1 Το φυσικό πρόβλημα και εξισώσεις

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 Το φυσικό πρόβλημα και εξισώσεις"

Transcript

1 Αριθμητική επίλυση των εξισώσεων της ελαστοδυναμικής και μελέτη της κυματικής διάδοσης στα στερεά: επιμήκη κύματα(p-waves) και εγκάρσια κύματα(s-waves) Χρυσούλα Τσόγκα 1 Το φυσικό πρόβλημα και εξισώσεις Ενδιαφερόμαστε για το πρόβλημα μετάδοσης κυμάτων σε ένα στερεό, ετερογενές και ισότροπο σε δύο διαστάσεις. Το διάνυσμα παραμορφώσεων u ικανοποίει τις γραμμικές εξισώσεις της ελαστοδυναμικής: ρ(x) ũ t div σ(ũ) = f στην Ω R (1) με τις αρχικές συνθήκες: u(x, 0) = u 0 (x) στην Ω u t (x, 0) = u 1(x) στην Ω και τις συνοριακές συνθήκες : u = 0 στο Γ D (Dirichlet) σ( u) n = 0 σ( u) n = B u t στο Γ N (Neumann) στο Γ A (Absorbing) όπου Γ D Γ N Γ A = Γ, nείναιτοκάθετομοναδιαίοεξωτερικόδιάνυσμακαιοπίνακας B ορίζεται από: [ ] µρ 0 B = (4) 0 (λ + µ)ρ Παρατήρηση 1.1 Η απορροφητική(absorbing) συνοριακή συνθήκη θα χρησιμοποιηθεί μόνοσεσύνοροπαράλληλομετονάξονα x. 1 () ()

2 Στην(1), σ είναι ο τανυστής τασης που συνδέεται με τον τανυστή παραμορφώσεων ε( u) μετοννόμοτου Hooke: ε( u) ij = 1 ( u i x j + u j x i ) σ ij = λ(x)div(ũ)δ ij + µ(x)ε ij = λ(x)tr(ε)δ ij + µ(x)ε ij (5) όπου λ(x) και µ(x) είναι οι συντελεστές Lamé που χαρακτηρίζουν το στερεό υλικό. Ε1.1Στηνπερίπτωσηπουτουλικόείναιομογενές(δηλαδή λ(x) = λ, µ(x) = µ, ρ(x) = ρ) δείξτεότιτοσύστημα(1)μπορείναγραφτείως: ήαλλιώςθέτοντας u = (u, v): Ενέργεια ρ u t (λ + µ) (div u) µ u = f στην Ω R (6) ρ u t (λ + µ) u x µ u y (λ + µ) v x y = f 1 ρ v t (λ + µ) u x y µ v x (λ + µ) v y = f Ορίζουμε την ενέργεια του συστήματος ως το άθροισμα της κινητικής και της δυναμικής ενέργειας: ( 1 E(t) = ρ u t + 1 ) σ( u)ε( u) dx (8) Ω (7) Ε1.Δείξτεότιαν Ω = R και f 1 = f = 0τότεηενέργειαδιατηρείται d(e(t) dt = 0. Εστω H = (L (Ω)) και V = { v (H 1 (Ω)) ; v = 0 στο Γ D } Ε1.Δείξτεότιημεταβολικήμορφήτουπροβλήματος(1),()()γράφεται: Βρείτε u(x, t)τ.ω u(t) V, d ρ u. vdx + σ( u)ε( v)dx d B u. vdγ = f. vdx (9) dt Ω Ω dt Γ A Ω γιακάθε v V. Θαδεχτούμεότιψάχνουμετηνλύσηστοχώρο L (0, T; V ) C 0 (0, T; H).

3 Ανάλυση με επίπεδα κύματα Θεωρούμε εδώ ότι το υλικό είναι ομογενές. Ορίζουμε ως αρμονικά επίπεδα κύματα τις λύσεις τηςεξίσωσης(1),με f = 0,πουγράφονταιστηνμορφή: όπου u = d exp(i(ωt k x)) (10) kείναιτοδιάνυσμακύματος(αντιστοιχείστηνδιεύθυνσημετάδοσηςτουκύματος). ωείναιηκυκλικήσυχνότητα f = ω π είναιησυχνότητα dείναιηδιεύθυνσηταλάντωσης. Ε.1 Δείξτε ότι για να βρούμε τα αρμονικά επίπεδα κύματα που μεταδίδονται στην κατεύθυνση kαρκείναλύσουμετοπρόβλημα: Βρείτε d 0και ωτ.ω. (µ k ρω ) d + (λ + µ)( d. k) (11) k = 0 ήαλλιώς, Βρείτε d 0και ωτ.ω. ω d = ˆK d (1) Τοπρόβλημα(1)είναιέναπρόβλημαιδιοτιμών. Υπολογίστε ω (=τιςιδιοτιμέςτουπίνακα ˆK)καιτααντίστοιχαιδιοδιανύσματα d. Συμπερένετεότιυπάρχουνδύοείδηκυμάτων: τα επιμήκη κύματα(primary, P-waves) που αντιστοιχούν στην πιο μεγάλη ιδιοτιμή, και των οποίωνηκατεύθυνσηταλάντωσηςείναιπαράλληληστηνκατεύθυνσηδιάδοσης( d k)καιτα εγκάρσια κύματα(shear, S-waves) των οποίων η κατεύθυνση ταλάντωσης είναι κάθετη στην κατεύθυνσηδιάδοσης( d k). Γράψτετιςαντίστοιχεςσχέσειςδιασποράς(τιςσχέσειςπου συνδέουν k και ω).βρείτετιςταχύτητεςμετάδοσηςτωνκυμάτων(λέγονταικαιταχύτητες φάσης) που ορίζονται από: V = ω k Παρατηρήστε ότι και οι δύο ταχύτητες είναι ανεξάρτητες από τη συχνότητα(γι αυτό λέμε ότι οι ελαστοδυναμικές εξισώσεις δεν έχουν διασπορά) και την κατεύθυνση(για ισότροπα μέσα μεταφοράς).

4 Προσέγγιση.1 Ημί-διακριτοποίηση στο χώρο Στηνσυνέχεια,θέωρούμεότιηπεριοχή Ωείναιένατετράγωνο Ω = [0, a] [0, b].κατασκεύαζουμε ένα πλέγμα της Ω με ορθογώνια τρίγωνα όπως στο σχήμα 1. y b y j = (j 1)h (0,0) M ij x i = (i 1)h a x Σχήμα 1: Παράδειγμα πλέγματος Συμβολίζουμεμε H 1 h τουποσύνολοπεπερασμένηςδιάστασηςτου H1 (Ω), H 1 h = { v C 0 ( Ω), v /Qj P 1 (Q j ) j } (w j )μίαβάσητου H h,ορίζεταιαπό : w J (M I ) = δ IJ 1 I, J N και V h τουποσύνολοτου V,μεδιάσταση N h = N N D N,όπου N D είναιοαριθμόςτων σημείων που ανοίκουν στο σύνορο Dirichlet: V h = { v (H 1 h) ; v = 0 στο Γ D } Ορίζουμε τις διανυσματικές συναρτήσεις βάσης, ( ) ( w I 1 wi 0 = ; w I = 0 w I ) 4

5 Ε.1 Γράψτε την προσεγγιστική μεταβολική μορφή του προβλήματος. Η προσεγγιστική λύση u h = (u 1 h, u h )γράφεταισύμφωναμετηνμέθοδοτηςπαρεμβολής: ή N h u 1 h (x, t) = u 1 J (t)w J(x) J=1 N h u h (x, t) = u J(t)w J (x) u h (x, t) = Δείξτε ότι το πρόβλημα γράφεται στη μορφή, J=1 N h u α J (t) wα J (x) α=1 J=1 d U M h dt du BA h dt + K hu = F h (1) όπουπρέπειναβρείτετουςπίνακες M h (μάζας), K h (άκαμπτος)και B A h (οπίνακαςπουαντιστοιχεί στις απορροφητικές συνθήκες). Το διάνυσμα U ορίζεται από, U = (u u1 N h u 1...u N h ) όπουυποθέσαμεότιτασημεία Dirichletαντιστοιχούνστουςαριθμούς N h + 1ως N. Υπολογισμός των πινάκων αναφοράς Θεωρούμετοπεπερασμένοστοιχείοαναφοράς ˆQ,συμβολίζουμεμε M i, i = 1,...,τα σημείατουστηντοπικήαρίθμηση(βλέπεσχήμα)καιμε τ i k τιςτοπικέςσυναρτήσειςβάσης ( ) ( ) τ i 1 τi 0 = ; τ i =. 0 τ i Q 1 Σχήμα : Η τοπική αρίθμηση 5

6 Ε. Υπολογίστε τους πίνακες αναφοράς. Θα κατασκεύασετε τους πίνακες διάστασης : M ij = τ i τ j ; i, j = 1,..., ; K 11ij = 1 τ i 1 τ j ; i, j = 1,..., ; K ij = τ i τ j ; i, j = 1,..., ; (14) K 1ij = 1 τ i τ j ; i, j = 1,..., ; K 1ij = τ i 1 τ j ; i, j = 1,..., ; Για τον υπολογισμό των ολοκληρωμάτων να χρησιμοποιήσετε τη σχέση fdxdy 1 (f 1 + f + f ) Q, (15) Q όπου f i είναιητιμήτηςσυνάρτησης fστοσημείο M i και Qείναιτοεμβαδόντουτριγώνου Q.Παρατηρήστεότιοπίνακας M h είναιτώραδιαγώνιος. Ε. Γράψτε έναν αλγόριθμο υπολογισμού του άκαμπτου πίνακα. Ορισμόςτουπίνακα B A h. Πρόκειταιγιαέναπίνακαπουαφοράμόνοτασημείαπουανοίκουνστοσύνορο Γ a.παρατηρήστεότιοισυναρτήσειςβάσης φ i πάνωστοσύνοροείναισυναρτήσεις P 1 μίαςμεταβλητής. M i Tm { Σχήμα:Παράδειγμαπλέγματοςστοσύνορο Γ a Θέωρουμε το πεπερασμένο στοιχείο αναφοράς σε μία διάσταση: 1 Σχήμα 4: Πεπερασμένο στοιχείο αναφοράς σε 1d Συμβολίζουμεμε M i, i = 1, τασημείατουστηντοπικήαρίθμηση(βλέπεσχήμα4)και με φ k i τιςτοπικέςσυναρτήσειςβάσης, ( ) ( ) φ 1 i = φi ; φ 0 0 i =. φ i 6

7 Υπολογίστε τους πίνακες χρησιμοποιώντας την σχέση: I I φ m l φ m k dγ f = I (f 1 + f ) (16) όπου f i=1, είναιητιμήτηςσυνάρτησης fστασημεία M i, i = 1, και I είναιτομήκοςτου ευθύγραμμου τμήματος I. Ε.4Γράψτεέναναλγόριθμουπολογισμούτουπίνακα B A h (είναιδιαγώνιος).. Ολική Διακριτοποίηση Ε.5 Χρησιμοποιώντας πεπερασμένες διαφορές γράψτε την ολική διακριτοποίηση του προβλήματος στην μορφή, M h U n+1 U n + U n 1 t + Bh A U n+1 U n 1 t + K h U n = F n h (17) όπου tείναιτοβήμαδιακριτοποίησηςστοχρόνοκαι U k είναιηλύσηστοχρόνο k t.. Αριθμητική σχέση διασποράς και μελέτη ευστάθειας της μεθόδου Για να μελετήσουμε τις ιδιότητες της αριθμητικής μεθόδου, ενδιαφερόμαστε αρχικά για την περιπτωσηόπου Ω = R τουλικόείναιομογενέςκαι f = 0. Θεωρούμεεπίσηςότι x = y = h. Ε.6 Χρησιμοποιόντας τις εξισώσεις του διακριτού προβλήματος γράψτε την εξίσωση στο σημείο M ij,γιαευκολίαμπορούμεναχρησιμοποιήσουμετηναρίθμησητουσχήματος5 M i 1 j+1 M i j+1 1 M i 1 j Q Q Q 1 1 M ij Q 4 Q 6 Q 5 1 M i j 1 M i+1 j M i+1 j 1 Σχήμα5:Τοσημείο M ij καιταγειτονικάτουσημεία 7

8 όπου (K h u h ) 1 = λ + µ h (u i,j u i+1,j u i 1,j ) (K h u h ) = ρ un+1 ij u n ij + un 1 ij + K t h u n h = 0 (18) + µ h (u i,j u i 1,j+1 u i+1,j 1 ) ( (λ + µ) + v h i,j + 1 ) (v i,j+1 + v i,j 1 v i 1,j v i+1,j v i 1,j+1 v i+1,j 1 ) (19) (λ + µ) 4h ( u i,j + 1 ) (u i,j+1 + u i,j 1 u i 1,j u i+1,j u i 1,j+1 u i+1,j 1 ) + λ + µ h (v i,j v i 1,j+1 v i+1,j 1 ) + µ h (v i,j v i 1,j v i+1,j ) Μεαυτόντοντρόπογράψαμετηνμέθοδοπεπερασμένωνστοιχείων Q 1 ωςμίαισοδύναμη μέθοδο πεπερασμένων διαφορών. Για να βρούμε την αριθμητική σχέση διασποράς θεωρούμε λύσεις του προβλήματος της μορφής Ε.7Δείξτεότιησχέσηδιασποράςγράφεται: (υπολογίστετονπίνακα ˆK h ). (0) u h = d exp[i(ωn t ik x x jk z z)] (1) ρ t (cosω t 1) d + ˆK h ( k) d = 0 () Μπορούμε να δείξουμε ότι μία απαραίτητη συνθήκη για να είναι η μέθοδος ευσταθής είναι να είναι το ω πραγματικός αριθμός(αλλιώς υπάρχουν λύσεις οι οποίες αυξανονται εκθετικά στοχρόνο).βρείτεμίασυνθήκηέτσιώστεναέχουμε ω R. Ε.8Υπολογίστετιςιδιοτιμέςτουπίνακα ˆK h.συμβολίζουμεμε s P και s S αυτέςτιςιδιοτιμές,με s S s P. Ε.9Γράψτετηνσυνθήκη ω R(1 cosω t [0, ])στηνμορφή f(β 1, β ) [0, ], k 1, k με β 1 = cos(k 1 x)και β = cos(k x). Μελετώνταςτιςτιμέςαυτήςτηςσυνάρτησης f στοτετράγωνο [ 1, 1],καταλήξτεστο συμπέρασμα ότι έχουμε την συνθήκη CFL, VP t x 1 () 8

9 4 Προγραμματισμός. Αριθμητική μελέτη. 4.1 Αριθμητική μελέτη της διασποράς Είδαμεότιγιατοσυνεχέςπρόβλημαοιταχύτητεςμετάδοσηςείναι V P = µ διαμήκηκύματακαι V S = ρ υπολογίζονται από, λ + µ ρ γιατα num γιαταεγκάρσια. Οιαριθμητικέςταχύτητες Vj, j = P, S V num j = ωnum j k όπου ωj num ( k )είναιηλύσειςτηςαριθμητικήςσχέσηςδιαποράς ρ t(1 cosωnum j t) = s j ( k) (4) Για να συγκρίνουμε τις αριθμητικές με τις συνεχείς ταχύτητες, ορίζουμε το πηλίκο Ορίζουμε επίσης, τομήκοςκύματος: l = π ω. q j ( k) = ωnum j ( k) k V j με j = Pή S. τοναριθμόσημείωνανάμήκοςκύματος: G = l h = π k h καιτοαντίστροφοτου H = 1/G. Ε4.1Θεωρούμεμίακατεύθυνσημεταφοράς k = k (cosθ, sinθ).αντικαθιστούμεστο s j : k 1 = π H h cos(θ), k = π H h sin(θ), όπου k = π H h Μπορούμεναχρησιμοποιήσουμε h = 1.Παρατηρήστεότιτώρατα s j εξαρτώνταιαπότο θκαι το H. Γράψτε ένα πρόγραμμα που να υπολογίζει τις αριθμητικές ταχύτητες φάσης. Σχεδιάστε ταπηλίκα q j (για j = Pκαι j = S)ωςσυνάρτησητου H(για H [0., 0.5])γιαδιαφορετικές π τιμέςτου θ = 0, 1, π 6, π 4 καιτου t = αh = αμε α = [0, α max], α max = 1 VP. Επίσης σχεδιάστετα q j ωςσυνάρτησητου θγιαδιαφορετικεςτιμέςτων ακαι H. 9

10 4. Υπολογιστικές προσομοιώσεις Γιαναπροσομοιώσουμεμίαπηγήστοσημείο (x s, y s ),μπορούμεναθεωρίσουμε, F(x, y, t) = f(r)g(t) όπου f(r) = (1 r a ) 1 Ba e j=p,s r = (x x s ) + (y y s ), a = 5h με e P = ( x x s r, y y s r με h = min ( x, y) ), e S = ( y y s r, x x s ) r 1 Ba είναιηχαρακτηριστικήσυνάρτησητουδίσκουμεκέντρο (x s, y s )καιακτίνα a (πf 0 ) (t t 0 ) exp ( πf 0 (t t 0 )) t [0, t 1 ] g(t) = 0 t > t 1 t 0 = 1 f 0, t 1 = f 0 (5) καιμηδενικέςαρχικέςσυνθήκες, { u0 (x, y) = 0 u 1 (x, y) = 0 Γιατονυπολογισμότουπίνακα F h, (6) f h (x, t) = N h fj l τl j (x) l=1 j=1 όπου (f 1 j, f j )είναιητιμήτηςσυνάρτησης f(r)στοσημείο M j καιχρησιμοποιούμετηνσχέση (15)γιατονυπολογισμότου F h. Εχουμετότε F h = M h [ f ] [ ] με M h τονπίνακαμάζαςπουείναιδιαγώνιος,με f = (f1, 1 f, 1.., fn 1 h, f1, f,.., fn h )διάνυσμα πουέχειωςσυνιστώσεςτιςτιμέςτης f(r)στασημεία M i=1,..,nh. Άραέχουμε Ετερογενές μέσο μεταφοράς F n h = F h g(n t), t = αh Θεωρούμε τώρα ένα μέσο μεταφοράς που αποτελείται από δύο υλικά(βλέπε σχήμα 6). 10

11 y y = b Absorbing Condition y = b Condition Dirichlet Υλικό1: λ 1, µ 1, ρ 1 Υλικό: λ, µ, ρ Condition Dirichlet (0, 0) Absorbing Condition x = a x Σχήμα 6: Το ετερογενές μέσο μεταφοράς Ε4.Γιαναλάβετευπόψητηνετερογένειατουυλικούπρέπειναξέρετετασημείατηςδιεπιφάνειας.Δείξτεότισεαυτήτηνπερίπτωσηοιεξισώσειςστοσημείο M ij στηδι-επιφάνεια γράφονται(βλέπε σχήμα 7) M i 1 j+1 M i j+1 1 Q Q Q 1 M i 1 j 1 M ij M i+1 j Q 4 Q 6 Q 5 υλικο 1 υλικο 1 M i j 1 M i+1 j 1 Σχήμα7:Τοσημείο M ij τηςδιεπιφάνειαςκαιταγειτονικάτουσημεία 11

12 ρ 1 + ρ u n+1 i,j u n i,j + un 1 i,j t = λ 1 + µ 1 + λ + µ h (u i,j u i+1,j u i 1,j ) + µ 1 h (u i,j u i,j+1 ) + µ h (u i,j u i,j 1 ) ρ 1 + ρ v n+1 i,j + λ 1 h (v i+1,j+1 v i+1,j + v i,j v i,j+1 ) + λ h (v i 1,j 1 v i 1,j + v i,j v i,j 1 ) + µ 1 h (v i,j v i 1,j + v i+1,j+1 v i,j+1 ) + µ h (v i,j v i+1,j + v i 1,j 1 v i,j 1 ) v n i,j + v n 1 i,j t = µ 1 + µ h (v i,j v i+1,j v i 1,j ) (7) + λ 1 + µ 1 h (v i,j v i,j+1 ) + λ + µ h (v i,j v i,j 1 ) + λ 1 h (u i,j u i 1,j + u i+1,j+1 u i,j+1 ) + λ h (u i,j u i+1,j + u i 1,j 1 u i,j 1 ) + µ 1 h (u i+1,j+1 u i+1,j + u i,j u i,j+1 ) + µ h (u i 1,j 1 u i 1,j + u i,j u i,j 1 ) Παρατήρηση 1 Προσοχή, για το ετερογενές υλικό πρέπει να ξεκινήσετε από τις εξισώσεις (1),τασυστήματα(6)και(7)είναιισοδύναμαμετο(1)μόνογιαομογενήυλικά. Γράψτε ένα κώδικα που να λύνει το ετερογενές πρόβλημα με τις συνοριακές συνθήκες που απεικονίζονται στο σχήμα. Χρησιμοποιήστε τον κώδικα για τις παρακάτω προσομοιώσεις. Ε 4. Πρώτο παράδειγμα Επιλύστετοπρόβλημαμετιςσυνοριακέςσυνθήκεςτουσχήματος6αλλάγια λ 1 = λ, µ 1 = µ και ρ 1 = ρ. Θακάνετεδύοπροσομοιώσεις: μίαχρησιμοποιώνταςμιαπηγή διαμήκωνκυμάτων e j = e P καιμιαμεμίαπηγήεγκαρσίωνκυμάτων e j = e S. Μπορείτενα χρησιμοποιήσετε x = y = h. α/σχεδιάστετηλύσησεδιάφορεςχρονικέςστιγμές.σχεδιάστεεπίσηςτο div( u) = 1 u 1 + u και rot( u) = 1 u u 1,γιαναδιαχωρίσετετακύματα Pαπότα S.Παρατηρήστε ότιγιατηνπρώτηπροσομοίωσηέχουμε rot( u) 0ενώγιατηδεύτερη div( u) 0. 1 (8)

13 β/ Διαλέξτε μερικά σημεία στην περιοχή Ω και σχεδιάστε την λύση ως συνάρτηση του χρόνου σε αυτά τα σημεία. q t. Παρατηρείτε αστάθειες γ/ Τρέξτε τον κώδικα για διαφορετικές τιμές του γ = VP x από κάποια τιμή του γ και πάνω; Αντιστοιχεί αυτή η τιμή στη θεωρητική τιμή CFL; δ/ Παρατηρήστε την αριθμητική ανισοτροπία στα αποτελέσματα, όταν το h 0 πρέπει το κύμα να μεταδίδεται σε μορφή κύκλων. ε/ Τι συμβαίνει όταν τα κύματα φτάνουν σε ένα σύνορο Dirichlet; Τι συμβαίνει όταν τα κύματα φτάνουν σε ένα absorbing σύνορο; Ε 4.4 Θεωρείστε τώρα ένα μέσο μεταφοράς που αποτελείται από δύο υλικά θα κάνετε δύο προσομοιώσεις. Στην πρώτη μία πηγή κυμάτων P είναι στο υλικό 1 και στην δεύτερη στο υλικό (σχετικά κοντά στη δι-επιφάνεια). Παρατηρήστε ότι και στις δύο περιπτώσεις όταν το κύμα Pi (που ξεκίνησε από την πηγή στο υλικό i) φτάνει στη διεπιφάνεια τότε έχουμε : ανάκλαση στο υλικό i δύο κυμάτων ενος P και ενός S και μετάδωση στο υλικό j δύο κυμάτων ενός P και ενός S. Pt u div(u)-p waves rot(u)-s waves St Sr Pr Pi Σχήμα 8: Παράδειγμα αποτελεσμάτων Παρατήρηση 4.1 Για να βρούμε μια καλή προσέγγιση της λύσης πρέπει να χρησιμοποιήσουμε ένα πλέγμα με αρκέτα σημεία ανά μήκος κύματος S (που είναι το μικρότερο) G= VS f0 h Στην πράξη, να θεωρήσετε G = 5, 10, 15 και 0 και να μελετήστε την επιρροή του στην ποιότητα των αποτελεσμάτων. Αυτές τις τιμές να χρησιμοποιήσετε στο ερώτημα 4.δ/. Παρατήρηση 4. Μπορείτε να βρείτε τιμές για τα λ, µ και ρ στο internet. Για παράδειγμα μπορείτε να χρησιμοποιήσετε τις παρακάτω τιμές για το υπέδαφος ρ = gr/cm, VP = km/s, 1

14 V S = 1.5km/sκαι f 0 = 1kHz. Ητιςπαρακάτωτιμέςγιατοατσάλι λ = Pascal, µ = Pascalκαι ρ = 7840Kgr/m καιμίαπηγήμεσυχνότητα f 0 = 1kHz. Στην πράξη για να μην χρησιμοποιήτε τόσο μέγαλους αριθμούς μπορείτε να κάνετε τους υπολογισμούςμε λ = λ 10 9, µ = µ 10 9,και ρ = ρ 10 καιμπορείτεναθεωρήσετε f 0 = 10 f 0.Σεαυτήντηνπερίπτωσηοχώροςμετριέταισε mκαιοχρόνοςσε msec. Παρατήρηση4.Χρησιμοποιήστεγιατιςπαραπάνωπροσομοιώσεις λ 1 = λ /4, µ 1 = µ /4, ρ 1 = ρ. Ε4.5Χρησιμοποιήστεεπίσης λ 1 = λ /, µ 1 = µ /, ρ 1 = ρ /.Τιπαρατηρείτε; 14

1 Το φυσικό πρόβλημα και εξισώσεις

1 Το φυσικό πρόβλημα και εξισώσεις Αριθμητική επίλυση των εξισώσεων της ελαστοδυναμικής και μελέτη της κυματικής διάδοσης στα στερεά: επιμήκη κύματα(p-waves), εγκάρσια κύματα(s-waves) και επιφανειακά κύματα(rayleigh waves) Χρυσούλα Τσόγκα

Διαβάστε περισσότερα

2η Εργαστηριακή Άσκηση.

2η Εργαστηριακή Άσκηση. η Εργαστηριακή Άσκηση. Παράδοση: Θα γράψετε μια αναφορά σε στην οποία θα υπάρχουν οι απαντήσεις στα ερωτήματα και σχολιασμός των αποτελεσμάτων. Η παράδοση της ασκησης θα γίνει μέχρι την Δευτέρα 4/5 ώρα

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

Σεισμολογία. Μάθημα 4: Ταλαντώσεις Κύματα

Σεισμολογία. Μάθημα 4: Ταλαντώσεις Κύματα Σεισμολογία Μάθημα 4: Ταλαντώσεις Κύματα Κεφ.4 http://seismo.geology.upatras.gr/seismology/ Τι έχουμε μάθει έως τώρα. Τάση Τανυστής Ελαστικότητα Κύρια επίπεδα άξονες Παραμόρφωση Βασικές έννοιες από θεωρία

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Κύματα Εικόνα: Ναυαγοσώστες στην Αυστραλία εκπαιδεύονται στην αντιμετώπιση μεγάλων κυμάτων. Τα κύματα που κινούνται στην επιφάνεια του νερού αποτελούν ένα παράδειγμα μηχανικών κυμάτων.

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 20. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 20. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 2 Χειμερινό Εξάμηνο 213 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/214, 12. Απαιτείται αποδεικτικό ταυτότητας Απαγορεύεται η παρουσία & χρήση κινητού!

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας

Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας Κεφάλαιο 6 Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας Σε αυτό το κεφάλαιο θεωρούμε την εξίσωση της θερμότητας στη μια διάσταση ως προς τον χώρο και θα κατασκευάσουμε μεθόδους πεπερασμένων

Διαβάστε περισσότερα

Πρόλογος. Κατάλογος Σχημάτων

Πρόλογος. Κατάλογος Σχημάτων Περιεχόμενα Πρόλογος Κατάλογος Σχημάτων v xv 1 ΜΔΕ πρώτης τάξης 21 1.1 Γενικότητες........................... 21 1.2 Εισαγωγή............................ 24 1.2.1 Γεωμετρικές θεωρήσεις στο πρόβλημα της

Διαβάστε περισσότερα

Τεστ Αρμονικό κύμα Φάση κύματος

Τεστ Αρμονικό κύμα Φάση κύματος Τεστ Αρμονικό κύμα Φάση κύματος ~Διάρκεια 90 min~ Θέμα Α 1) Όταν ένα κύμα αλλάζει μέσο διάδοσης, αλλάζουν i) η ταχύτητα διάδοσης του κύματος και η συχνότητά του ii) το μήκος κύματος και η συχνότητά του

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Δυναμικά Μοντέλα Συνεχούς Μέσου

Δυναμική Μηχανών I. Δυναμικά Μοντέλα Συνεχούς Μέσου Δυναμική Μηχανών I 8 1 Δυναμικά Μοντέλα Συνεχούς Μέσου 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Μοντελοποίηση

Διαβάστε περισσότερα

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1 ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης /6/7 Διάρκεια ώρες. Θέμα. Θεωρηστε ενα συστημα δυο σωματων ισων μαζων (μαζας Μ το καθενα) και δυο ελατηριων (χωρις μαζα) με σταθερες ελατηριων

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 3 Μαρτίου 2019 1 Τανυστής Παραμόρφωσης Συνοδεύον σύστημα ονομάζεται το σύστημα συντεταγμένων ξ i το οποίο μεταβάλλεται

Διαβάστε περισσότερα

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2.

t 1 t 2 t 3 t 4 δ. Η κινητική ενέργεια του σώματος τη χρονική στιγμή t 1, ισούται με τη δυναμική ενέργεια της ταλάντωσης τη χρονική στιγμή t 2. Τάξη Μάθημα : Γ ΛΥΚΕΙΟΥ : Φυσική Εξεταστέα Ύλη : ΚΕΦΑΛΑΙΟ 1 ΚΑΙ 2 Καθηγητής : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ Ημερομηνία : 11-11 -2012 ΘΕΜΑ 1ο 1) Η ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση μεταβάλλεται,

Διαβάστε περισσότερα

MEM 253. Αριθμητική Λύση ΜΔΕ * * *

MEM 253. Αριθμητική Λύση ΜΔΕ * * * MEM 253 Αριθμητική Λύση ΜΔΕ * * * 1 Ένα πρόβλημα-μοντέλο Ροή θερμότητας σε ένα ομογενές μέσο. Ζητούμε μια συνάρτηση x [0, 1] και t 0 τέτοια ώστε u(x, t) ορισμένη για u t u(0, t) u(x, 0) = u xx, 0 < x

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον

Διαβάστε περισσότερα

papost/

papost/ Δρ. Παντελής Σ. Αποστολόπουλος Επίκουρος Καθηγητής http://users.uoa.gr/ papost/ papost@phys.uoa.gr ΤΕΙ Ιονίων Νήσων, Τμήμα Τεχνολόγων Περιβάλλοντος ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-2017 Οπως είδαμε

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1 Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 21 Κυματική ΦΥΣ102 1 Χαρακτηριστικά Διάδοσης Κύματος Όλα τα κύματα μεταφέρουν ενέργεια.

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΦΥΣΙΚΗ ΣΕΙΣΜΙΚΗ ΔΙΑΣΚΟΠΗΣΗ

ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΦΥΣΙΚΗ ΣΕΙΣΜΙΚΗ ΔΙΑΣΚΟΠΗΣΗ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΦΥΣΙΚΗ ΣΕΙΣΜΙΚΗ ΔΙΑΣΚΟΠΗΣΗ ΕΙΣΑΓΩΓΗ ΑΝΤΙΚΕΙΜΕΝΟ Μελέτη της δομής των επιφανειακών στρωμάτων του φλοιού της Γης ΣΚΟΠΟΣ Εντοπισμός Γεωλογικών δομών οικονομικής σημασίας και ανίχνευση γεωλογικών

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη

Διαβάστε περισσότερα

Διανύσµατα στο επίπεδο

Διανύσµατα στο επίπεδο Διανύσµατα στο επίπεδο Ένα διάνυσµα v έχει αρχικό και τελικό σηµείο. Χαρακτηρίζεται από: διεύθυνση (ευθεία επί της οποίας κείται φορά (προς ποια κατεύθυνση της ευθείας δείχνει µέτρο (το µήκος του, v ή

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ A u B Μέτρο Διεύθυνση Κατεύθυνση (φορά) Σημείο Εφαρμογής Διανυσματικά Μεγέθη : μετάθεση, ταχύτητα, επιτάχυνση, δύναμη Μονόμετρα Μεγέθη : χρόνος, μάζα, όγκος, θερμοκρασία,

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 «Κυμάνσεις» Μαρία Κατσικίνη users.auth.gr/~katsiki

ΚΕΦΑΛΑΙΟ 9 «Κυμάνσεις» Μαρία Κατσικίνη users.auth.gr/~katsiki ΚΕΦΑΛΑΙΟ 9 «Κυμάνσεις» Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/~katsiki Σχέση δύναμης - κίνησης Δύναμη σταθερή εφαρμόζεται σε σώμα Δύναμη ανάλογη της απομάκρυνσης (F-kx) εφαρμόζεται σε σώμα Το σώμα

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑ Α Ι. 1. Γ

ΛΥΣΕΙΣ ΘΕΜΑ Α Ι. 1. Γ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Ι Γ Α dw d dx W = x σνθ = ( x σνθ ) P = σνθ dt dt dt P = σνθ 3 A 4 Δ (στην απάντηση β) πρέπει να προσθέσουμε την αύξηση

Διαβάστε περισσότερα

max 0 Eκφράστε την διαφορά των δύο θετικών λύσεων ώς πολλαπλάσιο του ω 0, B . Αναλύοντας το Β σε σειρά άπειρων όρων ώς προς γ/ω 0 ( σειρά

max 0 Eκφράστε την διαφορά των δύο θετικών λύσεων ώς πολλαπλάσιο του ω 0, B . Αναλύοντας το Β σε σειρά άπειρων όρων ώς προς γ/ω 0 ( σειρά . Να αποδείξετε ότι σε ένα ταλαντούμενο σύστημα ενός βαθμού ελευθερίας, μάζας και σταθεράς ελατηρίου s με πολύ ασθενή απόσβεση (γω, όπου γ r/, r η σταθερά αντίστασης και s/ ) το πλήρες εύρος στο μισό του

Διαβάστε περισσότερα

Πρόβλημα δύο σημείων. Κεφάλαιο Διακριτοποίηση

Πρόβλημα δύο σημείων. Κεφάλαιο Διακριτοποίηση Κεφάλαιο 3 Πρόβλημα δύο σημείων Σε αυτό το κεφάλαιο θα μελετήσουμε τη μεθόδο πεπερασμένων διαφορών για προβλήματα Σ.Δ.Ε. δεύτερης τάξεως, τα οποία καλούνται και προβλήματα δύο σημείων. Ο λόγος που θα ασχοληθούμε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΘΕΩΡΙΑΣ ΣΤΑ ΚΥΜΑΤΑ(μέχρι ΗΜ) Διάρκεια 90 min

ΔΙΑΓΩΝΙΣΜΑ ΘΕΩΡΙΑΣ ΣΤΑ ΚΥΜΑΤΑ(μέχρι ΗΜ) Διάρκεια 90 min ΔΙΑΓΩΝΙΣΜΑ ΘΕΩΡΙΑΣ ΣΤΑ ΚΥΜΑΤΑ(μέχρι ΗΜ) Διάρκεια 90 min Θέμα 1 Ερωτήσεις πολαλπλής επιλογής Σε κάθε ερώτηση υπάρχει μόνο μια σωστή απάντηση 1. Η περίοδος (Τ) του κύµατος είναι ίση µε (ποια πρόταση είναι

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Προσέγγιση Galerkin

Δυναμική Μηχανών I. Προσέγγιση Galerkin Δυναμική Μηχανών I 8 2 Προσέγγιση Galerkin Χειμερινό Εξάμηνο 214 Τμήμα Μηχανολόγων Μηχανικών, ΕΜΠ Δημήτριος Τζεράνης, Ph.D. 215 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ 6/11/004 ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 34 004-05 η ΕΡΓΑΣΙΑ ΑΣΚΗΣΕΙΣ Προθεσμία παράδοσης 0/1/004 1) Εκκρεμές μήκους L και μάζας m 1 εκτελεί μικρές ταλαντώσεις γύρω από τη θέση ισορροπίας, έχοντας συνδεθεί

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 02 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

ΔΙΑΓΩΝΙΣΜΑ 02 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) Σελίδα 1 από 5 ΔΙΑΓΩΝΙΣΜΑ 02 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ A Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 10, 12 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Παρεμβολή 2. Παράσταση και υπολογισμός του πολυωνύμου παρεμβολής

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά κύματα που απομακρύνονται

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ- ΤΜΗΜΑ ΦΥΣΙΚΗΣ- ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Ι(ΤΜΗΜΑ ΑΡΤΙΩΝ) ΔΙΔΑΣΚΩΝ: Αν. Καθηγητής Ι.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ- ΤΜΗΜΑ ΦΥΣΙΚΗΣ- ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Ι(ΤΜΗΜΑ ΑΡΤΙΩΝ) ΔΙΔΑΣΚΩΝ: Αν. Καθηγητής Ι. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ- ΤΜΗΜΑ ΦΥΣΙΚΗΣ- ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ ΙΤΜΗΜΑ ΑΡΤΙΩΝ) ΔΙΔΑΣΚΩΝ: Αν. Καθηγητής Ι. ΡΙΖΟΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΦΕΒΡΟΥΑΡΙΟΥ 9 ΘΕΜΑ.4 μονάδες)

Διαβάστε περισσότερα

S dt T V. Επιμέλεια - Υπολογισμοί: Κ. Παπαμιχάλης Δρ. Φυσικής

S dt T V. Επιμέλεια - Υπολογισμοί: Κ. Παπαμιχάλης Δρ. Φυσικής Μελέτη της κίνησης μηχανικού ταλαντωτή που προκαλεί διάδοση ελαστικού κύματος σε μονοδιάστατο ελαστικό μέσο Επιμέλεια - Υπολογισμοί: Κ. Παπαμιχάλης Δρ. Φυσικής Κεντρική ιδέα Στην εργασία αυτή, γίνεται

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Κεφάλαιο 0: Εισαγωγή

Κεφάλαιο 0: Εισαγωγή Κεφάλαιο : Εισαγωγή Διαφορικές εξισώσεις Οι Μερικές Διαφορικές Εξισώσεις (ΜΔΕ) αλλά και οι Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ) εμφανίζονται παντού στις επιστήμες από τη μηχανική μέχρι τη βιολογία Τις περισσότερες

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ (ΜΕΤΑΠΤΥΧΙΑΚΟ) 6 Νοεμβρίου 07 Αναλυτικές συναρτήσεις Άσκηση (i) Δείξτε ότι η συνάρτηση f(z) είναι αναλυτική σε χωρίο D του μιγαδικού επιπέδου εάν και μόνο εάν η if(z) είναι αναλυτική

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι

Επιστηµονικός Υπολογισµός Ι Επιστηµονικός Υπολογισµός Ι Ενότητα 8 : Το ιακριτό Μοντέλο Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Η απόσταση του σημείου Ρ από τη δεύτερη πηγή είναι: β) Από την εξίσωση απομάκρυνσης των πηγών y = 0,2.ημ10πt (S.I.) έχουμε:

Η απόσταση του σημείου Ρ από τη δεύτερη πηγή είναι: β) Από την εξίσωση απομάκρυνσης των πηγών y = 0,2.ημ10πt (S.I.) έχουμε: Γενική άσκηση στη συμβολή κυμάτων (Λύση) α) Η χρονική στιγμή t 1 που το κύμα από την πρώτη πηγή φτάνει στο σημείο Ρ είναι: r1 r1 6 u = => t1 = => t1 = s => t1 = 0, 6s t u 10 1 Τα κύματα φτάνουν στο σημείο

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ Σε δύο σημεία Π Σε δύο σημεία Π Δύο πηγές Π 1

ΟΡΟΣΗΜΟ Σε δύο σημεία Π Σε δύο σημεία Π Δύο πηγές Π 1 ΚΕΦΑΛΑΙΟ Συμβολή κυμάτων Στα παρακάτω προβλήματα να θεωρείτε ότι το πλάτος των κυμάτων που συμβάλλουν δεν αλλάζει 5 Σε δύο σημεία Π 1 της ήρεμης επιφάνειας ενός υγρού δημιουργούνται δύο σύγχρονες πηγές,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 24 ΑΠΡΙΛΙΟΥ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 24 ΑΠΡΙΛΙΟΥ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 4 ΑΠΡΙΛΙΟΥ 018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 16 Φεβρουαρίου, 2011

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 16 Φεβρουαρίου, 2011 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 16 Φεβρουαρίου, 11 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε και στα 4 προβλήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου

Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου Τρέχοντα Κύματα Κύμα ονομάζεται η διάδοση μιας διαταραχής σε όλα τα σημεία του ελαστικού μέσου με ορισμένη ταχύτητα. Κατά τη διάδοση ενός κύματος

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι

Διαβάστε περισσότερα

ΗΜ & Διάδοση ΗΜ Κυμάτων

ΗΜ & Διάδοση ΗΜ Κυμάτων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΗΜ & Διάδοση ΗΜ Κυμάτων Ενότητα : Κυματική Εξίσωση & Επίπεδο ΗΜ Κύμα Σαββαΐδης Στυλιανός Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις

Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις Κεφάλαιο 9 Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις Σε αυτό το κεφάλαιο θεωρούμε μια απλή ελλειπτική εξίσωση, στις δύο διαστάσεις. Θα κατασκευάσουμε μεθόδους πεπερασμένων διαφορών

Διαβάστε περισσότερα

Κεφάλαιο 3 TΑΣΗ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ

Κεφάλαιο 3 TΑΣΗ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ Κεφάλαιο 3 TΑΣΗ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΚΑΤΑ ΤΗΝ ΔΙΑΔΟΣΗ ΤΩΝ ΣΕΙΣΜΙΚΩΝ ΚΥΜΑΤΩΝ ΜΕΣΑ ΣΤΗ ΓΗ ΔΕΧΟΜΑΣΤΕ: ΟΤΙ ΤΟ ΥΛΙΚΟ ΔΙΑΔΟΣΗΣ ΕΧΕΙ ΑΠΟΛΥΤΑ ΕΛΑΣΤΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΔΕΧΟΜΑΣΤΕ ΜΕ ΑΛΛΑ ΛΟΓΙΑ ΟΤΙ ΤΑ ΣΕΙΣΜΙΚΑ ΚΥΜΑΤΑ ΕΙΝΑΙ

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 10//10/01 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 1 Kg βρίσκεται πάνω σε κεκλιμένο επίπεδο γωνίας κλίσης 45º. Μεταξύ

Διαβάστε περισσότερα

3. Εγκάρσιο γραμμικό κύμα που διαδίδεται σε ένα ομογενές ελαστικό μέσον και κατά την

3. Εγκάρσιο γραμμικό κύμα που διαδίδεται σε ένα ομογενές ελαστικό μέσον και κατά την ΚΥΜΑΤΑ 1. Μια πηγή Ο που βρίσκεται στην αρχή του άξονα, αρχίζει να εκτελεί τη χρονική στιγμή 0, απλή αρμονική ταλάντωση με εξίσωση 6 10 ημ S. I.. Το παραγόμενο γραμμικό αρμονικό κύμα διαδίδεται κατά τη

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ, 8 Μαρτίου 2019 Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης

ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ, 8 Μαρτίου 2019 Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 218-219 ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ, 8 Μαρτίου 219 Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης ΘΕΜΑ 1 Διάρκεια εξέτασης 2 ώρες Υλικό σημείο κινείται ευθύγραμμα πάνω στον άξονα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Ολοκληρώσαμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: (,)(,)()() h 1 u x t u x t u t x (1) e Η διαφορά με τα

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Μαθήματος. Διάλεξη 10: Ολοκλήρωση Συνήθων Διαφορικών Εξισώσεων: Προβλήματα Συνοριακών Τιμών Μίας Διάστασης (1D)

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Μαθήματος. Διάλεξη 10: Ολοκλήρωση Συνήθων Διαφορικών Εξισώσεων: Προβλήματα Συνοριακών Τιμών Μίας Διάστασης (1D) ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Μαθήματος Διάλεξη : Ολοκλήρωση Συνήθων Διαφορικών Εξισώσεων: Προβλήματα Συνοριακών Τιμών Μίας Διάστασης D Γιάννης Δημακόπουλος & Γιάννης Τσαμόπουλος ΧΜ66 Εαρινό Εξάμηνο Πρόβλημα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. Η δύναμη είναι ένα διανυσματικό μέγεθος. Όταν κατά την κίνηση ενός σώματος η δύναμη είναι μηδενική

Διαβάστε περισσότερα

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Εισαγωγή Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης: Δ18- Η δυναμική μετατόπιση u(t) είναι δυνατό να προσδιοριστεί με απ ευθείας αριθμητική ολοκλήρωση της εξίσωσης

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός.

Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός / Βασικές Έννοιες Η επιστήμη της Φυσικής συχνά μελετάει διάφορες διαταραχές που προκαλούνται και διαδίδονται στο χώρο.

Διαβάστε περισσότερα

Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις 2- διαστάσεις

Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις 2- διαστάσεις Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις - διαστάσεις Στις -διαστάσεις, η περιγραφή της εκδοχής hp της ΜΠΣ είναι αρκετά πολύπλοκη. Στο παρόν κεφάλαιο θα δούμε κάποια στοιχεία της, ξεκινώντας με

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 21. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 21. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 21 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/2014, 12.00 Απαιτείται αποδεικτικό ταυτότητας (Α.Τ., Διαβατήριο, Διπλ. Οδ.) Απαγορεύεται

Διαβάστε περισσότερα

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1.1 Όρια ακολουθιών Λέμε ότι η ακολουθία { n } συγκλίνει με όριο R αν για κάθε ϵ > 0 υπάρχει ακέραιος N = N(ϵ) τέτοιος ώστε (1.1) n < ϵ για κάθε n > N, και

Διαβάστε περισσότερα

Κεφάλαιο 0 Μιγαδικοί Αριθμοί

Κεφάλαιο 0 Μιγαδικοί Αριθμοί Κεφάλαιο 0 Μιγαδικοί Αριθμοί 0 Βασικοί ορισμοί και πράξεις Είναι γνωστό ότι δεν υπάρχει πραγματικός αριθμός που επαληθεύει την εξίσωση x Η ανάγκη επίλυσης τέτοιων εξισώσεων οδηγεί στο σύνολο των μιγαδικών

Διαβάστε περισσότερα

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0 1. α) Να βρείτε το υπόλοιπο και το πηλίκο της διαίρεσης (x 3 6x 2 +11x 2) : (x 3) β) Αν P(x) = x 3 6x 2 +11x + λ να βρείτε το λ R ώστε η διαίρεση P(x) : (x 3) να έχει υπόλοιπο 0. 2. Δίνονται τα πολυώνυμα:

Διαβάστε περισσότερα

Λύση: Εξισώσεις βολής. Κάθετα δυο διανύσματα => εσωτερικό γινόμενο = 0. Δευτεροβάθμια ως προς t. Διακρίνουσα. Κρατάμε μόνο τον θετικό χρόνο

Λύση: Εξισώσεις βολής. Κάθετα δυο διανύσματα => εσωτερικό γινόμενο = 0. Δευτεροβάθμια ως προς t. Διακρίνουσα. Κρατάμε μόνο τον θετικό χρόνο 1) Σημειακή μάζα 0.4 kg εκτοξεύεται με ταχύτητα 17 m/s στο t = 0 από την αρχή των αξόνων με γωνία 72 0 ως προς τον άξονα x ο οποίος είναι παράλληλος με το έδαφος. Εάν στη μάζα ασκείται μόνο το βάρος της

Διαβάστε περισσότερα

Μάθημα Ακουστικής. Νικόλαος Παλληκαράκης Καθ. Ιατρικής Φυσικής ΠΠ

Μάθημα Ακουστικής. Νικόλαος Παλληκαράκης Καθ. Ιατρικής Φυσικής ΠΠ Μάθημα Ακουστικής Νικόλαος Παλληκαράκης Καθ. Ιατρικής Φυσικής ΠΠ Περιοδική Κίνηση Μία κίνηση χαρακτηρίζεται σαν περιοδική αν αναπαράγεται απαράλλακτα σε ίσα διαδοχικά χρονικά διαστήματα. Στο χρονικό αυτό

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ Εισαγωγή στη μέθοδο των πεπερασμένων στοιχείων Α. Θεοδουλίδης Η Μεθοδος των Πεπερασμένων στοιχείων Η Μέθοδος των ΠΣ είναι μια

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 29/12/12 ΛΥΣΕΙΣ ΘΕΜΑ A

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 29/12/12 ΛΥΣΕΙΣ ΘΕΜΑ A ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/1/1 ΘΕΜΑ A ΛΥΣΕΙΣ Στις ημιτελείς προτάσεις Α 1 -Α 4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΣΥΜΠΛΗΡΩΜΑ ΘΕΩΡΙΑΣ

ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΣΥΜΠΛΗΡΩΜΑ ΘΕΩΡΙΑΣ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΣΥΜΠΛΗΡΩΜΑ ΘΕΩΡΙΑΣ 1. ΕΓΚΑΡΣΙΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ Κύματα κατά μήκος τεντωμένου νήματος Στο τεντωμένο με δύναμη νήμα του Σχήματος 1.1α δημιουργούμε μια εγκάρσια διαταραχή (παράλληλη με τη διεύθυνση

Διαβάστε περισσότερα

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση)

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση) Παραµόρφωση σε Σηµείο Σώµατος Η ολική παραµόρφωση στερεού σώµατος στη γειτονιά ενός σηµείου, Ο, δηλαδή η συνολική παραµόρφωση ενός µικρού τµήµατος (στοιχείου) του σώµατος γύρω από το σηµείο µπορεί να αναλυθεί

Διαβάστε περισσότερα

2.6 Κύματα που παράγονται από δύο σύγχρονες. 2.7 Κύματα που παράγονται από δύο σύγχρονες. 2.8 Κύματα παράγονται από δύο σύγχρονες

2.6 Κύματα που παράγονται από δύο σύγχρονες. 2.7 Κύματα που παράγονται από δύο σύγχρονες. 2.8 Κύματα παράγονται από δύο σύγχρονες ΚΕΦΑΛΑΙΟ 2 Συμβολή κυμάτων 2.1 Το φαινόμενο της συμβολής των κυμάτων, ισχύει: α. μόνο στα μηχανικά κύματα, β. σε όλα τα είδη των κυμάτων, γ. μόνο στα ηλεκτρομαγνητικά. 2.2 Δύο σημεία Π, Π της ήρεμης επιφάνειας

Διαβάστε περισσότερα

Η μέθοδος των πεπερασμένων διαφορών για την εξίσωση θερμότητας

Η μέθοδος των πεπερασμένων διαφορών για την εξίσωση θερμότητας Κεφάλαιο 5 Η μέθοδος των πεπερασμένων διαφορών για την εξίσωση θερμότητας Σε αυτό το κεφάλαιο θεωρούμε μια απλή παραβολική εξίσωση, την εξίσωση της θερμότητας, στη μια διάσταση ως προς τον χώρο. Θα κατασκευάσουμε

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2o : ΚΥΜΑΤΑ ΕΝΟΤΗΤΑ 1: Η ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ

ΚΕΦΑΛΑΙΟ 2o : ΚΥΜΑΤΑ ΕΝΟΤΗΤΑ 1: Η ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ ΘΕΜΑ Γ ΚΕΦΑΛΑΙΟ 2o : ΚΥΜΑΤΑ ΕΝΟΤΗΤΑ 1: Η ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΘΕΜΑΤΑ ΠΡΟΣ ΕΠΙΛΥΣΗ Άσκηση 1. Το σημείο Ο αρχίζει τη χρονική στιγμή t 0 να εκτελεί απλή αρμονική ταλάντωση, που περιγράφεται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Γεωμετρικός Πυρήνας Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Γεωμετρικός Πυρήνας Εξομάλυνση Σημεία Καμπύλες Επιφάνειες

Διαβάστε περισσότερα

Τα θέματα συνεχίζονται στην πίσω σελίδα

Τα θέματα συνεχίζονται στην πίσω σελίδα ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΚΑΤΕΥΘΥΝΣΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΞΕΤΑΣΤΙΚΗ ΙΑΝΟΥΑΡΙΟΥ ΑΚΑΔ. ΕΤΟΣ 16-17 Διδάσκων : Χ. Βοζίκης Τ. Ε. Ι. ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

( ) ( r) V r. ( ) + l 2. Τι είδαμε: m!! r = l 2. 2mr 2. 2mr 2 + V r. q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης

( ) ( r) V r. ( ) + l 2. Τι είδαμε: m!! r = l 2. 2mr 2. 2mr 2 + V r. q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης ΦΥΣ 2 - Διαλ.4 Τι είδαμε: q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης ü Ανάγαμε το πρόβλημα 2 σωμάτων σε πρόβλημα κεντρικής δύναμης ü διατήρηση ορμής CM μετατρέπει το πρόβλημα από 6 DoF σε

Διαβάστε περισσότερα

1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων

1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων 3 1.1 Διανύσματα 1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων ΑΣΚΗΣΗ 1.1 Να βρεθεί η γωνία που σχηματίζουν τα διανύσματα î + ĵ + ˆk και î + ĵ ˆk. z k i j y x Τα δύο διανύσματα που προκύπτουν από

Διαβάστε περισσότερα

2.2. Συμβολή και στάσιμα κύματα. Ομάδα Δ.

2.2. Συμβολή και στάσιμα κύματα. Ομάδα Δ. 2.2. Συμβολή και στάσιμα κύματα. Ομάδα Δ. 2.2.41. Μια χορδή σε ταλάντωση ή δυο στάσιμα κύματα. Μια χορδή μήκους 5m είναι στερεωμένη στα άκρα της Κ και Λ.. Όταν θέσουμε σε ταλάντωση το μέσον της Μ, απαιτείται

Διαβάστε περισσότερα

1. Εγκάρσιο αρμονικό κύμα μήκους κύματος 0,2 m διαδίδεται σε γραμμικό ελαστικό μέσο το οποίο ταυτίζεται

1. Εγκάρσιο αρμονικό κύμα μήκους κύματος 0,2 m διαδίδεται σε γραμμικό ελαστικό μέσο το οποίο ταυτίζεται Με αρχική φάση. 1. Εγκάρσιο αρμονικό κύμα μήκους κύματος 0,2 m διαδίδεται σε γραμμικό ελαστικό μέσο το οποίο ταυτίζεται με τον άξονα x Ox προς τη θετική κατεύθυνση του άξονα, εξαναγκάζοντας το υλικό σημείο

Διαβάστε περισσότερα

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις6: Βάση και Διάσταση Βασικά σημεία Βάση διανυσματικού χώρου (ορισμός, παραδείγματα, μοναδικότητα συντελεστών) Θεώρημα (ύπαρξη, πρώτη μορφή) Έστω V K μη μηδενικός με K πεπερασμένο

Διαβάστε περισσότερα

{F W t } 0 t T = σ(w k (s), s t, 1 k) L 2 ([0, T ])

{F W t } 0 t T = σ(w k (s), s t, 1 k) L 2 ([0, T ]) Αναλυτικές και Αριθμητικές Λύσεις Υπερβολικών Στοχαστικών Μερικών Διαφορικών Εξισώσεων μέσω του αναπτύγματος σε Wiener Chaos Ε. Α. Καλπινέλλη Οικονομικό Πανεπιστήμιο Αθηνών Σεπτέμβριος 2011 Εισαγωγή Μέσω

Διαβάστε περισσότερα

(ΚΕΦ 32) f( x x f( x) x z y

(ΚΕΦ 32) f( x x f( x) x z y (ΚΕΦ 3) f( x x f( x) x z y ΣΥΝΟΨΗ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΥ J. C. Maxwell (~1860) συνόψισε τη δουλειά ως τότε για το ηλεκτρικό και μαγνητικό πεδίο σε 4 εξισώσεις. Όμως, κατανόησε ότι οι εξισώσεις αυτές (όπως

Διαβάστε περισσότερα

2 ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

2 ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ δυαδικό ΦΡΟΝΤΙΣΤΗΡΙΑ ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΡΚΕΙΑ: 3 ώρες ΒΑΘΜΟΣ:.. ΗΜΕΡΟΜΗΝΙΑ: 3// ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ: Ατρείδης Γιώργος Θ Ε Μ Α

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο Ασκήσεις Φροντιστηρίου 4 o Φροντιστήριο Πρόβλημα 1 ο Ο πίνακας συσχέτισης R x του διανύσματος εισόδου x( στον LMS αλγόριθμο 1 0.5 R x = ορίζεται ως: 0.5 1. Ορίστε το διάστημα των τιμών της παραμέτρου μάθησης

Διαβάστε περισσότερα

ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Κεντρικό : Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: ,

ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Κεντρικό : Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: , ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D., Αμπελόκηποι Αθήνα Τηλ.: 0 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Τηλ.: 0 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr

Διαβάστε περισσότερα