείο ηηρ δισοηόμος ιζαπέσει από ηιρ πλεςπέρ ηηρ, άπα ηο ζημείο Γ ηζαπέρεη από ηιρ πλεςπέρ ηηρ γωνίαρ, δηλαδή από ηιρ ΑΓ και ΒΓ. Οπόηε ΑΓ = ΓΔ όπωρ θαίνεηαι και ζηο ζρήκα. ζρήκα β τπόπορ (από σύγκπιση τπιγώνων): Φέπνοςμε ηο ύςνο ΓΔ ζηην πλεςπά ΒΓ και παπαηηπούμε όηι ηα ηπίγωνα, είναι ίζα, αθού: Οξζνγώληα ζηα Α, Δ ΓΓ =ΓΓ κοινή πλεςπά (αθού ΓΓ δισοηόμορ) 2 άπα ΑΓ = ΓΔ, δηλαδή ηο ζημείο Γ ιζαπέσει από ηιρ πλεςπέρ ΑΓ και ΒΓ. 2. Θέλοςμε να δείξοςμε όηι: ΑΓ < ΓΒ, Όμωρ ΑΓ = ΓΔ άπα αξθεί λα απνδείμνπκε όηι ΓΔ < ΓΒ, πος αςηό είναι πποθανέρ από ηο οπθογώνιο ηπίγωνο ΓΔΒ, η ΓΒ είναι ππνηείλνπζα άπα είναι κεγαιύηεξε από ηην κάθεηη πιεπξά ΓΔ.

2 o Λύκειο Εακύνθος 3. α τπόπορ (απαγωγή σε άτοπο + εξωτεπικέρ γωνίερ ): Έζησ όηη ππάξρεη εζσηεξηθό ζεκείν Μ ηεο ΓΓ ηέηοιο ώζηε να ιζαπέσει από ηα ζημεία Α, Β, ηόηε ηο Μ ανήκει ζηην μεζοκάθεηο ηος ΒΓ. Άπα ΜΚ μεζοκάθεηορ ηος ΒΓ, δηλαδή Όμωρ ηο Κ ζε πνηα ζέζε βξίζθεηαη ζηελ πιεπξά ΒΓ; Απιζηεπά ηος Γ; Γεξιά ηος Γ ή ηαςηίζεηαι με ηο Γ; Έσοςμε αποδείξει από ηο 2ο επώηημα όηι ΑΓ < ΓΒ, νπόηε ην κέζν Μ ηεο ΒΓ ζα βξίζθεηαη δεμηά ηνπ Γ, για να έσοςμε ΑΜ = ΜΒ. Άπα πποκύπηει ηο επόμενο ζσήμα 2, Τόηε, () ωρ η εμσηεξηθή γσλία ηνπ ηξηγώλνπ ΜΓΚ. Δπίζηρ, (2) ωρ η εμσηεξηθή γσλία ηνπ ηξηγώλνπ ΓΓΒ. Οπόηε από ηιρ ζσέζειρ () και (2) έσοςμε: άηνπν Άπα δεν ςπάπσει εζωηεπικό ζημείο ηος ΓΓ πος να ιζαπέσει ζρήκα 2 από ηα ζημεία Α, Β. β τπόπορ (απαγωγή σε άτοπο + σύγκπιση τπιγώνων ): Έζηω εζωηεπικό ζημείο Μ ηηρ ΓΓ πος ιζαπέσει από ηα Α, Β, δηλαδή, ΜΑ = ΜΒ. Φέπνοςμε ηα ύςε ΜΛ θαη ΜΡ ζηιρ πλεςπέρ ΑΓ και ΒΓ ανηίζηοισα, όπωρ θαίνεηαι ζηο παπακάηω ζσήμα 3. Τα ηπίγωνα ΜΑΛ θαη ΜΡΒ είλαη ίζα, γιαηί: Οξζνγώληα ζηα Λ, Ρ ΜΛ = ΜΡ, αθού ηο Μ ανήκει ζηην δισοηόμο ηηρ ΓΓ, άπα ιζαπέσει από ηιρ πλεςπέρ ηηρ ΜΑ = ΜΒ, αθού ηο Μ ιζαπέσει από ηα Α, Β ζρήκα 3 οπόηε: 2 2(3)

3 o Λύκειο Εακύνθος Δπίζηρ, ηο ηπίγωνο ΜΑΒ είλαη ηζνζθειέο, αθού ΜΑ =ΜΒ, οπόηε, (4) 0 Από (3) + (4) παίπνοςμε: 90 άηνπν (αθού ζ ένα ηπίγωνο 2 2 έσοςμε ηο πολύ μια οπθή γωνία ηην Α) Άπα δελ ππάξρεη εζσηεξηθό ζημείο ηος ΓΓ πος να ηζαπέρεη από ηα ζημεία Α, Β. γ τπόπορ (απαγωγή σε άτοπο + σύγκπιση τπιγώνων ): Θα δείξοςμε όηι για κάθε εζωηεπικό ζημείο Μ ηηρ δισοηόμος ΓΓ, ιζσύει: ΜΑ < ΜΒ. Σηην πλεςπά ΓΒ παίπνοςμε ένα ζημείο Δ με ΓΔ = ΓΑ, ηόηε ηα ηπίγωνα ΓΑΜ, ΓΜΔ είναι ίζα γιαηί, ΓΑ = ΓΔ (από καηαζκεςή) ΓΜ = ΓΜ (κοινή πλεςπά) 2 (ΓΓ δισοηόμορ) άπα 2 και ΜΑ = ΜΔ. Άπα έσοςμε διαδοσικά, 2 (γιαηί η είναι εξωηεπική γωνία ηος ηπιγώνος ΓΜΔ, η είναι εξωηεπική γωνία ηος ηπιγώνος ΑΜΓ και η είναι εξωηεπική γωνία ηος ηπιγώνος ΓΒΓ) ζςνεπώρ,, επομένωρ ζηο ηπίγωνο ΒΔΜ έσοςμε, ΜΒ > ΜΔ και επειδή ΜΔ = ΜΑ, έπεηαι: ΜΒ > ΜΑ, άπα δεν ςπάπσει εζωηεπικό ζημείο ηηρ ΓΓ έηζι ώζηε ΜΑ = ΜΒ.

4 o Λύκειο Εακύνθος Άρκηρη 2η Α Λσκείξσ Γεωμεςοία Έρςω Ρ έμα ενωςεοικό ρημείξ ςξσ κύκλξσ (Ο, ο). Φέομξσμε από ςξ Ρ δύξ εσθείεπ ςέμμξσρεπ ςξσ κύκλξσ ΡΒΑ και ΡΔΓ, έςρι ώρςε: ΑΒ = ΓΔ. Α. Να δείνεςε όςι:. ΡΒ = ΡΔ και ΡΑ = ΡΓ 2. ΡΔ < ΡΟ 3. Ζ ΡΟ διυξςξμεί ςα ςόνα, Β. Αμ ΡΔ, ΡΕ είμαι ςα εταπςόμεμα ςμήμαςα ςξσ κύκλξσ, όπωπ ταίμεςαι ρςξ ρυήμα, ςόςε μα δείνεςε όςι:. Οι υξοδέπ ΒΔ, ΔΕ και ΑΓ έυξσμ κξιμή μερξκάθεςξ 2. Οι γωμίεπ, έυξσμ κξιμή διυξςόμξ 3. ΓΕ = ΑΔ 4. Τα Δ, Ε δεμ είμαι ςα μέρα ςωμ ςόνωμ, αμςίρςξιυα. ( Καςαρκεσή άρκηρηπ Μάκηπ Χαςζόπξσλξπ ) Απάμςηρη Βοηθητικές ευθείες: Φέομξσμε ςα απξρςήμαςα ΟΚ και ΟΛ ρςιπ ίρεπ υξοδέπ ΑΒ και ΓΔ αμςίρςξιυα. Α. ) Τα ξοθξγώμια ςοίγωμα ΡΟΚ και ΡΟΛ είμαι ίρα γιαςί: ΡΟ =ΡΟ (κξιμή πλεσοά) ΟΚ = ΟΛ (ίρα απξρςήμαςα ατξύ και ξι υξοδέπ είμαι ίρεπ) Άοα, ΡΚ = ΡΛ (λόγω ρύγκοιρηπ ςοιγώμωμ) επίρηπ ΚΒ = ΛΔ με αταίοερη καςά μέλη παίομξσμε: ΡΒ = ΡΔ Όμξια, ΡΚ = ΡΛ και ΚΑ = ΛΓ με άθοξιρμα καςά μέλη παίομξσμε: ΡΑ = ΡΓ 2) Τξ ςοίγωμξ ΡΔΟ είμαι ξοθξγώμιξ ρςξ Δ, ατξύ ΟΔ ακςίμα και ΡΔ εταπςξμέμη ςξσ κύκλξσ. Οπόςε η ΡΟ είμαι σπξςείμξσρα και η ΡΔ είμαι κάθεςη πλεσοά, άοα, ΡΔ <ΡΟ 3) Τα ςοίγωμα ΡΟΒ και ΡΟΔ είμαι ίρα, γιαςί: ΡΒ = ΡΔ (από ςξ Α εοώςημα) ΡΟ = ΡΟ (κξιμή πλεσοά) ΟΒ =ΟΔ (ωπ ακςίμεπ)

5 o Λύκειο Εακύνθος άοα ξι επίκεμςοεπ γωμίεπ, είμαι ίρεπ, ξπόςε και ςα ςόνα πξσ βαίμξσμ είμαι ίρα, επξμέμωπ ςξ Τ είμαι ςξ μέρξ ςξσ ςόνξσ δηλαδή η ΡΟ διυξςξμεί ςξ ςόνξ Όμξια για ςξ ςόνξ, ςα ςοίγωμα ΡΑΠ και ΡΓΠ είμαι ίρα, ατξύ: ΡΑ = ΡΓ ΡΠ =ΡΠ (από ςημ ρύγκοιρη ςωμ ςοιγώμωμ ΡΟΒ, ΡΟΔ) άοα ΑΠ = ΠΓ, ξπόςε ξι υξοδέπ είμαι ίρεπ, ξπόςε και ςα ςόνα ίρα, δηλ. επξμέμωπ η ΡΟ διυξςξμεί και ςξ ςόνξ Β. ) Τξ Ρ ιραπέυει από ςα Β, Δ (από ςημ ποξηγξύμεμη ρύγκοιρη ςοιγώμωμ ΡΟΒ, ΡΟΔ) και ςξ Ο ιραπέυει από ςα Β, Δ (ωπ ρημεία ςξσ κύκλξσ) άοα η ΡΟ είμαι μερξκάθεςξπ ςηπ ΒΔ. Δπίρηπ ςξ Ρ ιραπέυει από ςα Δ, Ε (ωπ εταπςόμεμα ςμήμαςα) και ςξ Ο ιραπέυει από ςα Δ, Ε (ωπ ρημεία ςξσ κύκλξσ) άοα η ΡΟ είμαι μερξκάθεςξπ ςξσ ΔΕ. Τέλξπ, ςξ Ρ ιραπέυει από ςα Α, Γ (εοώςημα Α) και ςξ Ο ιραπέυει από ςα Α, Γ (ωπ ρημεία ςξσ κύκλξσ) άοα η ΡΟ είμαι μερξκάθεςξπ ςξσ ΑΓ. Οπόςε η ΡΟ είμαι κξιμή μερξκάθεςξπ ςωμ υξοδώμ ΒΔ, ΔΕ και ΑΓ 2) Ζ ΡΟ είμαι διυξςόμξπ ςηπ γωμίαπ,ατξύ η διακεμςοική εσθεία διυξςξμεί ςημ γωμία ςωμ εταπςξμέμωμ ςμημάςωμ. Δπίρηπ, η ΡΟ είμαι διυξςόμξπ ςηπ γωμίαπ από ςημ ρύγκοιρη ςωμ ςοιγώμωμ ΡΟΒ, ΡΟΔ από ςξ εοώςημα Α. Άοα η ΡΟ είμαι η κξιμή διυξςόμξπ ςωμ γωμιώμ, 3) Σσγκοίμξσμε ςα ςοίγωμα ΡΓΕ και ΡΑΔ, ΡΓ = ΡΑ (από ςξ εοώςημα Α) ΡΕ =ΡΔ (ωπ εταπςόμεμα ςμήμαςα) (ωπ διατξοά ςωμ ίρωμ γωμιώμ με ) άοα ςα ςοίγωμα είμαι ίρα από Π Γ Π, ξπόςε ΓΕ = ΑΔ.

6 o Λύκειο Εακύνθος 4) Έρςω όςι ςξ Ε είμαι μέρξ ςξσ ςόνξσ ΓΔ, ςόςε ςα ςόνα και είμαι ίρα, άοα και ξι υξοδέπ θα είμαι ίρεπ, ξπόςε ςξ Ε ιραπέυει από ςα Γ, Δ. Δπίρηπ ςξ Ο ιραπέυει από ςα Γ, Δ (ωπ ρημεία ςξσ κύκλξσ) άοα η ΟΕ είμαι μερξκάθεςξπ ςηπ υξοδήπ ΓΔ, άςξπξ ατξύ ςόςε η ΟΕ είμαι κάθεςη ρςημ ΓΔ (ακςίμα και εταπςξμέμη) και ρςημ ΡΕ (ωπ μερξκάθεςξπ όπωπ απξδείναμε), δηλαδή από ςξ Ρ διέουξμςαι δύξ εσθείεπ κάθεςεπ ρςημ ΟΕ, άςξπξ. Άοα ςξ Ε δεμ είμαι μέρξ ςξσ ςόνξσ ΓΔ. Όμξια απξδεικμύεςαι όςι και ςξ Δ δεμ είμαι μέρξ ςξσ ςόνξσ. Δπηκέιεηα άζθεζεο: Χαηζόποςλορ Μάκηρ ο Λύκειο Εακύνθος

12. Ηζσύει : 0 θ,όπος θ η γυνία δςο μη μηδενικών διανςζμάηυν.

12. Ηζσύει : 0 θ,όπος θ η γυνία δςο μη μηδενικών διανςζμάηυν. Α ΔΡΩΣΖΔΗ ΚΛΔΗΣΟΤ ΣΤΠΟΤ 1 Ηζσύει : 0 ι κάθε διάνςζμ Ηζσύει : ΑΒ = ΧΒ - ΧΑ 3 Ηζσύει : ΑΒ - BΑ 0,ι διθοπεηικά ζημεί Α,Β 4 Ηζσύει : ΑΒ 0, ι διθοπεηικά ζημεί Α,Β,Γ,Γ 5 Ηζσύει : 6 Ηζσύει : // 7 Ηζσύει : λ λ

Διαβάστε περισσότερα

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ ΒΑΓΓΔΛΗ ΦΤΥΑ 2009 ελίδα 2 από 9 ΔΤΘΔΙΔ SIMSON 1 ΒΑΙΚΔ ΠΡΟΣΑΔΙ 1.1 ΔΤΘΔΙΑ SIMSON Γίλεηαη ηξίγσλν AB θαη ηπρόλ ζεκείν ηνπ πεξηγεγξακκέλνπ θύθινπ ηνπ. Αλ 1, 1 θαη 1 είλαη νη πξνβνιέο ηνπ ζηηο επζείεο πνπ

Διαβάστε περισσότερα

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ ΒΑΓΓΔΛΗ ΦΤΥΑ 0 ΒΑΙΚΟΙ ΟΡΙΜΟΙ ΟΜΟΙΟΘΔΣΟ ΗΜΔΙΟΤ Ολνκάδνπκε ομοιοθεζία με κένηπο ηο ζημείο και λόγο ην γεωκεηξηθό κεηαζρεκαηηζκό κε ηνλ νπνίν ζε θάζε ζεκείν ηνπ επηπέδνπ αληηζηνηρνύκε έλα θαη κόλν ζεκείν

Διαβάστε περισσότερα

ΔΙΑΒΗΣΗ -ΠΑΙΔΙ ΚΑΙ ΔΙΑΣΡΟΦΗ

ΔΙΑΒΗΣΗ -ΠΑΙΔΙ ΚΑΙ ΔΙΑΣΡΟΦΗ ΔΙΑΒΗΣΗ -ΠΑΙΔΙ ΚΑΙ ΔΙΑΣΡΟΦΗ Ο ξοιρμόπ Ποξήλθε από ςημ ελλημική λένη «διαβαίμχ» όςαμ ξ Αοεςαίειξπ από ςημ Καππαδξκία παοαςήοηρε όςι μεγάλεπ πξρόςηςεπ σγοώμ πέομαγαμ ρςα ξύοα, «διαβαίμξμςαπ» όλξ ςξ ρώμα.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠ.ΔΒΜ ΚΑΙ ΘΡΗ. ΠΕΡ/ΚΗ Δ/ΝΣΗ Π & Δ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Ν. ΛΕΣΒΟΥ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠ.ΔΒΜ ΚΑΙ ΘΡΗ. ΠΕΡ/ΚΗ Δ/ΝΣΗ Π & Δ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Ν. ΛΕΣΒΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠ.ΔΒΜ ΚΑΙ ΘΡΗ. ΠΕΡ/ΚΗ Δ/ΝΣΗ Π & Δ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Ν. ΛΕΣΒΟΥ 4 ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 01 ΜΑΘΗΜΑ : ΓΕΩΜΕΤΡΙΑ

Διαβάστε περισσότερα

Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ _ Ι ε ο α μ ε ι κ ό π

Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ _ Ι ε ο α μ ε ι κ ό π Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ _ Ι ε ο α μ ε ι κ ό π Α ο υ ι ς ε κ ς ξ μ ι κ ή ρ ύ μ θ ε ρ η 6 Τ ξ μ έ α π ΘΘΘ, X ώ ο ξ π κ α ι Δ π ι κ ξ ι μ χ μ ί α Η έ μ α : Διδάρκξμςεπ: Τξ εύοξπ ςξσ ξοίξσ Ιεοαμεικόπ

Διαβάστε περισσότερα

όπου R η ακηίνα ηου περιγεγραμμένου κύκλου ηου ηριγώνου.

όπου R η ακηίνα ηου περιγεγραμμένου κύκλου ηου ηριγώνου. ΕΩΜΕΤΡΙ ΛΥΚΕΙΟΥ - ΕΜΔ ΝΩΣΕΙΣ ΘΕΩΡΙΣ Ι ΤΗΝ ΛΥΣΗ ΣΚΗΣΕΩΝ ΕΜΔ Πρόηζε Ίζ πολυγωνικά χωρί έχουν ίζ εμβδά Το νηίζηροθο δεν ιζχύει ηλδή δύο ιζοεμβδικά χωρί δεν είνι κηά νάγκη ίζ Εκβδόλ ηεηργώλοσ πιεσράς Εκβδόλ

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

ATTRACT MORE CLIENTS ΒΕ REMARKABLE ENJOY YOUR BUSINESS ΣΕΛ. 1

ATTRACT MORE CLIENTS ΒΕ REMARKABLE ENJOY YOUR BUSINESS ΣΕΛ. 1 ATTRACT MORE CLIENTS ΒΕ REMARKABLE ENJOY YOUR BUSINESS ΣΕΛ. 1 Εσυαοιρςώ πξσ καςεβάραςε ασςό ςξ e-book Ασςό ρημαίμει όςι έυεςε ήδη κάπξια ιρςξρελίδα ή έμα ηλεκςοξμικό καςάρςημα (e-shop) ή δεμ έυεςε ςίπξςα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (39) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΕΦ Τ ΣΗΜΑΣΑ ΑΡΙΘΜΗ Η ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ 425 = 4 εκατοντϊδεσ 2 δεκϊδεσ 5 μονϊδεσ 4 * 2* 5* 4 * 2* 5* 4 *2 2* 5* 94257 = 9* 4* 2* 5* 7* * 9*5 4*4 5*2 7* * 2*3 Για τον προηγούμενο αριθμό Θϋτοντασ β= (η βϊςη

Διαβάστε περισσότερα

ΜΟΥΣΙΚΗ ΣΕ ΠΡΩΤΗ ΒΑΘΜΙΔΑ. Παρουσιάσεις εκπαιδευτικού υλικού και διδακτικής μεθοδολογίας 1-2

ΜΟΥΣΙΚΗ ΣΕ ΠΡΩΤΗ ΒΑΘΜΙΔΑ. Παρουσιάσεις εκπαιδευτικού υλικού και διδακτικής μεθοδολογίας 1-2 1-2 09 ΗΛΕΚΤΡΟΝΙΚΗ ΠΕΡΙΟΔΙΚΗ ΕΚΔΟΣΗ ΕΝΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΜΟΥΣΙΚΗΣ ΑΓΩΓΗΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ http://mspv.primarymusic.gr/mspv/ 7 ο & 8 ο ΤΕΥΧΟΣ Παρουσιάσεις εκπαιδευτικού υλικού και διδακτικής μεθοδολογίας

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και το 3.2 Ασκήσεις: 1-8 Θεωρία ως και το 3.4 Ασκήσεις: 9-13 Θεωρία ως και το 3.7 Ασκήσεις: 14-29

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:

Διαβάστε περισσότερα

ΓΔΧΜΔΣΡΗΑ ΓΗΑ ΟΛΤΜΠΗΑΓΔ

ΓΔΧΜΔΣΡΗΑ ΓΗΑ ΟΛΤΜΠΗΑΓΔ ΒΑΓΓΔΛΖ ΦΤΥΑ 011 1 ΒΑΗΚΟΗ ΟΡΗΜΟΗ 11 ΓΤΝΑΜΖ ΖΜΔΗΟΤ Έζησ P ηπρόλ ζεκείν ηνπ επηπέδνπ θύθινπ C (O,R ) (πνπ βξίζθεηαη εθηόο ηνπ θπθιηθνύ δίζθνπ C (O,R ) ) θαη PT ε εθαπηνκέλε από ην P (T ην ζεκείν επαθήο )

Διαβάστε περισσότερα

x -1 -3-4-2 0 2 4 6 8 Θέση φορτίων σε m

x -1 -3-4-2 0 2 4 6 8 Θέση φορτίων σε m 1473 Δύο ακίνητα σημειακά ηλεκτρικά φορτία q 1 = - μ και q = + 3 μ, βρίσκονται αντίστοιχα στις θέσεις x 1 = - 3 m και x = + 6 m ενός άξονα x x, όπως φαίνεται στο παρακάτω σχήμα. 3 1 0 x -1 - - +3 Ο x -3-4

Διαβάστε περισσότερα

Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1.

Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1. ΘΕΜΑ. Γηα ηελ ζπλάξηεζε f : IR IR ηζρύεη + f() f(- ) = γηα θάζε IR. Να δείμεηε όηη f() =, ΙR. Να βξείηε ηελ εθαπηόκελε (ε) ηεο C f πνπ δηέξρεηαη από ην ζεκείν (-,-) 3. Να βξείηε ην εκβαδόλ Δ(α) ηνπ ρωξίνπ

Διαβάστε περισσότερα

Διδακτική τωμ Μαθηματικώμ (Β Φάση ΔΙ.ΜΔ.Π.Α)

Διδακτική τωμ Μαθηματικώμ (Β Φάση ΔΙ.ΜΔ.Π.Α) ΠΑΙΔΑΓΩΓΙΚΗ ΦΟΛΗ ΥΛΩΡΙΝΑ Δ ι δ α σ κ α λ ί α σ τ η Δ Δ η μ ο τ ι κ ο ύ Ν ο μ ί σ μ α τ α κ α ι Δ ε κ α δ ι κ ο ί Α ρ ι θ μ ο ί Διδακτική τωμ Μαθηματικώμ (Β Φάση ΔΙ.ΜΔ.Π.Α) Επ ιιμέλε ιια Εργασ ίίας Καοαμαμίδξσ

Διαβάστε περισσότερα

Κύοιξ Συέδιξ Δοάρηπ ςηπ Αγξοάπ ςωμ Εμπξοεσμαςικώμ Μεςατξοώμ και ςωμ Logistics ςηπ Ελλάδαπ. Σωςήοηπ Σ. Τοιυάπ

Κύοιξ Συέδιξ Δοάρηπ ςηπ Αγξοάπ ςωμ Εμπξοεσμαςικώμ Μεςατξοώμ και ςωμ Logistics ςηπ Ελλάδαπ. Σωςήοηπ Σ. Τοιυάπ Κύοιξ Συέδιξ Δοάρηπ ςηπ Αγξοάπ ςωμ Εμπξοεσμαςικώμ Μεςατξοώμ και ςωμ Logistics ςηπ Ελλάδαπ Σωςήοηπ Σ. Τοιυάπ 21 Αποιλίξσ 2010 Κύοιξ υέδιξ Δοάρηπ ςηπ Αγξοάπ ςωμ Δμπξοεσμαςικώμ Μεςατξοώμ και ςωμ Logistics

Διαβάστε περισσότερα

( ) ( ) ( ) ( )( ) ( )( ) ( ) ν περνά από σταθερό σημείο. ν περνά από το σταθερό μέσο του επίσης σταθερού ΚΛ. Το διανυσματικό άθροισμα f Μ γράφεται:

( ) ( ) ( ) ( )( ) ( )( ) ( ) ν περνά από σταθερό σημείο. ν περνά από το σταθερό μέσο του επίσης σταθερού ΚΛ. Το διανυσματικό άθροισμα f Μ γράφεται: Το διανυσματικό άθροισμα f Μ γράφεται: f Μ = x ΜΑ+ x ΜΑ+ΑΒ + x ΜΑ+ΑΓ = ΜΑ + ΜΑ + ΜΑ + ΑΒ + ΑΓ ( x) ( x) ( x ) ( x) ( x ) = ( x + x + x ) ΜΑ + ( x) ΑΒ + ( x ) ΑΓ = ( x 4x+ ) ΜΑ+ ( x) ΑΒ+ ( x ) Α Γ f Μ είναι

Διαβάστε περισσότερα

ΣΥΠΥΔΑ. ΣΥζηημα διασείπιζηρ ΠΥπκαγιών ζε ΔΑζη κωνοθόπων. www. sypyda.gr

ΣΥΠΥΔΑ. ΣΥζηημα διασείπιζηρ ΠΥπκαγιών ζε ΔΑζη κωνοθόπων. www. sypyda.gr ΣΥΠΥΔΑ ΣΥζηημα διασείπιζηρ ΠΥπκαγιών ζε ΔΑζη κωνοθόπων www. sypyda.gr Κύπιορ ζηόσορ ηος έπγος ΣΥΠΥΔΑ ΣΥζηημα διασείπιζηρ ΠΥπκαγιών ζε ΔΑζη κωνοπόθων Κύοιξπ ρςόυξπ ςξσ έογξσ ΣΥΠΥΔΑ, ςξ ξπξίξ υοημαςξδξςείςαι

Διαβάστε περισσότερα

1 Είζοδορ ζηο Σύζηημα ΣΔΕΔ ή BPMS

1 Είζοδορ ζηο Σύζηημα ΣΔΕΔ ή BPMS ΟΤΑ Επισειπηζιακή Νοημοζύνη: Οδεγίεο πξνο ηνπο εθπαηδεπόκελνπο γηα ηε ζύλδεζε κε ην ύζηεκα Γηαρείξηζεο Δπηρεηξεζηαθώλ Γηαδηθαζηώλ γηα ηελ εθηέιεζε ηωλ Πξαθηηθώλ Αζθήζεωλ ηωλ ππν(δλνηήηωλ) Bc1.1.4, Bc1.1.5,

Διαβάστε περισσότερα

Πλξήγηρη ρςξ διαδίκςσξ

Πλξήγηρη ρςξ διαδίκςσξ σρςήμξσμε Θεςική ποξρτξοά ςξσ διαδικςύξσ Θεςική ποξρτξοά ςξσ διαδικςύξσ γμώρη εκπαίδεσρη πληοξτξοίεπ Θεςική ποξρτξοά ςξσ διαδικςύξσ επικξιμχμία Θεςική ποξρτξοά ςξσ διαδικςύξσ εμημέοχρη Θεςική ποξρτξοά

Διαβάστε περισσότερα

ΠΟΤΔΑΣΗΡΙΟ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΑ. Δραγάτςη 8, Πειραιάσ Ιερ. Πατριάρχου 45, Αμπελόκηποι. 693.45.22.273 info@neoellinikiglossa.gr.

ΠΟΤΔΑΣΗΡΙΟ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΑ. Δραγάτςη 8, Πειραιάσ Ιερ. Πατριάρχου 45, Αμπελόκηποι. 693.45.22.273 info@neoellinikiglossa.gr. ΠΟΤΔΑΣΗΡΙΟ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΑ Δραγάτςη 8, Πειραιάσ Ιερ. Πατριάρχου 45, Αμπελόκηποι 693.45.22.273 info@neoellinikiglossa.gr e-learning Διδαρκαλία ςξσ μαθήμαςξπ ςηπ Νεξελλημικήπ Γλώρραπ από απόρςαρη ΠΡΟΕΣΟΙΜΑΙΑ

Διαβάστε περισσότερα

Κξιμχμικά δίκςσα ρςξ Internet Η μέα ποόκληρη ρςημ επικξιμχμία για ςη μέα γεμιά

Κξιμχμικά δίκςσα ρςξ Internet Η μέα ποόκληρη ρςημ επικξιμχμία για ςη μέα γεμιά 1 ΠΑΝΔΠΙΣΗΜΙΟ ΠΔΙΡΑΙΩ ΣΜΗΜΑ ΒΙΟΜΗΧΑΝΙΚΗ ΓΙΟΙΚΗΗ & ΣΔΧΝΟΛΟΓΙΑ Κξιμχμικά δίκςσα ρςξ Internet Η μέα ποόκληρη ρςημ επικξιμχμία για ςη μέα γεμιά Κύοιξ Θέμα Η έθθαλζε ηωλ θνηλωληθώλ δηθηύωλ ζην δηαδίθηπν ζα

Διαβάστε περισσότερα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα Γεωμετρία Αˊ Λυκείου Κεφάλαιο 3 ο Τρίγωνα Κεφάλαιο 3 ο :Τρίγωνα 1. Τι λέγονται κύρια στοιχεία ενός τριγώνου; Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου. Για ευκολία οι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 1 Από εξωτερικό σημείο Σ κύκλου (Κ, ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,

Διαβάστε περισσότερα

Phishing Emails. Τι είναι και Τρόποι αντιμετώπιςησ τουσ. Ευςταθίου Κωνςταντίνοσ. Λαμπιδονίτη Χριςτίνα. Απρίλιοσ, 2013. Λευκωςία

Phishing Emails. Τι είναι και Τρόποι αντιμετώπιςησ τουσ. Ευςταθίου Κωνςταντίνοσ. Λαμπιδονίτη Χριςτίνα. Απρίλιοσ, 2013. Λευκωςία Phishing Emails Τι είναι και Τρόποι αντιμετώπιςησ τουσ Ευςταθίου Κωνςταντίνοσ Λαμπιδονίτη Χριςτίνα Απρίλιοσ, 2013 Λευκωςία 1 1. Τι είναι το Phishing; Phishing ή αλλιώπ φάοεμα (παοαλλαγή fishing), αματέοεςαι

Διαβάστε περισσότερα

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και

Διαβάστε περισσότερα

! % & % & ( ) +,+ 1 + 2 & %!4 % / % 5

! % & % & ( ) +,+ 1 + 2 & %!4 % / % 5 ! #! % & % &( ) +,+.+)! / &+! / 0 ) &+ 12+! )+& &/. 3 %&)+&2+! 1 +2&%!4%/ %5 (!% 67,+.! %+,8+% 5 & +% #&)) +++&9+% :;&+! & +)) +< %(+%%=)) +%> 1 / 73? % & 10+&(/ 5? 0%)&%& % 7%%&(% (+% 0 (+% + %+72% 0

Διαβάστε περισσότερα

Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων

Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων Λύσεις Διαγωνισμάτων Λύσεις 1 ου Διαγωνίσματος Θέμα 1 ο α) Από μία κορυφή, π.χ. την Α, φέρουμε ευθεία xy ΒΓ. Τότε ω = Β και φ = Γ, ως εντός εναλλάξ των παραλλήλων xy και ΒΓ με τέμνουσες ΑΒ και ΑΓ αντίστοιχα.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ )

ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ ) ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ.3-4-5-6.) 1. Δίνεται ισόπλευρο τρίγωνο ΑΒΓ. Στην προέκταση της ΑΓ προς το Γ παίρνουμε τμήμα ΓΔ=ΑΓ. Έστω Ε τυχαίο σημείο της πλευράς ΒΓ και Ζ σημείο της προέκτασης της ΓΒ

Διαβάστε περισσότερα

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688 1 ο Αχαρνών 197 Αγ. Νικόλαος 10.865196 ο Αγγ. Σικελιανού 4 Περισσός 10.718688 AΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α =90Ο ) και Α το ύψος του. Αν Ε και Ζ είναι οι προβολές του

Διαβάστε περισσότερα

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Μονοψϊνιο Ολιγοψώνιο Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Οπιακή αξία Δπηπξόζζεηα νθέιε από ηελ ρξήζε/θαηαλάισζε κηαο επηπξόζζεηε

Διαβάστε περισσότερα

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999 Ζήτηµα 1ο Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999 Α. Έστω Α η διχοτόµος της γωνίας A ) ενός τριγώνου ΑΒΓ. Από το Β φέρνουµε την παράλληλη προς την Α και έστω Ε το σηµείο τοµής της µε την ευθεία

Διαβάστε περισσότερα

Services SMART. Messaging. Bulk SMS. SMS messaging services THE + Services. www.ipdigital.gr. IP Digital

Services SMART. Messaging. Bulk SMS. SMS messaging services THE + Services. www.ipdigital.gr. IP Digital Bulk SMS Services THE + SMART Messaging Services IP Digital Οοταμίδξσ 6 54624, Θερραλξμίκη info@ipdigital.gr T: 2310 511 396 F: 2315 151 166 SMS messaging services www.ipdigital.gr Η Εηαιρεία H IP Digital

Διαβάστε περισσότερα

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013 ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 7 ΜΑΪΟΥ 13 ΘΔΜΑ Α : (Α1) Σρνιηθό βηβιίν ζειίδα 33-335 (Α) Σρνιηθό βηβιίν ζειίδα 6 (Α3) Σρνιηθό βηβιίν ζειίδα (Α) α) Λάζνο β) Σωζηό γ) Σωζηό

Διαβάστε περισσότερα

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ.

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ. ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΩΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Θεωρούμε το ισόπλευρο τρίγωνο ΑΒΓ και έστω ένα σημείο της πλευράς ΑΓ. Κατασκευάζουμε το παραλληλόγραμμο ΒΓΕ και έστω Ζ η τομή της Ε με την ΑB. Ονομάζουμε

Διαβάστε περισσότερα

ΤΕΙ ΧΑΛΚΙΔΑΣ ΣΤΕΦ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΑΕΡΟΣΚΑΦΩΝ Σημειώζειρ επγαζηηπίος «Αναλογικά Ηλεκηπονικά», Σςγγπαθέαρ: Χ. Λαμππόποςλορ, Έκδοζη 3η 20V 100K V OUT

ΤΕΙ ΧΑΛΚΙΔΑΣ ΣΤΕΦ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΑΕΡΟΣΚΑΦΩΝ Σημειώζειρ επγαζηηπίος «Αναλογικά Ηλεκηπονικά», Σςγγπαθέαρ: Χ. Λαμππόποςλορ, Έκδοζη 3η 20V 100K V OUT ΑΣΚΗΣΗ 1 Γνωριμία με ηα όργανα και ηην διαδικαζία καηαζκεσής ηων κσκλωμάηων ηοσ εργαζηηρίοσ 1.1 Πξνθαηαξθηηθέο Αζθήζεηο: Οη αζθήζεηο απηέο πξέπεη λα παξαδνζνύλ ιπκέλεο από ηνπο ζπνπδαζηέο όηαλ πξνζέξρνληαη

Διαβάστε περισσότερα

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

ΓΙΑΡΚΔΙΑ ΣΗ ΗΜΔΡΑ. Να διαβάζειρ ηο παπακάηω κείμενο και να απανηήζειρ ζηιρ επωηήζειρ πος ακολοςθούν.

ΓΙΑΡΚΔΙΑ ΣΗ ΗΜΔΡΑ. Να διαβάζειρ ηο παπακάηω κείμενο και να απανηήζειρ ζηιρ επωηήζειρ πος ακολοςθούν. ΓΙΑΡΚΔΙΑ ΣΗ ΗΜΔΡΑ Να διαβάζειρ ηο παπακάηω κείμενο και να απανηήζειρ ζηιρ επωηήζειρ πος ακολοςθούν. ΓΙΑΡΚΔΙΑ ΤΗΣ ΗΜΔΡΑΣ ΣΤΙΣ 22 ΙΟΥΝΙΟΥ 2002 Σήκερα, ποσ ηο βόρεηο εκηζθαίρηο γηορηάδεη ηελ κεγαιύηερε εκέρα

Διαβάστε περισσότερα

Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα!

Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα! Cpyright 2013 Λόγος & Επικοινωνία // All rights Reserved Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα! Αυηό ηο παιχνίδι έχει ζηόχους: 1. ηελ εθγύκλαζε ηεο αθνπζηηθήο κλήκεο ησλ παηδηώλ 2. ηελ εμάζθεζε ζηελ

Διαβάστε περισσότερα

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο

Διαβάστε περισσότερα

Η λειςξσογία ςξσ Βσζαμςιμξύ Νεοόμσλξσ

Η λειςξσογία ςξσ Βσζαμςιμξύ Νεοόμσλξσ Η λειςξσογία ςξσ Βσζαμςιμξύ Νεοόμσλξσ Η λειςξσογία ςξσ μεοόμσλξσ είμαι ρυεςικά απλή και ρςηοίζεςαι ρςη υοήρη ςηπ δσμαμικήπ εμέογειαπ ςξσ μεοξύ, λόγχ ςηπ σφξμεςοικήπ διατξοάπ. Σξ μεοό, μεςά ςημ πςώρη ςξσ

Διαβάστε περισσότερα

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο; 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων.

Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων. Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων. Καρδαμίτσης Σπύρος «Τὰ ὅμοια πολύγωνα εἴς τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις, καὶ τὸ πολύγωνον

Διαβάστε περισσότερα

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999 Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999 Ζήτηµα 1ο Α. Έστω Α η διχοτόµος της γωνίας A ) ενός τριγώνου ΑΒΓ. Από το Β φέρνουµε την παράλληλη προς την Α και έστω Ε το σηµείο τοµής της µε την ευθεία

Διαβάστε περισσότερα

1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ 1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ α). Να αποδείξετε ότι : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα ισούται με το γινόμενο των προβολών

Διαβάστε περισσότερα

H ΑΞΙΑ ΣΗ ΓΛΙΑ ΚΑΙ ΣΟΤ ΓΛΑΙΟΛΑΔΟΤ ΜΤΘΟΙ & ΠΡΑΓΜΑΣΙΚΟΣΗΣΑ. << Γιηά & Λάδη >>

H ΑΞΙΑ ΣΗ ΓΛΙΑ ΚΑΙ ΣΟΤ ΓΛΑΙΟΛΑΔΟΤ ΜΤΘΟΙ & ΠΡΑΓΜΑΣΙΚΟΣΗΣΑ. << Γιηά & Λάδη >> H ΑΞΙΑ ΣΗ ΓΛΙΑ ΚΑΙ ΣΟΤ ΓΛΑΙΟΛΑΔΟΤ ΜΤΘΟΙ & ΠΡΑΓΜΑΣΙΚΟΣΗΣΑ > ΜΟΛΑΟΙ 9 Οθηςβνίμο 2011 Καηεγμνίεξ θνηηενίςκ πνμζηαζίαξ, αλημιόγεζεξ θαη επηιμγήξ, Έληνα Πανζέκμο Γιαημιάδμο Κνηηήνηα πμηόηεηαξ

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

Κόληξα πιαθέ ζαιάζζεο κε δηαζηάζεηο 40Υ40 εθ. Καξθηά 3 θηιά πεξίπνπ κε κήθνο ηξηπιάζην από ην πάρνο ηνπ μύινπ θπξί κεγάιν θαη ππνκνλή

Κόληξα πιαθέ ζαιάζζεο κε δηαζηάζεηο 40Υ40 εθ. Καξθηά 3 θηιά πεξίπνπ κε κήθνο ηξηπιάζην από ην πάρνο ηνπ μύινπ θπξί κεγάιν θαη ππνκνλή Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΙΩΝ ΠΡΩΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ ΔΝΟΣΗΣΑ 10 ε : ΜΗΥΑΝΙΚΗ ΜΔΡΟ Β ΠΙΔΗ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Καξέθια θαθίξε Όξγαλα Τιηθά Κόληξα πιαθέ ζαιάζζεο κε δηαζηάζεηο 40Υ40 εθ.

Διαβάστε περισσότερα

Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ.

Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ. Απαντήσεις θέματος 2 Απηά πνπ έπξεπε λα γξάςεηε (δελ ρξεηαδόηαλ δηθαηνιόγεζε εθηόο από ην Γ) Α return a*b; Β 0:acegf2, 1: acegf23, 2: acegf234, 3:acegf2345, 4:acegf23456, 5:acegf234567, 6:acegf2345678,

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑΣΑ ΤΝΕΥΩΝ ΤΝΑΡΣΗΕΩΝ

ΘΕΩΡΗΜΑΣΑ ΤΝΕΥΩΝ ΤΝΑΡΣΗΕΩΝ Οη ζπλερείο ζπλαξηήζεηο είλαη κία ζεκαληηθή θιάζε ηωλ πξαγκαηηθώλ ζπλαξηήζεωλ κηάο πξαγκαηηθήο κεηαβιεηήο Τα βαζηθά ζεωξήκαηα ηωλ ζπλερώλ ζπλαξηήζεωλ ζε ζπλδπαζκό κε ηε κνλνηνλία, καο βνεζνύλ λα βγάινπκε

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας 07 3. Να αποδείξετε την ταυτότητα + + αβ βγ γα = Να αποδείξετε ότι για όλους τους α, β, γ ισχύει + + αβ + βγ + γα Πότε ισχύει ισότητα; = = + + =

Διαβάστε περισσότερα

Θεώρημα Ι Η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας είναι ίση με το μισό της υποτείνουσας.

Θεώρημα Ι Η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας είναι ίση με το μισό της υποτείνουσας. ΠΡΟΛΟΓΟΣ Τα πιο κάτω θεωρήματα καθώς και το Θεώρημα Ι σ. 104 είναι SOS όχι μόνο για θεωρία αλλά και για χρήση στις ασκήσεις, οπότε πρέπει να κατανοήσετε τι λένε, να ξέρετε την απόδειξη και να είστε έτοιμοι

Διαβάστε περισσότερα

Β ΓΥΜΝΑΣΙΟΥ. + και. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007

Β ΓΥΜΝΑΣΙΟΥ. + και. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007 GR. 06 79 - Athens - HELLAS ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" Β ΓΥΜΝΑΣΙΟΥ. Να προσδιορίσετε τους φυσικούς αριθμούς ν που είναι τέτοιοι ώστε ο αριθμός 42 2 ν + να είναι ακέραιος. 2. Θεωρούμε οξεία γωνία ΑΟΒ και

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γρήγορη Επανάληψη Θεωρίας Ένα τρίγωνο ανάλογα με το είδος των γωνιών του ονομάζεται: Σε κάθε ορθογώνιο τρίγωνο η πλευρά που

Διαβάστε περισσότερα

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) =

ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) = ΘΔΜΑΣΑ Α επηέκβξηνο 9. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(,y) = y.. Να ππνινγηζηνύλ ηα νινθιεξώκαηα: a) ln b) a) 3cos b) e sin 4. Να ππνινγηζηεί ην νινθιήξσκα: S ( y) 3

Διαβάστε περισσότερα

2.1-2.10 ΑΣΚΗΣΕΙΣ-ΛΥΣΕΙΣ (Version 23-9-2015)

2.1-2.10 ΑΣΚΗΣΕΙΣ-ΛΥΣΕΙΣ (Version 23-9-2015) .1-.10 ΑΣΚΗΣΕΙΣ-ΛΥΣΕΙΣ (Version 3-9-015) K1. Δύο διαφορετικές ευθείες μπορεί να έχουν: i) κανένα κοινό σημείο ii) ένα κοινό σημείο iii) δύο κοινά σημεία iv) άπειρα κοινά σημεία Αιτιολογήστε την απάντησή

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ 7ου ΚΕΦΑΛΑΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ 7ου ΚΕΦΑΛΑΙΟΥ ΣΗΜΕΙΩΣΕΙΣ 7ου ΚΕΦΑΛΑΙΟΥ Διατυπώστε το θεώρημα του Θαλή, κάνετε σχήμα και γράψτε την αναλογία που εκφράζει το θεώρημα του Θαλή στο συγκεκριμένο σχήμα. Απάντηση: «Αν τρείς τουλάχιστον παράλληλες ευθείες

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΠΡΟΒΛΗΜΑ Σε έλα ηνπξλνπά βόιετ δήισζαλ ζπκκεηνρή νκάδεο Γπκλαζίσλ ηεο Κύπξνπ.

Διαβάστε περισσότερα

Αρ. Υακ.: Α.Ι.Σ. 1 /2013 Α.Κ.Ι. 1/2011

Αρ. Υακ.: Α.Ι.Σ. 1 /2013 Α.Κ.Ι. 1/2011 Αρ. Υακ.: Α.Ι.Σ. 1 /2013 Α.Κ.Ι. 1/2011 Σοποθέτηση της Αρχής Ισότητας αμαφορικά με τη δημοσίευση αγγελιώμ για θέσεις εργασίας που είτε απευθύμομται στο έμα μόμο φύλο είτε με τους όρους που θέτουμ φωτογραφίζουμ

Διαβάστε περισσότερα

Airsoft Gun κε Φσηεηλό Γείθηε LASER Εμπορική Air Sport Gun 777 Ονομαζία: Διανομέας: V&P MANOLI ΔΠΙΧΔΙΡΗΔΙ ΛΣΓ Item No.: 777 Χώρα Προέλεσζης:

Airsoft Gun κε Φσηεηλό Γείθηε LASER Εμπορική Air Sport Gun 777 Ονομαζία: Διανομέας: V&P MANOLI ΔΠΙΧΔΙΡΗΔΙ ΛΣΓ Item No.: 777 Χώρα Προέλεσζης: 1 Airsoft Gun κε Φσηεηλό Γείθηε LASER Air Sport Gun 777 V&P MANOLI ΔΠΙΧΔΙΡΗΔΙ ΛΣΓ Item No.: 777 2 Airsoft Gun κε Φσηεηλό Γείθηε LASER LH V&P MANOLI ΔΠΙΧΔΙΡΗΔΙ ΛΣΓ Item No.: ΧΚ918Α 3 Airsoft Gun κε Φσηεηλό

Διαβάστε περισσότερα

Ζ ΠΑΡΑΓΟΗΑΘΖ ΘΑΣΟΗΘΗΑ ΣΖΛ ΔΙΙΑΓΑ

Ζ ΠΑΡΑΓΟΗΑΘΖ ΘΑΣΟΗΘΗΑ ΣΖΛ ΔΙΙΑΓΑ Ζ ΠΑΡΑΓΟΗΑΘΖ ΘΑΣΟΗΘΗΑ ΣΖΛ ΔΙΙΑΓΑ Δίλαη κηα ΔΡΔΤΛΖΣΗΘΖ ΔΡΓΑΗΑ ηνπ Β ηεηξακήλνπ ηνπ Πρνι. Έηνπο 2011-2012 από ηνπο καζεηέο ηνπ Α3 ηκήκαηνο ηνπ 3νπ ΔΞΑΙ Ιάξηζαο, ππό ηελ θαζνδήγεζε ηωλ θαζεγεηώλ Δπαγγειάθνπ

Διαβάστε περισσότερα

1. Οδηγίερ εγκαηάζηαζηρ και σπήζηρ έξςπνυν καπηών και τηθιακών πιζηοποιηηικών με σπήζη ηος λογιζμικού Μοzilla Thunderbird

1. Οδηγίερ εγκαηάζηαζηρ και σπήζηρ έξςπνυν καπηών και τηθιακών πιζηοποιηηικών με σπήζη ηος λογιζμικού Μοzilla Thunderbird 1. Οδηγίερ εγκαηάζηαζηρ και σπήζηρ έξςπνυν καπηών και τηθιακών πιζηοποιηηικών με σπήζη ηος λογιζμικού Μοzilla Thunderbird 1.1 Εγκαηάζηαζη ηυν οδηγών ηηρ έξςπνηρ κάπηαρ ζηο λογιζμικό Mozilla Thunderbird

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ Μετρικές σχέσεις Εμβαδά

Β ΛΥΚΕΙΟΥ Μετρικές σχέσεις Εμβαδά Β ΛΥΚΕΙΟΥ Μετρικές σχέσεις Εμβδά ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β. Κορτίκη Β. Κουτσογούλ Μ. Ρούσσ Γ. Ευθυμίου Μ. Ζφείρη ΕΜΕ Πράρτημ Τρικάλων ΑΣΚΗΣΗ η i. Ν υπολογιστούν οι πλευρές, β, γ του ορθογωνίου τριγώνου ΑΒΓ

Διαβάστε περισσότερα

ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΙΙ

ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΙΙ University of Athens Pedagogical Department P.Ε. Science, Technology and Environment Section / Laboratory 13a Navarinou str, Athens, GR-10680 Πανεπιστήμιο Αθηνών Παιδαγωγικό Τμήμα Δ.Ε. Τομέας / Εργαστήριο

Διαβάστε περισσότερα

Ημεοίδα: Η Αγοξδαρξπξμία ρςα πλαίρια ςηπ μέαπ ΚΑΠ 2015-2020, Καβάλα, 5 Ιξσμίξσ 2015. Δο. Άμμα Σιδηοξπξύλξσ

Ημεοίδα: Η Αγοξδαρξπξμία ρςα πλαίρια ςηπ μέαπ ΚΑΠ 2015-2020, Καβάλα, 5 Ιξσμίξσ 2015. Δο. Άμμα Σιδηοξπξύλξσ Ημεοίδα: Η Αγοξδαρξπξμία ρςα πλαίρια ςηπ μέαπ ΚΑΠ 2015-2020, Καβάλα, 5 Ιξσμίξσ 2015 * Δο. Άμμα Σιδηοξπξύλξσ Σσμδσαρμόπ δέμςοχμ και γεχογικώμ καλλιεογειώμ ρςημ ίδια επιτάμεια Διάςανη δέμςοχμ * Τα δαρξγεχογικά

Διαβάστε περισσότερα

Διαδικαζία μεηαθοράς δεδομένων Εκκαθαριζηικής για ηο Eιδικό ζημείωμα περαίωζης Φ.Π.Α

Διαδικαζία μεηαθοράς δεδομένων Εκκαθαριζηικής για ηο Eιδικό ζημείωμα περαίωζης Φ.Π.Α Διαδικαζία μεηαθοράς δεδομένων Εκκαθαριζηικής για ηο Eιδικό ζημείωμα περαίωζης Φ.Π.Α Σει.1 Σο ζςγκεκπιμένο εγσειπίδιο δημιοςπγήθηκε για να βοηθήζει ηην καηανόηζη ηηρ διαδικαζίαρ μεηαθοπάρ δεδομένων ηηρ

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

3. Τα ΑΒΓΓ θαη ΔΒΕΖ είλαη ηεηξάγσλα, ΑΔ=2cm θαη ΔΒ=5cm. Τν εκβαδόλ ηνπ γξακκνζθηαζκέλνπ ζρήκαηνο είλαη: είλαη: (Γ) 10

3. Τα ΑΒΓΓ θαη ΔΒΕΖ είλαη ηεηξάγσλα, ΑΔ=2cm θαη ΔΒ=5cm. Τν εκβαδόλ ηνπ γξακκνζθηαζκέλνπ ζρήκαηνο είλαη: είλαη: (Γ) 10 Α, υμναςίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιοσ 0. Πνηνο από ηνπο πην θάησ αξηζκνύο είλαη ν κεγαιύηεξνο; (Α) 0 0 () 00 () ( 0) ( 0) () 0 0 () ( 0) ( 0). Σην πην θάησ ζρήκα νη επζείεο ε θαη ε είλαη

Διαβάστε περισσότερα

ΚΟΠΗ ΠΡΧΣΟΥΡΟΝΙΑΣΙΚΗ ΠΙΣΑ 2013 ΤΛΛΟΓΟΤ ΓΔΝΙΚΗ ΤΝΔΛΔΤΗ ΠΟΛΙΣΙΣΙΚΟΤ ΤΛΛΟΓΟΤ 2013

ΚΟΠΗ ΠΡΧΣΟΥΡΟΝΙΑΣΙΚΗ ΠΙΣΑ 2013 ΤΛΛΟΓΟΤ ΓΔΝΙΚΗ ΤΝΔΛΔΤΗ ΠΟΛΙΣΙΣΙΚΟΤ ΤΛΛΟΓΟΤ 2013 ΚΟΠΗ ΠΡΧΣΟΥΡΟΝΙΑΣΙΚΗ ΠΙΣΑ 2013 ΤΛΛΟΓΟΤ ΓΔΝΙΚΗ ΤΝΔΛΔΤΗ ΠΟΛΙΣΙΣΙΚΟΤ ΤΛΛΟΓΟΤ 2013 Η ημεπήζια διάηαξη ηηρ Γενικήρ ςνέλεςζηρ είναι η ακψλοςθη: 1. Δκλογή Πποεδπείος Γενικήρ ςνέλεςζηρ 2. Κοπή ηηρ ππυηοσπονιάηικηρ

Διαβάστε περισσότερα

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: α) Τα τρίγωνα Β Γ και ΓΕΒ είναι ίσα.

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: α) Τα τρίγωνα Β Γ και ΓΕΒ είναι ίσα. 1. Από εξωτερικό σηµείο Σ κύκλου (Κ,ρ) θεωρούµε τις τέµνουσες ΣΑΒ και ΣΓ του κύκλου για τις οποίες ισχύει ΣΒ=Σ. Τα ΚΛ και ΚΜ είναι τα αποστήµατα των χορδών ΑΒ και Γ του κύκλου αντίστοιχα. α) Να αποδείξετε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

Α Καθοπιζμόρ απμοδιοηήηυν - 1 επικεθαλήρ 1. Γ Αςηοτία ζηη ζήπαγγα Β 1 επικεθαλήρ εξ. ζηελεσορ. Ε Ποζοηική ανάλςζη Γ 3 εξ.

Α Καθοπιζμόρ απμοδιοηήηυν - 1 επικεθαλήρ 1. Γ Αςηοτία ζηη ζήπαγγα Β 1 επικεθαλήρ εξ. ζηελεσορ. Ε Ποζοηική ανάλςζη Γ 3 εξ. Άσκηση cash flow tunnel Δίζηε επικεθαλήρ ηηρ ομάδαρ διασείπιζηρ κινδύνος πος αζσολείηαι με ηη λειηοςπγική ανάλςζη κινδύνυν μεγάληρ εηαιπείαρ διασείπιζηρ αςηοκινηηοδπόμυν. Έσεηε να παπαδώζεηε μελέηη πος

Διαβάστε περισσότερα

Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ

Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική Δίζηε μησανικόρ διοίκηζηρ μεγάληρ καηαζκεςαζηικήρ εηαιπείαρ και καλείζηε να ςλοποιήζεηε ηο έπγο πος πεπιγπάθεηαι από ηον Πίνακα 1. Κωδ.

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)

Διαβάστε περισσότερα

ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ;

ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ; ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ; Γιώργου Τσαπακίδη Είναι εύκολο να παρατηρήσουμε ότι τα συμμετρικά σχήματα έχουν πολύ περισσότερες ιδιότητες από τα μη συμμετρικά σχήματα. Το ισοσκελές τρίγωνο, που έχει άξονα

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Θέµα 1 Α. Να υπολογίσετε την πλευρά λ και το απόστηµα α τετραγώνου εγγεγραµµένου σε κύκλο (Ο, R) συναρτήσει της ακτίνας R (10 Μονάδες) Β. Να χαρακτηρίσετε τις

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΔΤΝΑΣΟΣΗΣΕ 3 2. ΓΡΗΓΟΡΗ ΕΚΚΙΝΗΗ (QUICK START) - ΙΟΚΡΑΣΗ 4 3. ΑΝΑΛΤΣΙΚΗ ΕΠΕΞΗΓΗΗ 5

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΔΤΝΑΣΟΣΗΣΕ 3 2. ΓΡΗΓΟΡΗ ΕΚΚΙΝΗΗ (QUICK START) - ΙΟΚΡΑΣΗ 4 3. ΑΝΑΛΤΣΙΚΗ ΕΠΕΞΗΓΗΗ 5 Εγχειρίδιο χρήσης Ο Ιςοκράτησ Πιάνο είναι το απόλυτο εργαλείο για έναν Καθηγητή, Ψάλτη ή Μαθητή τησ Βυζαντινήσ Μουςικήσ, ή για έναν Μουςικό ή Μαθητή τησ Ευρωπαΰκήσ Μουςικήσ. Περιέχει Πιάνο (97+)-πλήκτρων

Διαβάστε περισσότερα

Εξίσωση - Φάση Αρµονικού Κύµατος 4ο Σετ Ασκήσεων - Χειµώνας 2012. Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός. http://perifysikhs.wordpress.

Εξίσωση - Φάση Αρµονικού Κύµατος 4ο Σετ Ασκήσεων - Χειµώνας 2012. Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός. http://perifysikhs.wordpress. Εξίσωση - Φάση Αρµονικού Κύµατος - Χειµώνας 2012 Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός http://perifysikhs.wordpress.com Α. Ερωτήσεις πολλαπλής επιλογής Α.1. Κατά τη διάδοση ενός κύµατος σε ένα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. Ύλη: Κινητική 1 Α Λυκείου Γεν. Παιδείας 13-11-11 Θέμα 1 ο : Δπηιέμηε ηε ζωζηή απάληεζε: 1.Σηελ επζύγξακκε νκαιά επηηαρπλόκελε θίλεζε ε επηηάρπλζε ελόο θηλεηνύ είλαη: α)αλάινγε

Διαβάστε περισσότερα

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ Εδώ ζα ππνινγίζνπκε ην κεηαζρεκαηηζκό Fourier κεξηθώλ αθόκα ζεκάησλ, πξνζπαζώληαο λα μεθηλήζνπκε από ην κεηαζρεκαηηζκό Fourier γλσζηώλ ζεκάησλ

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην

Διαβάστε περισσότερα

TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΠΡΟΑΡΜΟΓΗ: ΒΑΛΚΑΝΙΩΣΗ ΔΗΜ. ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 TOOLBOOK ΜΑΘΗΜΑ 2

TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΠΡΟΑΡΜΟΓΗ: ΒΑΛΚΑΝΙΩΣΗ ΔΗΜ. ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 TOOLBOOK ΜΑΘΗΜΑ 2 TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 Δημιουργία σελίδων και βιβλίων Έλα θαηλνύξην βηβιίν πεξηέρεη κία άδεηα ζειίδα κε έλα άδεην background. Δελ κπνξνύκε λα μερσξίζνπκε

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕ ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 015 Θέμ 1 ο Α) Ν διτυπώσετε τ κριτήρι γι ν είνι δύο τρίγων όμοι Β) Ν διτυπώσετε κι ν ποδείξετε το ο θεώρημ διμέσων Γ) Ν

Διαβάστε περισσότερα

β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι όμοια και στη συνέχεια να συμπληρώσετε

β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι όμοια και στη συνέχεια να συμπληρώσετε ΘΕΜΑ 4 Στο διπλανό τραπέζιο ΑΒΓΔ η ευθεία ΜΛ είναι παράλληλη στις βάσεις ΑΒ και ΔΓ του τραπεζίου και ισχύει ότι = α) Να αποδείξετε ότι = και = (Μονάδες 8) β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο

Διαβάστε περισσότερα

Μείχρη Κόρςξσπ Ποξμηθειώμ Υγείαπ μέρχ Υπηοεριώμ Ηλεκςοξμικώμ Ποξμηθειώμ. Digital Health Care 2010

Μείχρη Κόρςξσπ Ποξμηθειώμ Υγείαπ μέρχ Υπηοεριώμ Ηλεκςοξμικώμ Ποξμηθειώμ. Digital Health Care 2010 Μείχρη Κόρςξσπ Ποξμηθειώμ Υγείαπ μέρχ Υπηοεριώμ Ηλεκςοξμικώμ Ποξμηθειώμ Digital Health Care 2010 Η εςαιοεία Προσφέρουμε Υπηοερίεπ Ηλεκςοξμικξύ Δμπξοίξσ αμάμερα ρε επιυειοήρειπ (Β2Β) Η καρδιά τωμ υπηρεσιώμ

Διαβάστε περισσότερα

Φεστιβάλ περιπτερούχων 27-28-29 Μαρτύου 2010 Ζϊππειο Μϋγαρο Διοργϊνωςη: ϋνωςη καπνοπωλών περιπτερούχων τϋωσ διοικόςεωσ πρωτευούςησ & line executive

Φεστιβάλ περιπτερούχων 27-28-29 Μαρτύου 2010 Ζϊππειο Μϋγαρο Διοργϊνωςη: ϋνωςη καπνοπωλών περιπτερούχων τϋωσ διοικόςεωσ πρωτευούςησ & line executive Φεστιβάλ περιπτερούχων 27-28-29 Μαρτύου 2010 Ζϊππειο Μϋγαρο Διοργϊνωςη: ϋνωςη καπνοπωλών περιπτερούχων τϋωσ διοικόςεωσ πρωτευούςησ & line executive Η Αίθουσα Εκθέσεωμ του Ζαππείου διαθέτει περίπου 4.000

Διαβάστε περισσότερα