ΟΠΤΙΚΗ Ι ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ηµήτρης Παπάζογλου. ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών «Οπτική και Όραση»

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΟΠΤΙΚΗ Ι ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ηµήτρης Παπάζογλου. ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών «Οπτική και Όραση»"

Transcript

1 ΟΠΤΙΚΗ Ι ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ηµήτρης Παπάζογλου ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών «Οπτική και Όραση» Πανεπιστήµιο Κρήτης 2005

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41 Διατμηματικό Μεταπτυχιακό πρόγραμμα "Οπτική και Όραση"

42 Διατμηματικό Μεταπτυχιακό πρόγραμμα "Οπτική και Όραση"

43

44

45

46 ιατµηµατικό µεταπτυχιακό πρόγραµµα «Οπτική και Όραση» Οπτική Ι, ιδάσκων: ηµήτρης Παπάζογλου 1. Να υπολογιστούν οι θέσεις των χαρακτηριστικών σηµείων καθώς και η θέση και η διάµετρος της κόρης εισόδου και κόρης εξόδου στο παρακάτω σύστηµα. H ισχύς των φακών είναι αντίστοιχα +10D, -5D, +10D. (ο αποκλίνων φακός είναι αµφίκοιλος και συµµετρικός, οι συγκλίνοντες είναι επιπεδόκυρτοι, η διάµετρος όλων των οπτικών είναι 30 mm, ενώ όλες οι αποστάσεις δίνονται σε mm) n= Λύση Για τον 1 ο συγκλίνοντα επιπεδόκυρτο φακό µπορούµε να γράψουµε: Γνωρίζοντας ότι: M D DP1 D = = P1 1 P1 1 d 3mm D= = = 2 mm, P1 = 10 n 1.5 ο πίνακας που περιγράφει τον 1 ο συγκλίνοντα φακό γίνεται: M m = m Από το παραπάνω πίνακα υπολογίζουµε τις θέσεις των κυρίων επιπέδων καθώς και την ενεργό εστιακή απόσταση. 1 m HH 1 M 1 M Z = = 0, Z = = 2 mm, 1 1(2,2) 1 1(1,1) H H M1(2,1) M1(2,1) f e 1 1 = = 100 mm M 1(2,1) 2 3 1

47 ιατµηµατικό µεταπτυχιακό πρόγραµµα «Οπτική και Όραση» Οπτική Ι, ιδάσκων: ηµήτρης Παπάζογλου Κατ αναλογία αφού ο 3 ος φακός είναι ίδιος µε τον 1 ο αλλά απλώς αντεστραµµένος θα περιγράφεται από τον ακόλουθο πίνακα: M m = , 3 1 m ενώ οι θέσεις των κυρίων επιπέδων αντίστοιχα δίνονται από τις σχέσεις: H H 1 M 1 M Z = = 2 mm, Z = = 0, 3 3(2,2) 3 3(1,1) H H M3(2,1) M3(2,1) f e 3 1 = = 100 mm M 1(2,1) 2 3 Από την άλλη πλευρά ο αποκλίνων αµφίκοιλος φακός µπορεί να περιγραφεί µε τον παρακάτω πίνακα: M 2 ' D DP 2 2 D = = P P 1 P [2 PD ] 1 D P όπως γνωρίζουµε η ολική ισχύς του φακού δίνεται από το στοιχείο (2,1) του πίνακα οπότε µπορούµε να υπολογίσουµε την ισχύ P του 2 κάθε ενός από τα διόπτρα που αποτελούν τον αµφίκοιλο αποκλίνοντα φακό 1 : D d 1.5mm 1mm n DP P = 5m P = = 2.49m 2 2 = = = D2 2 = 2[2 2 2] P P PD Έτσι συνολικά ο αποκλίνων φακός περιγράφεται από τον πίνακα: M m = 5m , 2 1 ενώ οι θέσεις των κυρίων επιπέδων αντίστοιχα δίνονται από τις σχέσεις: 1 απορρίπτουµε την λύση την θετική λύση αφού τα δίοπτρα είναι κοίλα 2

48 ιατµηµατικό µεταπτυχιακό πρόγραµµα «Οπτική και Όραση» Οπτική Ι, ιδάσκων: ηµήτρης Παπάζογλου M 1 M Z = = 0.5 mm, Z = = 0.5 mm, 2 2(2,2) 3 2(1,1) H H M2(2,1) M2(2,1) f e 3 1 = = 200mm M 2(2,1) Γνωρίζοντας τις θέσεις των κυρίων επιπέδων καθενός από τους φακούς που αποτελούν το σύστηµα µπορούµε να περιγράψουµε το συνολικό σύστηµα ως εξής: M = M T M T M, tot όπου Τ 1, πίνακας µετατόπισης που περιγράφει την διάδοση από το πίσω κύριο επίπεδο του 1 ου φακού έως το εµπρός κύριο επίπεδο του 2 ου και Τ 2, πίνακας µετατόπισης που περιγράφει την διάδοση από το πίσω κύριο επίπεδο του 2 ου φακού έως το εµπρός κύριο επίπεδο του 3 ου φακού Σχήµα 1. Περιγραφή του κάθε στοιχείου του συστήµατος µε τα κύρια επίπεδα του (όλες οι αποστάσεις αναφέρονται σε mm) 3

49 Έτσι συνολικά έχουµε: ιατµηµατικό µεταπτυχιακό πρόγραµµα «Οπτική και Όραση» Οπτική Ι, ιδάσκων: ηµήτρης Παπάζογλου M tot m m 1 0 = 1 1 = 1 10m m m m m = = 10 m m 1 10 m m m = 1 1 = 10 m m m = 1 1 = 10m m m = m Με βάση τον παραπάνω πίνακα που περιγράφει το συνολικό σύστηµα µπορούµε να υπολογίσουµε τις θέσεις των κυρίων επιπέδων και των δεσµικών σηµείων καθώς και ενεργό εστιακή απόσταση: 1 M 1 M tot Z H = = 29 mm, Z = = 29 mm, M tot(2,2) tot tot(1,1) H tot (2,1) Mtot(2,1) f e tot 1 = = 80 mm M tot(2,1) (Οι θέσεις των κύριων επιπέδων του συστήµατος µετρώνται αντίστοιχα από το εµπρός κύριο επίπεδο του 1 ου φακού και το πίσω κύριο επίπεδο του 3 ου φακού.) Το σύστηµα βρίσκεται στον αέρα εποµένως τα δεσµικά σηµεία βρίσκονται πάνω στα κύρια επίπεδα. 80 H 10.5 H 80 F F Σχήµα 2. Χαρακτηριστικά σηµεία του συστήµατος (όλες οι αποστάσεις αναφέρονται σε mm) 4

50 ιατµηµατικό µεταπτυχιακό πρόγραµµα «Οπτική και Όραση» Οπτική Ι, ιδάσκων: ηµήτρης Παπάζογλου Για να υπολογίσουµε την θέση της κόρης εισόδου και της κόρης εξόδου στο παραπάνω σύστηµα θα πρέπει να εντοπίσουµε το διάφραγµα ανοίγµατος του συστήµατος απεικονίζοντας το άνοιγµα κάθε φακού στον χώρο του αντικειµένου. Ξεκινώντας από τον τρίτο φακό αντικαθιστούµε τον φακό µε άνοιγµα της ίδιας διαµέτρου (30 mm) προσεγγιστικά θεωρούµε ότι το διάφραγµα βρίσκεται στο µέσο του φακού. Για να απεικονίσουµε το παραπάνω διάφραγµα µε την βοήθεια του 1 ου και του 2 ου φακού αρκεί να υπολογίσουµε τον πίνακα Μ 1,2 που περιγράφει τους δύο φακούς 2 : M m 1 0 = = 5m m m = 1 1 = 5m 1 10m m = m ,2 1 1 Με βάση τον παραπάνω πίνακα που περιγράφει το υποσύστηµα των δύο πρώτων φακών µπορούµε να υπολογίσουµε τις θέσεις των κυρίων επιπέδων και των δεσµικών σηµείων καθώς και ενεργό εστιακή απόσταση: Z = 18.4 mm, Z = 36.7 mm, f = 163.3mm 1,2 1,2 H H Θεωρώντας ότι το φως διαδίδεται από αριστερά προς τα δεξιά, το διάφραγµα µε το οποίο αντικαταστήσαµε τον τρίτο φακό βρίσκεται σε απόσταση s = 36.7 mm+ 20 mm+ 1.5 mm= 58.2 mm από το «εµπρός 3» κύριο επίπεδο του υποσυστήµατος των δύο πρώτων φακών οπότε µπορούµε να υπολογίσουµε την θέση s του ειδώλου του χρησιµοποιώντας την σχέση: e 1, sf s s f s f 1,2 + = s = = 1,2 1,2 90.4mm 18.4 ~58.2 Οι διαστάσεις του ειδώλου δίνονται µέσω της εγκάρσιας µεγέθυνσης: s 90.4 D = MT D = D = 30 mm = 46.6 mm H 1,2 H 1,2 s Σε αυτή την περίπτωση χρησιµοποιούµε µέρος των υπολογισµών που έχουµε ήδη κάνει για το Μ tot 3 σύµφωνα µε την αντίστροφη διάδοση που θεωρούµε 5

51 ιατµηµατικό µεταπτυχιακό πρόγραµµα «Οπτική και Όραση» Οπτική Ι, ιδάσκων: ηµήτρης Παπάζογλου Με αντίστοιχο τρόπο αντικαθιστούµε τον 2 ο φακό µε άνοιγµα της ίδιας διαµέτρου (30 mm) ενώ θεωρούµε και πάλι προσεγγιστικά ότι το διάφραγµα βρίσκεται στο µέσο του φακού. Απεικονίζουµε το παραπάνω διάφραγµα µε την βοήθεια του 1 ου φακού χρησιµοποιώντας τα χαρακτηριστικά σηµεία του που ήδη γνωρίζουµε. Θεωρώντας ότι το φως διαδίδεται από αριστερά προς τα δεξιά, το διάφραγµα µε το οποίο αντικαταστήσαµε τον 2 ο φακό βρίσκεται σε απόσταση s = 2 mm mm= 22.7 mm από το «εµπρός» κύριο επίπεδο του πρώτου φακού οπότε µπορούµε να υπολογίσουµε και πάλι την θέση s και την µεγέθυνση του: sf s s s f s f 1 + = = = mm ~20.7 Οι διαστάσεις του ειδώλου δίνονται µέσω της εγκάρσιας µεγέθυνσης: s 29.4 D = MT D = D = 30 mm = 38.8 mm s Το τελευταίο άνοιγµα που πρέπει να απεικονίσουµε είναι αυτό που ορίζεται από τον πρώτο φακό του συστήµατος σε αυτή όµως την περίπτωση διάφραγµα µε το οποίο αντικαθιστούµε τον πρώτο φακό έχει ως είδωλο τον εαυτό του για υποθετική διάδοση από αριστερά προς τα δεξιά. Έτσι το άνοιγµα που παρουσιάζει το µικρότερο γωνιακό άνοιγµα για αξονικό αντικείµενο 1.5 είναι αυτό που ορίζεται από τον πρώτο 77.7 φακό και εποµένως ο πρώτος φακός αποτελεί και το διάφραγµα ανοίγµατος του συστήµατος. Η κόρη εισόδου ταυτίζεται σε αυτή την περίπτωση µε το διάφραγµα ανοίγµατος ενώ η κόρη εξόδου αποτελεί το είδωλο της κόρης εισόδου µέσω του συνολικού συστήµατος στον 6

52 ιατµηµατικό µεταπτυχιακό πρόγραµµα «Οπτική και Όραση» Οπτική Ι, ιδάσκων: ηµήτρης Παπάζογλου χώρο του ειδώλου. Για να υπολογίσουµε την θέση και τις διαστάσεις της κόρης εξόδου απεικονίζουµε την κόρη εισόδου χρησιµοποιώντας τα χαρακτηριστικά σηµεία του συνολικού συστήµατος. Έτσι αφού η κόρη εισόδου απέχει κατά s = 29 mm mm = 27.5 mm υπολογίζουµε για την κόρη εξόδου: sftot + = s = = 41.9mm s s f s f tot Οι διαστάσεις της κόρης εξόδου δίνονται µέσω της εγκάρσιας µεγέθυνσης: s 41.9 D = MT D = D = 30 mm = 45.7 mm s 27.5 tot κόρη εισόδου 23.4 H H F F κόρη εξόδου Σχήµα 2. Χαρακτηριστικά σηµεία και κόρη εισόδου, εξόδου του συστήµατος (όλες οι αποστάσεις αναφέρονται σε mm) 7

ιατµηµατικό µεταπτυχιακό πρόγραµµα «Οπτική και Όραση» Ασκήσεις Οπτική Ι ιδάσκων: ηµήτρης Παπάζογλου Email: dpapa@iesl.forth.gr

ιατµηµατικό µεταπτυχιακό πρόγραµµα «Οπτική και Όραση» Ασκήσεις Οπτική Ι ιδάσκων: ηµήτρης Παπάζογλου Email: dpapa@iesl.forth.gr ιατµηµατικό µεταπτυχιακό πρόγραµµα «Οπτική και Όραση» Ασκήσεις Οπτική Ι ιδάσκων: ηµήτρης Παπάζογλου Email: dpapa@iesl.forth.gr 1. Να σχεδιάσετε την διάδοση των ακτίνων στα παρακάτω οπτικά συστήµατα F F

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ ΕΡΑΣΤΗΡΙ ΕΦΑΡΜΣΜΕΝΗΣ ΠΤΙΚΗΣ Άσκηση 1: Λεπτοί φακοί Εξεταζόμενες γνώσεις. Εξίσωση κατασκευαστών των φακών. Συστήματα φακών. Διαγράμματα κύριων ακτινών. Είδωλα και μεγέθυνση σε λεπτούς φακούς. Α. Λεπτοί

Διαβάστε περισσότερα

Οπτική και κύματα. Δημήτρης Παπάζογλου Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης

Οπτική και κύματα. Δημήτρης Παπάζογλου Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Οπτική και κύματα Δημήτρης Παπάζογλου dpapa@materal.uoc.gr Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Θεωρία πινάκων Διάνυσμα ακτίνας Παραξονική προσέγγιση ta διάνυσμα ακτίνας y αριθμητικό

Διαβάστε περισσότερα

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες . Ιδιότητες φακών 2 Απριλίου 203 Λεπτοί φακοί. Βασικές έννοιες Φακός είναι ένα οπτικό σύστημα με δύο διαθλαστικές επιφάνειες. Ο απλούστερος φακός έχει δύο σφαιρικές επιφάνειες αρκετά κοντά η μία με την

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.pmoira.weebly.com ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ

Διαβάστε περισσότερα

Οπτική και κύματα Δημήτρης Παπάζογλου dpapa@materials.uoc.gr Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Γεωμετρική Οπτική

Οπτική και κύματα Δημήτρης Παπάζογλου dpapa@materials.uoc.gr Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Γεωμετρική Οπτική Οπτική και κύματα Δημήτρης Παπάζογλου dpapa@maerals.uoc.gr Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Γεωμετρική Οπτική Η ιδέα την απεικόνισης Σημειακή πηγή Στιγματική απεικόνιση Η ανακατεύθυνση

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΟΠΤΙΚΩΝ ΟΡΓΑΝΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΟΠΤΙΚΩΝ ΟΡΓΑΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΟΠΤΙΚΩΝ ΟΡΓΑΝΩΝ Άσκηση 4. Διαφράγματα. Θεωρία Στο σχεδιασμό οπτικών οργάνων πρέπει να λάβει κανείς υπόψη και άλλες παραμέτρους πέρα από το πού και πώς σχηματίζεται το είδωλο ενός

Διαβάστε περισσότερα

Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική

Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική Ο15 Κοίλα κάτοπτρα 1. Σκοπός Σκοπός της άσκησης είναι η εύρεση της εστιακής απόστασης κοίλου κατόπτρου σχετικά μεγάλου ανοίγματος και την μέτρηση του σφάλματος της σφαιρικής εκτροπής... Θεωρία.1 Γεωμετρική

Διαβάστε περισσότερα

Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34

Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34 Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34 Γεωμετρική Οπτική Γνωρίζουμε τα βασικά Δηλαδή, πως το φως διαδίδεται και αλληλεπιδρά με σώματα διαστάσεων πολύ μεγαλύτερων από το μήκος κύματος. Ανάκλαση: Προσπίπτουσα ακτίνα

Διαβάστε περισσότερα

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Πουλιάσης Αντώνης Φυσικός M.Sc. 2 Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Γεωμετρική

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 8 Μελέτη φακών

ΑΣΚΗΣΗ 8 Μελέτη φακών Απαραίτητα όργανα και υλικά ΑΣΚΗΣΗ 8 Μελέτη φακών 8. Απαραίτητα όργανα και υλικά. Οπτική τράπεζα.. Πέτασμα. 3. Συγκεντρωτικός φακός. 4. Φωτεινή πηγή. 5. Διάφραγμα με δακτύλιο και οπή. 6. Φίλτρο κόκκινο

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ ΑΣΚΗΣΗ 0 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ . Γεωμετρική οπτική ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ Η Γεωμετρική οπτική είναι ένας τρόπος μελέτης των κυμάτων και χρησιμοποιείται για την εξέταση μερικών

Διαβάστε περισσότερα

ΟΠΤΙΚΑ ΣΤΟΙΧΕΙΑ : ΚΑΤΟΠΤΡΑ ΔΙΟΠΤΡΑ ΦΑΚΟΙ

ΟΠΤΙΚΑ ΣΤΟΙΧΕΙΑ : ΚΑΤΟΠΤΡΑ ΔΙΟΠΤΡΑ ΦΑΚΟΙ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΟΠΤΙΚΑ ΣΤΟΙΧΕΙΑ : ΚΑΤΟΠΤΡΑ ΔΙΟΠΤΡΑ ΦΑΚΟΙ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ.

Διαβάστε περισσότερα

ΑΚΤΥΛΙΟΙ ΤΟΥ ΝΕΥΤΩΝΑ

ΑΚΤΥΛΙΟΙ ΤΟΥ ΝΕΥΤΩΝΑ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ4 ΑΚΤΥΛΙΟΙ ΤΟΥ ΝΕΥΤΩΝΑ Γ. Μήτσου εκέµβριος 007 Α. ΘΕΩΡΙΑ Εισαγωγή Στο πείραµα αυτό θα προσδιορίσουµε το µήκος

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ 181 ΕΠΙΠΕ Ο ΙΟΠΤΡΟ. ΕΠΙΠΕ ΕΣ ΙΑΘΛΩΣΕΣ ΕΠΙΦΑΝΕΙΕΣ: Ο τύπος των επιπέδων διόπτρων

ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ 181 ΕΠΙΠΕ Ο ΙΟΠΤΡΟ. ΕΠΙΠΕ ΕΣ ΙΑΘΛΩΣΕΣ ΕΠΙΦΑΝΕΙΕΣ: Ο τύπος των επιπέδων διόπτρων ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ 8 ΕΠΙΠΕ Ο ΙΟΠΤΡΟ ΕΠΙΠΕ ΕΣ ΙΑΘΛΩΣΕΣ ΕΠΙΦΑΝΕΙΕΣ: Ο τύπος των επιπέδων διόπτρων προκύπτει από τον τύπο των σφαιρικών διόπτρων όταν R=. = Από τ σχέσ αυτή φαίνεται ότι το πρόσµο του είναι

Διαβάστε περισσότερα

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση Γεωµετρική θεώρηση του Φωτός Ανάκλαση ηµιουργίαειδώλουαπόκάτοπτρα. είκτης ιάθλασης Νόµος του Snell Ορατό Φάσµα και ιασπορά Εσωτερική ανάκλαση Οπτικές ίνες ιάθλαση σε

Διαβάστε περισσότερα

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες.

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες. ΑΝΑΚΛΑΣΗ Η ακτίνα (ή η δέσμη) πριν ανακλασθεί ονομάζεται προσπίπτουσα ή αρχική, ενώ μετά την ανάκλαση ονομάζεται ανακλώμενη. Η γωνία που σχηματίζει η προσπίπτουσα με την κάθετη στην επιφάνεια στο σημείο

Διαβάστε περισσότερα

ΟΠΤΙΚΕΣ ΔΙΑΦΟΡΕΣ ΜΕΤΑΞΥ ΟΦΘΑΛΜΙΚΩΝ ΦΑΚΩΝ ΚAI ΦΑΚΩΝ ΕΠΑΦΗΣ

ΟΠΤΙΚΕΣ ΔΙΑΦΟΡΕΣ ΜΕΤΑΞΥ ΟΦΘΑΛΜΙΚΩΝ ΦΑΚΩΝ ΚAI ΦΑΚΩΝ ΕΠΑΦΗΣ ΟΠΤΙΚΕΣ ΔΙΑΦΟΡΕΣ ΜΕΤΑΞΥ ΟΦΘΑΛΜΙΚΩΝ ΦΑΚΩΝ ΚAI ΦΑΚΩΝ ΕΠΑΦΗΣ Σ. Πλαΐνης, MSc, PhD Ινστιτούτο Οπτικής και Όρασης, Σχολή Επιστηµών Υγείας, Πανεπιστήµιο Κρήτης O. Λουκαΐδης, MSc Optical House, Ρόδος 1. Εισαγωγή

Διαβάστε περισσότερα

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες.

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες. ΑΝΑΚΛΑΣΗ Η ακτίνα (ή η δέσμη) πριν ανακλασθεί ονομάζεται προσπίπτουσα ή αρχική, ενώ μετά την ανάκλαση ονομάζεται ανακλώμενη. Η γωνία που σχηματίζει η προσπίπτουσα με την κάθετη στην επιφάνεια στο σημείο

Διαβάστε περισσότερα

ΤΕΙ ΑΘΗΝΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER

ΤΕΙ ΑΘΗΝΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΕΙ ΑΘΗΝΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΑΣΚΗΣΗ ΝΟ2 ΜΕΤΡΗΣΗ ΤΗΣ ΤΑΧΥΤΗΤΑΣ ΤΟΥ ΦΩΤΟΣ Γ. Μήτσου Οκτώβριος 2007 Α. Θεωρία Εισαγωγή Η ταχύτητα του φωτός

Διαβάστε περισσότερα

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 1 c 0 0 Όταν το φως αλληλεπιδρά με την ύλη, το ηλεκτρομαγνητικό πεδίο του

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ερωτήσεις κλειστού τύπου. Ερωτήσεις ανοικτού τύπου

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ερωτήσεις κλειστού τύπου. Ερωτήσεις ανοικτού τύπου ΟΠΤΙΚΗ Περιεχόμενα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ... 2 Ερωτήσεις κλειστού τύπου... 2 Ερωτήσεις ανοικτού τύπου... 2 Ασκήσεις... 3 ΚΥΜΑΤΙΚΗ ΟΠΤΙΚΗ... 4 Ερωτήσεις κλειστού τύπου... 4 Ερωτήσεις ανοικτού τύπου... 4 Ασκήσεις...

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά Κυµατική ΦΥΕ4 5/7/8 Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ4 Ιούλιος 8 KYMATIKH ιάρκεια: λεπτά Θέµα ο (Μονάδες:.5) A) Θεωρούµε τις αποστάσεις

Διαβάστε περισσότερα

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ 7.1 ΑΣΚΗΣΗ 7 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ ΘΕΩΡΙΑ Όταν φωτεινή παράλληλη δέσμη διαδιδόμενη από οπτικό μέσο α με δείκτη διάθλασης n 1 προσπίπτει σε άλλο οπτικό μέσο β με δείκτη διάθλασης n 2 και

Διαβάστε περισσότερα

4. Όρια ανάλυσης οπτικών οργάνων

4. Όρια ανάλυσης οπτικών οργάνων 4. Όρια ανάυσης οπτικών οργάνων 29 Μαΐου 2013 1 Περίθαση Οι αρχές ειτουργίας των οπτικών οργάνων που περιγράψαμε μέχρι στιγμής βασίζονται στη γεωμετρική οπτική, δηαδή την περιγραφή του φωτός ως ακτίνες

Διαβάστε περισσότερα

LASER 3 ΣΥΜΒΟΛΗ ΚΑΙ ΠΕΡΙΘΛΑΣΗ ΦΩΤΟΣ LASER ΜΕΤΡΗΣΗ ΣΤΑΘΕΡΑΣ ΛΕΠΤΟΥ ΠΛΕΓΜΑΤΟΣ ΚΑΙ ΤΗΣ ΑΚΤΙΝΑΣ ΜΙΚΡΩΝ ΚΟΚΚΩΝ

LASER 3 ΣΥΜΒΟΛΗ ΚΑΙ ΠΕΡΙΘΛΑΣΗ ΦΩΤΟΣ LASER ΜΕΤΡΗΣΗ ΣΤΑΘΕΡΑΣ ΛΕΠΤΟΥ ΠΛΕΓΜΑΤΟΣ ΚΑΙ ΤΗΣ ΑΚΤΙΝΑΣ ΜΙΚΡΩΝ ΚΟΚΚΩΝ LASER 3 ΣΥΜΒΟΛΗ ΚΑΙ ΠΕΡΙΘΛΑΣΗ ΦΩΤΟΣ LASER ΜΕΣΩ ΙΑΦΑΝΩΝ ΥΛΙΚΩΝ ΜΕΤΡΗΣΗ ΣΤΑΘΕΡΑΣ ΛΕΠΤΟΥ ΠΛΕΓΜΑΤΟΣ ΚΑΙ ΤΗΣ ΑΚΤΙΝΑΣ ΜΙΚΡΩΝ ΚΟΚΚΩΝ A. ΘΕΩΡΙΑ 1. Περίθλαση 1.1 Εισαγωγή Μια βασική ιδιότητα των κυµάτων είναι ότι

Διαβάστε περισσότερα

Σχήμα 9-1: (α) Το σύνθετο μικροσκόπιο του Janssen (1595) στο Middleburg Museum (β) Το μικροσκόπιο του van Leeuwenhoek (1670).

Σχήμα 9-1: (α) Το σύνθετο μικροσκόπιο του Janssen (1595) στο Middleburg Museum (β) Το μικροσκόπιο του van Leeuwenhoek (1670). Equation Chapter (Next) Section 1 Είδαμε στο κεφ. 6 ότι μπορούμε να χρησιμοποιήσουμε ένα συγκλίνοντα φακό για να παρατηρήσουμε ένα αντικείμενο σε μεγέθυνση. Όσο εύκολος κι αν είναι στη χρήση ο μεγεθυντικός

Διαβάστε περισσότερα

Μελέτη φάσµατος εκποµπής Hg µε φράγµα περίθλασης

Μελέτη φάσµατος εκποµπής Hg µε φράγµα περίθλασης Ο7 Μελέτη φάσµατος εκποµπής Hg µε φράγµα περίλασης 1 Σκοπός Στην άσκηση αυτή α µελετήσουµε το φάσµα εκποµπής του υδραργύρου και α προσδιορίσουµε τα µήκη κύµατος των φασµατικών του γραµµών µε τη βοήεια

Διαβάστε περισσότερα

3. Απλά οπτικά όργανα

3. Απλά οπτικά όργανα 3. Απλά οπτικά όργανα 20 Απριλίου 2013 1 Διαφράγματα Στο σχεδιασμό οπτικών οργάνων πρέπει να λάβει κανείς υπόψη και άλλες παραμέτρους πέρα από το πού και πώς σχηματίζεται το είδωλο ενός αντικειμένου. Μας

Διαβάστε περισσότερα

Παρατηρήσεις στη δηµιουργία του στάσιµου*

Παρατηρήσεις στη δηµιουργία του στάσιµου* Παρατηρήσεις στη δηµιουργία του στάσιµου* Κατά µήκος γραµµικού ελαστικού µέσου το οποίο ταυτίζεται µε τον άξονα χ χ, διαδίδονται κατά αντίθετη φορά, δύο εγκάρσια αρµονικά κύµατα, ίδιου πλάτους και ίδιας

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ Άσκηση 4: Σφάλματα φακών: Ι Σφαιρική εκτροπή Εξεταζόμενες γνώσεις: σφάλματα σφαιρικής εκτροπής. Α. Γενικά περί σφαλμάτων φακών Η βασική σχέση του Gauss 1/s +1/s = 1/f που

Διαβάστε περισσότερα

1. Σκοπός της άσκησης... 1. 2. Στοιχεία θεωρίας... 1. 2.1 Γεωμετρική οπτική... 1. 2.2 Ο νόμος της ανάκλασης... 1. 2.3 Ο νόμος της διάθλασης...

1. Σκοπός της άσκησης... 1. 2. Στοιχεία θεωρίας... 1. 2.1 Γεωμετρική οπτική... 1. 2.2 Ο νόμος της ανάκλασης... 1. 2.3 Ο νόμος της διάθλασης... 1. Λεπτοί Φακοί Σελίδα 1. Σκοπός της άσκησης.... 1 2. Στοιχεία θεωρίας... 1 2.1 Γεωμετρική οπτική... 1 2.2 Ο νόμος της ανάκλασης... 1 2.3 Ο νόμος της διάθλασης... 2 2.4 Είδωλα & παραξονική προσέγγιση...

Διαβάστε περισσότερα

Κεφάλαιο 33 ΦακοίκαιΟπτικάΣτοιχεία. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 33 ΦακοίκαιΟπτικάΣτοιχεία. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 33 ΦακοίκαιΟπτικάΣτοιχεία ΠεριεχόµεναΚεφαλαίου 33 Λεπτοί Φακοί- ιάδοση Ακτίνας Εξίσωση Λεπτού Φακού-Μεγέθυνση Συνδυασµός Φακών ΟιεξίσωσητουΟπτικού Φωτογραφικές Μηχανές : Ψηφιακές και Φιλµ ΤοΑνθρώπινοΜάτι;

Διαβάστε περισσότερα

Υπολογισµός της ισχύος συστήµατος λεπτών φακών σε επαφή

Υπολογισµός της ισχύος συστήµατος λεπτών φακών σε επαφή Ο6 Υπογισµός της ισχύος συστήµατος λεπτών φακών σε επαφή. Σκοπός Στην άσκηση αυτή θα προσδιορίσουµε την εστιακή απόσταση που διαµορφώνει ένα σύστηµα λεπτών φακών που βρίσκονται σε επαφή µεταξύ τους και

Διαβάστε περισσότερα

Με k1 = 1.220, k2 = 2.232, k3 = 3.238, and n = 1,2,3,

Με k1 = 1.220, k2 = 2.232, k3 = 3.238, and n = 1,2,3, ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ Ι ΠΟΜ 114(Ε) ΟΠΤΙΚΗ ιάθλαση φωτός µέσω σχισµής, γύρω από µικρό δοκάρι και µέσω µικρής οπής

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ Μάθημα προς τους ειδικευόμενους γιατρούς στην Οφθαλμολογία, Στο Κ.Οφ.Κ.Α. την 18/11/2003. Υπό: Δρος Κων. Ρούγγα, Οφθαλμιάτρου. 1. ΑΝΑΚΛΑΣΗ ΤΟΥ ΦΩΤΟΣ Όταν μια φωτεινή ακτίνα ή

Διαβάστε περισσότερα

7α Γεωμετρική οπτική - οπτικά όργανα

7α Γεωμετρική οπτική - οπτικά όργανα 7α Γεωμετρική οπτική - οπτικά όργανα Εισαγωγή ορισμοί Φύση του φωτός Πηγές φωτός Δείκτης διάθλασης Ανάκλαση Δημιουργία ειδώλων από κάτοπτρα Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/katsiki Ηφύσητουφωτός

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση =0.0 mm είναι τοποθετημένο σε απόσταση =1,0 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές φωτίζεται

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ LASER

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ LASER ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ ΜΟΝΟΧΡΩΜΑΤΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΣΚΟΠΟΙ H εξάσκηση στην παρατήρηση και περιγραφή φαινοµένων, όπως το φαινόµενο της συµβολής των κυµάτων H παρατήρηση των αποτελεσµάτων της διάδοσης της

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 17. Περίθλαση µε Laser

ΑΣΚΗΣΗ 17. Περίθλαση µε Laser ΑΣΚΗΣΗ 17 Περίθλαση µε Laser ΣΥΣΚΕΥΕΣ: Οπτική τράπεζα µε οθόνη, πηγή Laser, φράγµα, σχισµή, διάφραγµα µε τρύπα στην οποία στερεώνεται λεπτό σύρµα, µικρόµετρο, µέτρο. ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ: Συµβολή φωτός:

Διαβάστε περισσότερα

Σφάλματα φακών (Σφαιρικό - Χρωματικό).

Σφάλματα φακών (Σφαιρικό - Χρωματικό). O12 Σφάλματα φακών (Σφαιρικό - Χρωματικό). 1. Σκοπός Στην άσκηση αυτή υπολογίζονται πειραματικά δυο από τα πιο σημαντικά οπτικά σφάλματα (η αποκλίσεις) που παρουσιάζονται όταν φωτεινές ακτίνες διέλθουν

Διαβάστε περισσότερα

Κ.- Α. Θ. Θωμά. Οπτική

Κ.- Α. Θ. Θωμά. Οπτική Κ.- Α. Θ. Θωμά Οπτική Θεωρίες για τη φύση του φωτός Η ανάγκη διατύπωσης διαφορετικών θεωριών προέρχεται από την παρατήρηση ότι το φώς άλλες φορές συμπεριφέρεται σαν σωματίδιο και άλλοτε σαν κύμα, που είναι

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i. Στροφορμή στερεού q Η στροφορµή του στερεού γράφεται σαν: q Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: q H γωνιακή ταχύτητα δίνεται από: ω = 2 l = m a ra ω ω ra ω e a ΦΥΣ 211 - Διαλ.31 1 r a I j = m a

Διαβάστε περισσότερα

Α. Ροπή δύναµης ως προς άξονα περιστροφής

Α. Ροπή δύναµης ως προς άξονα περιστροφής Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό

Διαβάστε περισσότερα

s s f 25 s ' 10 10 s ' 10 α) s ' 16.7 β) S=10 cm, άρα το αντικείμενο βρίσκεται πάνω στην εστία.

s s f 25 s ' 10 10 s ' 10 α) s ' 16.7 β) S=10 cm, άρα το αντικείμενο βρίσκεται πάνω στην εστία. ΑΣΚΗΣΗ 1 Δύο κάτοπτρα σχηματίζουν ορθή γωνία, όπως φαίνεται στο σχήμα. Στο σημείο Ο υπάρχει ένα αντικείμενο. Να προσδιορίσετε τη θέση των ειδώλων που σχηματίζονται ΑΣΚΗΣΗ 2 Κοίλο σφαιρικό κάτοπτρο έχει

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΟΠΤΙΚΗ (Ηλεκτροµαγνητισµός-Οπτική) Γεωµετρική Οπτική (Μάηµα

Διαβάστε περισσότερα

ΙΑΓΝΩΣΤΙΚΗ ΚΑΙ ΘΕΡΑΠΕΥΤΙΚΗ ΧΡΗΣΗ ΤΩΝ ΠΡΙΣΜΑΤΩΝ

ΙΑΓΝΩΣΤΙΚΗ ΚΑΙ ΘΕΡΑΠΕΥΤΙΚΗ ΧΡΗΣΗ ΤΩΝ ΠΡΙΣΜΑΤΩΝ Αλέξανδρος Γ. αµανάκις ΙΑΓΝΩΣΤΙΚΗ ΚΑΙ ΘΕΡΑΠΕΥΤΙΚΗ ΧΡΗΣΗ ΤΩΝ ΠΡΙΣΜΑΤΩΝ Το διαθλαστικό µέσο που µεταβάλλει την κατεύθυνση µιας φωτεινής δέσµης, δεν επηρεάζει όµως την κλίση των ακτίνων της, είναι το πρίσµα.

Διαβάστε περισσότερα

Fundamentals of Lasers

Fundamentals of Lasers Fundamentals of Lasers Συνθήκη κατωφλίου: Ας υποθέσουμε ένα μέσο με καταστάσεις i> και k>, με ενέργειες Ε i, Ε k. Ένα Η/Μ κύμα που διαδίδεται σε αυτό το μέσο θα μεταβάλλει την έντασή του σύμφωνα με τη

Διαβάστε περισσότερα

Είδωλα: επίπεδα κάτοπτρα. Έκλειψη ηλίου. Σκιά. ΗΣελήνηπαρεµβάλλεται µεταξύ Ηλίου και Γης. Σαν αποτέλεσµα βλέπουµε µόνοτοεξωτερικόµέρος του Ήλιου.

Είδωλα: επίπεδα κάτοπτρα. Έκλειψη ηλίου. Σκιά. ΗΣελήνηπαρεµβάλλεται µεταξύ Ηλίου και Γης. Σαν αποτέλεσµα βλέπουµε µόνοτοεξωτερικόµέρος του Ήλιου. ίδωλα: επίπεδα κάτοπτρα Tο είδωλο είναι φανταστικό, καιέχειτοίδιοµέγεθος µετο αντικείµενο. Η δεξιά πλευρά του ειδώλου αντιστοιχεί στην αριστερή πλευρά του αντικειµένου 1 2 Σκιά λέµε τοσκοτεινόχώρο που

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ

ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ ΑΣΚΗΣΗ 3-2016 1 Σκοπός Σε αυτή την άσκηση ο φοιτητής χειρίζεται βασικά οπτικά όργανα όπως είναι οι λεπτοί φακοί. Στο πρώτο μέρος υπολογίζεται η εστιακή απόσταση

Διαβάστε περισσότερα

MEΡΙΚΑ ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΚΗΣ ΟΠΤΙΚΗΣ

MEΡΙΚΑ ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΚΗΣ ΟΠΤΙΚΗΣ MEΡΙΚΑ ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΚΗΣ ΟΠΤΙΚΗΣ Δ. Χατζηδημητρίου Βιβλιογραφία: Introduction to Optics, Pedrotti et al., 006, 3 rd edition, εκδ. Benjamin Cummings Optics and Photonics, An Introduction F. G. Smith

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!!

ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΘΕΩΡΙΑ ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info τηλ. 6977-85-58 1 ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info

Διαβάστε περισσότερα

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ ΟΜΑΔΑ ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ 1)... 2)... 3)... ΗΜΕΡΟΜΗΝΙΑ : Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ Με το πείραµα αυτό θα προσδιορίσουµε: Σκοπός

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου. Αρμονικό κύμα Συμβολή Στάσιμα

Διαγώνισμα Φυσικής Γ Λυκείου. Αρμονικό κύμα Συμβολή Στάσιμα Διαγώνισμα Φυσικής Γ Λυκείου Αρμονικό κύμα Συμβολή Στάσιμα ~~ Διάρκεια 3 ώρες ~~ Θέμα Α 1) Δύο σημεία ενός γραμμικού ομογενούς ελαστικού μέσου, στο οποίο έχει δημιουργηθεί στάσιμο εγκάρσιο κύμα, βρίσκονται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. Οπτικά όργανα. Α. Οι βασικοί νόµοι της Οπτικής

ΚΕΦΑΛΑΙΟ 3. Οπτικά όργανα. Α. Οι βασικοί νόµοι της Οπτικής ΚΕΦΑΛΑΙΟ 3 Οπτικά όργανα 3.1 Η φύση του φωτός Α. Οι βασικοί νόµοι της Οπτικής Το φως είναι ηλεκτροµαγνητικά κύµατα που διαδίδονται στο χώρο. ηλαδή, µεταβολές ηλεκτρικού και µαγνητικού πεδίου που διαδίδονται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο Φυσικής ΙΙΙ - Οπτική. Πέτρος Ρακιτζής. Τμήμα Φυσικής

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο Φυσικής ΙΙΙ - Οπτική. Πέτρος Ρακιτζής. Τμήμα Φυσικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εργαστήριο Φυσικής ΙΙΙ - Οπτική Πέτρος Ρακιτζής Φ-08: Εργαστήριο Φυσικής ΙΙΙ Οπτική. Σκοπός. ΜΕΛΕΤΗ ΛΕΠΤΩΝ ΦΑΚΩΝ Εξοικείωση με βασικές αρχές γεωμετρικής οπτικής

Διαβάστε περισσότερα

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων

Σχήµα 1. ιατάξεις πρισµάτων που προσοµοιώνουν τη λειτουργία των φακών. (α) Συγκλίνων. (β) Αποκλίνων Ο3 Γενικά περί φκών. Γενικά Φκός ονοµάζετι κάθε οµογενές, ισότροπο κι διφνές οπτικό µέσο που διµορφώνετι πό δυο σφιρικές επιφάνειες (ή πό µι σφιρική κι µι επίπεδη). Βσική () () Σχήµ. ιτάξεις πρισµάτων

Διαβάστε περισσότερα

α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση

α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση Λύση ΑΣΚΗΣΗ 1 α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση, προκύπτει: και Με αντικατάσταση στη θεµελιώδη εξίσωση

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ Ανάκλαση Κάτοπτρα Διάθλαση Ολική ανάκλαση Φαινόμενη ανύψωση αντικειμένου Μετατόπιση ακτίνας Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ - Ανάκλαση Επιστροφή σε «γεωμετρική οπτική» Ανάκλαση φωτός ονομάζεται

Διαβάστε περισσότερα

OMEGA FAR OMEGA NEAR ΑΡΧΕΣ ΣΧΕ ΙΑΣΜΟΥ & ΣΥΧΝΕΣ ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟΥΣ ΠΟΛΥΕΣΤΙΑΚΟΥΣ ΦΑΚΟΥΣ ΕΠΑΦΗΣ

OMEGA FAR OMEGA NEAR ΑΡΧΕΣ ΣΧΕ ΙΑΣΜΟΥ & ΣΥΧΝΕΣ ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟΥΣ ΠΟΛΥΕΣΤΙΑΚΟΥΣ ΦΑΚΟΥΣ ΕΠΑΦΗΣ OMEGA FAR OMEGA NEAR Μαλακοί πολυεστιακοί φακοί για την διόρθωση της πρεσβυωπίας Μοναδικός σχεδιασµός παραµετροποιήσιµος ανάλογα µε τις ανάγκες του χρήστη και τα κλιν ικά δεδοµένα ΑΡΧΕΣ ΣΧΕ ΙΑΣΜΟΥ & ΣΥΧΝΕΣ

Διαβάστε περισσότερα

2.1 Τρέχοντα Κύµατα. Οµάδα.

2.1 Τρέχοντα Κύµατα. Οµάδα. 2.1 Τρέχοντα Κύµατα. Οµάδα. 2.1.41. Κάποια ερωτήµατα πάνω σε µια κυµατοµορφή. Ένα εγκάρσιο αρµονικό κύµα, πλάτους 0,2m, διαδίδεται κατά µήκος ενός ελαστικού γραµµικού µέσου, από αριστερά προς τα δεξιά

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

Το θεώρηµα πεπλεγµένων συναρτήσεων

Το θεώρηµα πεπλεγµένων συναρτήσεων 57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης

Διαβάστε περισσότερα

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 30/1/11 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

ΣΥΜΒΟΛΟΜΕΤΡΟ MICHELSON ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ LASER He-Ne

ΣΥΜΒΟΛΟΜΕΤΡΟ MICHELSON ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ LASER He-Ne ΤΕΙ ΘΗΝΣ ΤΜΗΜ ΦΥΣΙΚΗΣ ΧΗΜΕΙΣ & Τ/Υ ΕΡΓΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LAE ΣΚΗΣΗ ΝΟ ΣΥΜΒΟΛΟΜΕΤΡΟ MICHELON ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ ΚΥΜΤΟΣ LAE He-Ne Γιώργος Μήτσου πρίλιος 007 . ΘΕΩΡΙ Εισαγωγή Τα

Διαβάστε περισσότερα

Γραµµικά πολωµένο φως - Ο νόµος του Malus

Γραµµικά πολωµένο φως - Ο νόµος του Malus Ο10 Γραµµικά πολωµένο φως - Ο νόµος του Malus 1. Σκοπός Στην άσκηση αυτή θα επιβεβαιώσουµε πειραµατικά την προβλεπόµενη σχέση ανάµεσα στη διεύθυνση πόλωσης του φωτός και της έντασής του, καθώς αυτό διέρχεται

Διαβάστε περισσότερα

ημήτρης Μαμούρας Γ' γυµνασίου ðìïðïéèíûîè õåöòýá ùíûîá ðáòáäåýçíáôá òöôüóåé õåöòýá Íìùôå áóëüóåé ðáîôüóåé åòöôüóåöî óøïìéëïà âéâìýïù

ημήτρης Μαμούρας Γ' γυµνασίου ðìïðïéèíûîè õåöòýá ùíûîá ðáòáäåýçíáôá òöôüóåé õåöòýá Íìùôå áóëüóåé ðáîôüóåé åòöôüóåöî óøïìéëïà âéâìýïù ημήτρης Μαμούρας Γ' γυµνασίου ðìïðïéèíûîè õåöòýá ùíûîá ðáòáäåýçíáôá òöôüóåé õåöòýá Íìùôå áóëüóåé ðáîôüóåé åòöôüóåöî óøïìéëïà âéâìýïù www.ziti.gr Πρόλογος Το βιβλίο που κρατάτε στα χέρια σας είναι γραμμένο

Διαβάστε περισσότερα

δ) Αν ένα σηµείο του θετικού ηµιάξονα ταλαντώνεται µε πλάτος, να υπολογίσετε την απόσταση του σηµείου αυτού από τον πλησιέστερο δεσµό. ΑΣΚΗΣΗ 4 Μονοχρ

δ) Αν ένα σηµείο του θετικού ηµιάξονα ταλαντώνεται µε πλάτος, να υπολογίσετε την απόσταση του σηµείου αυτού από τον πλησιέστερο δεσµό. ΑΣΚΗΣΗ 4 Μονοχρ ΑΣΚΗΣΗ 1 Κατά µήκος µιας ελαστικής χορδής µεγάλου µήκους που το ένα άκρο της είναι ακλόνητα στερεωµένο, διαδίδονται δύο κύµατα, των οποίων οι εξισώσεις είναι αντίστοιχα: και, όπου και είναι µετρηµένα σε

Διαβάστε περισσότερα

ΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ

ΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ 1 ΦΩΣ Στο μικρόκοσμο θεωρούμε ότι το φως έχει δυο μορφές. Άλλοτε το αντιμετωπίζουμε με τη μορφή σωματιδίων που ονομάζουμε φωτόνια. Τα φωτόνια δεν έχουν μάζα αλλά μόνον ενέργεια. Άλλοτε πάλι αντιμετωπίζουμε

Διαβάστε περισσότερα

Τι είναι η φωτογραφία

Τι είναι η φωτογραφία ΦΩΤΟΓΡΑΦΙΚΗ ΜΗΧΑΝΗ Φωτογραφική μηχανή ονομάζεται η συσκευή που χρησιμοποιείται για τη λήψη φωτογραφιών. Διακρίνονται σε δύο βασικές κατηγορίες: τις συμπαγείς (compact) και στις μονοοπτικές ρεφλέξ (SLR).

Διαβάστε περισσότερα

ΦΥΕ 10, Γ. ΚΟΡ ΟΥΛΗΣ, ιανύσµατα 1/6. = + tβ r. zk και εξισώνουµε τις συνιστώσες των διανυσµάτων x(t) = 1+ 2t, y(t) = 1+ 3t, z(t) = 4 + t

ΦΥΕ 10, Γ. ΚΟΡ ΟΥΛΗΣ, ιανύσµατα 1/6. = + tβ r. zk και εξισώνουµε τις συνιστώσες των διανυσµάτων x(t) = 1+ 2t, y(t) = 1+ 3t, z(t) = 4 + t ΦΥΕ 10, Γ. ΚΟΡ ΟΥΛΗΣ, ιανύσµατα 1/6 ) Ευθεία Ευθεία διέρχεται από το σηµείο Α µε διάνυσµα θέσης = i j+ 4k το διάνυσµα β = 2i + 3j + k. και είναι παράλληλη προς Α = + tβ α β ιανυσµατική εξίσωση: Εισάγουµε

Διαβάστε περισσότερα

Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση ΠεριεχόµεναΚεφαλαίου 35 Περίθλαση απλής σχισµής ή δίσκου Intensity in Single-Slit Diffraction Pattern Περίθλαση διπλής σχισµής ιακριτική ικανότητα; Κυκλικές ίριδες ιακριτική

Διαβάστε περισσότερα

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες.

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες. Στην περίπτωση της ταλάντωσης µε κρίσιµη απόσβεση οι δύο γραµµικώς ανεξάρτητες λύσεις εκφυλίζονται (καταλήγουν να ταυτίζονται) Στην περιοχή ασθενούς απόσβεσης ( ) δύο γραµµικώς ανεξάρτητες λύσεις είναι

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

Προβλήματα φακών/κατόπτρων

Προβλήματα φακών/κατόπτρων Προβλήματα φακών/κατόπτρων 1. Χρησιμοποιείστε την τεχνική των ακτινών και σχηματισμών ειδώλου για να βρείτε το είδωλο, που δημιουργείται από ένα κοίλο σφαιρικό κάτοπτρο, ενός αντικειμένου που τοποθετείται

Διαβάστε περισσότερα

Περίθλαση από ακµή και από εµπόδιο.

Περίθλαση από ακµή και από εµπόδιο. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 63 6. Άσκηση 6 Περίθλαση από ακµή και από εµπόδιο. 6.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης αυτής, καθώς και των δύο εποµένων, είναι η γνωριµία των σπουδαστών

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

NTÙÍÉÏÓ ÃÊÏÕÔÓÉÁÓ - ÖÕÓÉÊÏÓ www.geocities.com/gutsi1 -- www.gutsias.gr

NTÙÍÉÏÓ ÃÊÏÕÔÓÉÁÓ - ÖÕÓÉÊÏÓ www.geocities.com/gutsi1 -- www.gutsias.gr Έστω µάζα m. Στη µάζα κάποια στιγµή ασκούνται δυο δυνάµεις. ( Βλ. σχήµα:) Ποιά η διεύθυνση και ποιά η φορά κίνησης της µάζας; F 1 F γ m F 2 ιατυπώστε αρχή επαλληλίας. M την της Ποιό φαινόµενο ονοµάζουµε

Διαβάστε περισσότερα

Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή.

Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή. Στροφορµή Έστω ένα υλικό σηµείο που κινείται µε ταχύτητα υ και έστω ένα σηµείο Ο. Ορίζουµε στροφορµή του υλικού σηµείου ως προς το Ο, το εξωτερικό γινόµενο: L= r p= m r υ Όπου r η απόσταση του υλικού σηµείου

Διαβάστε περισσότερα

Κυματική Φύση του φωτός και εφαρμογές. Περίθλαση Νέα οπτικά μικροσκόπια Κρυσταλλογραφία ακτίνων Χ

Κυματική Φύση του φωτός και εφαρμογές. Περίθλαση Νέα οπτικά μικροσκόπια Κρυσταλλογραφία ακτίνων Χ Κυματική Φύση του φωτός και εφαρμογές Περίθλαση Νέα οπτικά μικροσκόπια Κρυσταλλογραφία ακτίνων Χ Επαλληλία κυμάτων Διαφορά φάσης Δφ=0 Ενίσχυση Δφ=180 Απόσβεση Κάθε σημείο του μετώπου ενός κύματος λειτουργεί

Διαβάστε περισσότερα

4ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 21 εκέµβρη ο Κεφάλαιο - Κύµατα. Ενδεικτικές Λύσεις. Θέµα Α

4ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 21 εκέµβρη ο Κεφάλαιο - Κύµατα. Ενδεικτικές Λύσεις. Θέµα Α 4ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 21 εκέµβρη 2014 Α.1. Τα ηλεκτροµαγνητικά κύµατα : 2ο Κεφάλαιο - Κύµατα Ενδεικτικές Λύσεις Θέµα Α (ϐ) υπακούουν στην αρχή της επαλληλίας. Α.2. υο σύγχρονες πηγές

Διαβάστε περισσότερα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες

Διαβάστε περισσότερα

Ασκήσεις Εργαστηρίου

Ασκήσεις Εργαστηρίου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΑΘΗΝΑΣ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ & ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΟΠΤΙΚΗΣ & ΟΠΤΟΜΕΤΡΙΑΣ Ασκήσεις Εργαστηρίου (ΦΥΛΛΑ ΙΟ ΘΕΩΡΙΑΣ ΕΡΓΑΣΤΗΡΙΟΥ) Ιστορία & Οπτική Οφθαλµικών Φακών ΑΡ.

Διαβάστε περισσότερα

Άσκηση 29. Μέτρηση της ταχύτητας του ήχου στα υγρά

Άσκηση 29. Μέτρηση της ταχύτητας του ήχου στα υγρά Άσκηση 29 Μέτρηση της ταχύτητας του ήχου στα υγρά 29.1. Σκοπός Σκοπός της άσκησης είναι η µέτρηση της ταχύτητας του ήχου υ στην αιθυλική αλκοόλη, µε τη µέθοδο ενός στάσιµου υπερηχητικού κύµατος που γίνεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

2.2. Συµβολή και στάσιµα κύµατα. Οµάδα Γ.

2.2. Συµβολή και στάσιµα κύµατα. Οµάδα Γ. 2.2. Συµβολή και στάσιµα κύµατα. Οµάδα Γ. 2.2.21. σε γραµµικό ελαστικό µέσο. ύο σύγχρονες πηγές Ο 1 και Ο 2 παράγουν αρµονικά κύµατα που διαδίδονται µε ταχύτητα υ=2m/s κατά µήκος ενός γραµµικού ελαστικού

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

Το οπτικό μικροσκόπιο και ο τρόπος χρήσης του

Το οπτικό μικροσκόπιο και ο τρόπος χρήσης του Το οπτικό μικροσκόπιο και ο τρόπος χρήσης του Το ανθρώπινο μάτι μπορεί να διακρίνει λεπτομέρειες της τάξης των 50-200 μm. Ο άνθρωπος με τις πρωτοποριακές εφευρέσεις των Malpighi, Hooke, Van Leeuwenhook

Διαβάστε περισσότερα

6.10 Ηλεκτροµαγνητικά Κύµατα

6.10 Ηλεκτροµαγνητικά Κύµατα Πρόταση Μελέτης Λύσε απο τον Α τόµο των Γ. Μαθιουδάκη & Γ.Παναγιωτακόπουλου τις ακόλουθες ασκήσεις : 11.1-11.36, 11.46-11.50, 11.52-11.59, 11.61, 11.63, 11.64, 1.66-11.69, 11.71, 11.72, 11.75-11.79, 11.81

Διαβάστε περισσότερα

Ονοµατεπώνυµο:... 3 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. ραστηριότητα 1 η : (Γνωριµία µε το πρόγραµµα προσοµοίωσης)

Ονοµατεπώνυµο:... 3 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. ραστηριότητα 1 η : (Γνωριµία µε το πρόγραµµα προσοµοίωσης) Ονοµατεπώνυµο:.... Τάξη: ΕΠΑ.Λ Τµήµα:. Ηµεροµηνία:.. 3 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ραστηριότητα 1 η : (Γνωριµία µε το πρόγραµµα προσοµοίωσης) Ανοίξτε την προσοµοίωση EOEK_a.ip, που βρίσκεται στο φάκελο µε τίτλο ιδακτική

Διαβάστε περισσότερα

ΟΠΤΙΚΗ ΟΦΘΑΛΜΙΚΩΝ ΦΑΚΩΝ Κ ΦΑΚΩΝ ΕΠΑΦΗΣ. A. ιαφορές µεταξύ γυαλιών και φακών επαφής / διαθλαστικής χειρουργικής

ΟΠΤΙΚΗ ΟΦΘΑΛΜΙΚΩΝ ΦΑΚΩΝ Κ ΦΑΚΩΝ ΕΠΑΦΗΣ. A. ιαφορές µεταξύ γυαλιών και φακών επαφής / διαθλαστικής χειρουργικής ΟΠΤΙΚΗ ΟΦΘΑΛΜΙΚΩΝ ΦΑΚΩΝ Κ ΦΑΚΩΝ ΕΠΑΦΗΣ A. ιαφορές µεταξύ γυαλιών και φακών επαφής / διαθλαστικής χειρουργικής Για την διόρθωση του διαθλαστικού σφάλµατος του οφθαλµού (µυωπία, υπερµετρωπία, αστιγµατισµός)

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ

ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ ΣΧΟΛΗ Ν. ΟΚΙΜΩΝ ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ ΙΙ Σ.Α.Ε. ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΑΠΤΥΓΜΑΤΟΣ FOURIER ΜΕ ΑΡΙΘΜΗΤΙΚΟ ΤΡΟΠΟ ΕΚΕΜΒΡΙΟΣ 3 ) Αρχικό σήµα ( ) Στο παρακάτω σχήµα φαίνεται ένα περιοδικό σήµα ( ), το οποίο έχει ληφθεί από

Διαβάστε περισσότερα

ΑΣΤΙΓΜΑΤΙΣΜΟΣ ΑΠΟ ΤΗ ΣΥΝΤΑΓΗ ΣΤΟ ΦΑΚΟ ΕΠΑΦΗΣ

ΑΣΤΙΓΜΑΤΙΣΜΟΣ ΑΠΟ ΤΗ ΣΥΝΤΑΓΗ ΣΤΟ ΦΑΚΟ ΕΠΑΦΗΣ ΑΣΤΙΓΜΑΤΙΣΜΟΣ ΑΠΟ ΤΗ ΣΥΝΤΑΓΗ ΣΤΟ ΦΑΚΟ ΕΠΑΦΗΣ Θεόδωρος Μουσαφειρόπουλος Οπτομέτρης Workshop 5 η επιστημονική διημερίδα ΣΟΟΒΕ ΟΡΙΣΜΟΣ Ο Αστιγματισμός είναι ένα λειτουργικό πρόβλημα, μια διαθλαστική ανωμαλία

Διαβάστε περισσότερα

Ασκήσεις (Ηλεκτρισμός-Οπτική) Κ.-Α. Θ. Θωμά

Ασκήσεις (Ηλεκτρισμός-Οπτική) Κ.-Α. Θ. Θωμά Ασκήσεις (Ηλεκτρισμός-Οπτική) Ηλεκτρισμός 6 η. Ηλεκτρόνια κινούμενα με ταχύτητα 0 m / sec εισέρχονται σε χώρο μαγνητικού πεδίου όπου διαγράφουν κυκλική τροχιά ακτίνας 0.0m. Να βρεθεί η ένταση του μαγνητικού

Διαβάστε περισσότερα

Εργαστήριο Οπτικής ΠΕΡΙΘΛΑΣΗ ΤΟΥ ΦΩΤΟΣ. Μάκης Αγγελακέρης 2010

Εργαστήριο Οπτικής ΠΕΡΙΘΛΑΣΗ ΤΟΥ ΦΩΤΟΣ. Μάκης Αγγελακέρης 2010 ΠΕΡΙΘΛΑΣΗ ΤΟΥ ΦΩΤΟΣ Μάκης Αγγελακέρης 2010 Σκοπός της άσκησης Να μπορείτε να περιγράψετε ποιοτικά το φαινόμενο της περίθλασης του φωτός καθώς επίσης να μπορείτε να διακρίνετε τις συνθήκες που χαρακτηρίζουν

Διαβάστε περισσότερα

Φυσική Εικόνας & Ήχου ΙΙ (Ε)

Φυσική Εικόνας & Ήχου ΙΙ (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική Εικόνας & Ήχου ΙΙ (Ε) Ενότητα 3: Σφάλματα φακών (Σφαιρικό - Χρωματικό) Αθανάσιος Αραβαντινός Τμήμα Φωτογραφίας & Οπτικοακουστικών

Διαβάστε περισσότερα