ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι. Προπτυχιακό Πρόγραµµα Σπουδών Τµήµατος Φυσικής Πανεπιστήµιο Πατρών Χειµερινό εξάµηνο ΣΥΜΠΛΗΡΩΜΑ ΑΣΚΗΣΕΩΝ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι. Προπτυχιακό Πρόγραµµα Σπουδών Τµήµατος Φυσικής Πανεπιστήµιο Πατρών Χειµερινό εξάµηνο 2004-2005 ΣΥΜΠΛΗΡΩΜΑ ΑΣΚΗΣΕΩΝ"

Transcript

1 ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Προπτυχιακό Πρόγραµµα Σπουδών Τµήµατος Φυσικής Πανεπιστήµιο Πατρών Χειµερινό εξάµηνο 4-5 ΣΥΜΠΛΗΡΩΜΑ ΑΣΚΗΣΕΩΝ Ανδρέας Φ. Τερζής Πάτρα Γενάρης 5

2 ΑΝΑΠΑΡΑΣΤΑΣΗ ΤΕΛΕΣΤΩΝ ΜΕ ΜΗΤΡΕΣ [ΠΙΝΑΚΕΣ] ΑΣΚΗΣΗ Έστω σύστηµα µπορεί να βρεθεί σε δύο καταστάσεις ενέργειας Ε και Ε που περιγράφονται µε ορθοµοναδιαίες ιδιοσυναρτήσεις ψ και ψ. Αν ο τελεστής Α έχει τις εξής ιδιότητες Αψ αψ αψ, Αψ -αψ αψ όπου α µια πραγµατική σταθερά. Να βρεθούν οι ιδιοκαταστάσεις και οι ιδιότητες του τελεστή Α. Να βρεθεί η µέση τιµή του τελεστή Α, όταν γνωρίζουµε ότι το σύστηµα βρίσκεται σε µία κατάσταση όπου οι ενέργειες Ε και Ε έχουν ίση πιθανότητα εµφάνισης. Η Αναπαράσταση τελεστή Α µε πίνακα, δίνεται από τα στοιχεία Αnm(n, Am). Έτσι έχουµε Α (, Α) (, α-α) α(, )-α(,) α. α. α, ανάλογα Α (, Α) α και Α Α -α. a a ηλαδή A. Από την διαγωνιοποίηση του Α βρίσκουµε τις ιδιοτιµές του και τις a a ιδιοσυναρτήσεις του. α λ α det ΑλΙ ( α λ)( α ) α α λ λ α Πρέπει [ ] 3± 5 α α λ 3αλ α λ 3αλ α λ, 3 5 Ιδιοτιµές λ α και η αντίστοιχη ιδιοσυνάρτηση υπολογίζετε ως α λ α d αλλά απαιτώντας α α λ d ( ) α λ d 5 ad d d 5 κανονικότητα d d d, d (ιδιοκατάσταση µε ιδιοτιµή λ) 5 (δηλαδή Α λ ) 5 5 και για λ έχουµε α λ α d 5 α α λ d d d και καθώς d d 5 (ιδιοκατάσταση µε ιδιοτιµή λ) όπου Α λ. 5 5

3 A t nm c t ncme ιω A nm όπου ω nm ( En Em) / t µέση τιµή Α, χρονοεξαρτώµενη (σελίδα 76 nm, βιβλίου, σχέση (9) ) Όπου cn οι συντελεστές από την ανάπτυξη της κυµατοσυνάρτησης ( x, t) c e ( x ), µε φυσική σηµασία, cncn ίση µε την πιθανότητα να έχω n ie n t / n ιδιοκατάσταση n. Στο πρόβληµά µας, δίνεται ότι Ε και Ε ισοπίθανη άρα cc και ακόµα c c c c iωt iωt iωt iω t Έτσι A c e A c c e A c c e A c e / A f iω it iω t i t it e ( a) e ( a) e t iωt ω 3a e e 3 ( a) e ( a) a a a cos ω t A t 3a ( E E) t acos Για t a A. Επαλήθευση: για t ( x) a ( ) ( ) a (, ) A A dx, A, A( ) (, a ) (, ) α γιατί A( ) A A aa a a a σχέση (8), Τραχανάς, σελίδα 75 3

4 ΑΣΚΗΣΗ Θεωρούµε ορθοµοναδιαία (ορθοκανονική) βάση, {,}. Η χαµιλτονιανή του υπό µελέτη συστήµατος, υπό µορφή µήτρας είναι Ηijεδijδ(-δij). Υπάρχει κάποιο φυσικό µέγεθος που το αναπαριστούµε µε την βοήθεια ενός ερµιτιανού τελεστή Α και γνωρίζουµε ότι τα και είναι ιδιοσυναρτήσεις του, δηλαδή έχουν Αα και Αα. Αν την χρονική στιγµή t έγινε µέτρηση του φυσικού µεγέθους που περιγράφεται από το Α και βρέθηκε να έχει τιµή α, να υπολογιστεί η χρονο-εξαρτώµενη <Α>t. Η χαµιλτονιανή του κβαντικού συστήµατος έχει την µορφή: H εδ δ( δ) ε δ( ) ε, ανάλογα H εδ δ( δ) ε και H εδ δ( δ) ε δ( ) δ και H εδ δ( δ) δ ηλαδή η χαµιλτονιανή υπό µορφή πίνακα είναι ε δ Η δ ε () Οι ιδιοκαταστάσεις της ενέργειας Η n Εnn ( ΗΕΙ) βρίσκονται διαγωνιοποιώντας την (), δηλαδή έχουµε ε Ε δ det[ ΗΕΙ ] det ( Εε) δ δ ε Ε Ε ε ± δ. Οπότε έχουµε δύο ιδιοτιµές της ενέργειας Ε Ε ε δ και Ε Ε ε δ. Υπολογίζουµε την ιδιοσυνάρτηση µε ιδιοτιµή Ε, την οποία ονοµάζουµε ως c c µε ε Ε δ c ε ε δ δ c δc δc c c, δ ε i c δ ε ε δ i Ε c µε την επιπλέον απαίτηση της κανονικότητας της έχουµε c c c c c /. ηλαδή ΗΕ µε Εεδ και ( ) Ανάλογα για την Ε- έχουµε ε Ε δ c ε ε δ δ c δ ε i c δ ε ε δ i Ε c δ c δ c c c και ( )/ Η κυµατοσυνάρτηση (x,t) ιδιοσυναρτήσεων και -, δηλαδή (, ) µπορεί να γραφεί ως γραµµικός συνδυασµός των xt ce ce ie t/ iet / 4

5 Ισοδύναµα µπορούµε να γράψουµε την (x,t) ως γραµµικό συνδυασµό των και. ηλαδή (, ) ce ce ce ce ( xt, ) ie t/ ie t / ie t/ iet / ie t/ iet / xt ce ce Καθώς γνωρίζουµε ότι την χρονική στιγµή t, βρίσκουµε την ιδιοτιµή α, έχουµε (x,t). c c c c xt,, άρα πρέπει c c c c και c c c c c c / Αλλά από την () έχουµε για t ( ) c c ηλαδή η () γίνεται () ce ce ce ce ie t/ ie t / ie t / iet / i δ t / iet / i δ t / i δ t / iεt/ e c e iεt/ e e iεt/ δt δt e e e cos isin iε t δt δt xt, e cos isin ηλαδή ( ) / ( ) Το Α υπολογίζεται ως (, ) Αdx Α Α iεt/ iεt/ δ ( e ( kiµ ), Αe ( kiµ )) (όπου k cos t. Έχουµε Α (, Α ) / / ( i ε t iεt e e (( κ iµ ),( κ Α iµ Α )) (( κ iµ ),( κα iµα )) κα(, ) iκµα(, ) iκµα (, ) i µα(, ) κα µα και µ sin δt ) ηλαδή δt δt Α cos α sin α (3) Μπορούµε να χρησιµοποιήσουµε µια εναλλακτική µέθοδο, όπως στην προηγούµενη iωnmt iω t iωt iω t iω t άσκηση. Α cncmanme c c A e c c A e c c A e c c A e nm, i t i t A A A e ω ω Ε A e Ε Ε Ε γιατί ω ω, ενώ Ε Ε Ε Ε ω ω και Ε Ε δ αρκεί να υπολογίσουµε τα Αij µε i, j ± Α (, Α ) (( ), Α( ) ) (( ),( Α Α ) ) (( ),( α α ) ) (, α ) (, α ) (, α ) (, α ) 5

6 ( ) ( ) ( ) α α α, α, α, α(, ), ανάλογα α α (, )... αα Α Α και Α (, Α ) Α (, Α ) Η ισότητα Α- Α- αναµένεται καθώς γενικά πραγµατικοί αριθµοί ως ιδιοτιµές ερµιτιανού τελεστή. ( ) Α Α αλλά εδώ έχουµε α και α Έτσι α α α α αα i δt/ α α i δt/ α α α α e e Α e e a a a a cos δt / (3 ) i δt/ i δt/ το δ t δt δt Χρησιµοποιώντας την τριγωνοµετρική ταυτότητα cos cos sin εύκολα να δείξουµε ότι οι εκφράσεις (3) και (3 ) ταυτίζονται. µπορούµε Κάθε h/δ το σύστηµα πηγαίνει από την µία ιδιοκατάσταση (π.χ. µε α ιδιοτιµή για τον Α τελεστή) στην άλλη (, µε ιδιοτιµή α) 6

7 ΤΕΤΡΑΓΩΝΙΚΑ ΠΗΓΑ ΙΑ ΥΝΑΜΙΚΟΥ ΑΣΚΗΣΗ Έστω ηλεκτρόνιο είναι εγκλωβισµένο σε απειρόβαθρο πηγάδι δυναµικού πάχους. Αν κάποια χρονική στιγµή γνωρίζουµε ότι το ηλεκτρόνιο έχει ίδια πιθανότητα να βρίσκεται στις δυο πρώτες ενεργειακές στάθµες και µηδενική πιθανότητα σε κάποια άλλη στάθµη. Να εκτιµηθεί η µέση ενέργεια, η µέση κινητική ενέργεια και η µέση ορµή του ηλεκτρονίου. Ποια η πιθανότητα το ηλεκτρόνιο να βρεθεί στην µέση του πηγαδιού. Η κυµατοσυνάρτηση του ηλεκτρονίου µέσα σε απειρόβαθρο πηγάδι είναι ie3t ( ) x, t ce ( x) c e ( x) c e ( x) c e ( x)... ie t/ ie t/ / ie 4 t/ δίνονται από την έκφραση π Ε n n m όπου οι ενέργειες και οι ιδιοσυναρτήσεις από την έκφραση nπ n ( x) sin. Έστω η χρονική στιγµή της εκφώνησης αντιστοιχεί σε χρόνο t, ( ) έχουµε xt, c c c c..., αλλά γνωρίζουµε ότι Καθώς για t Ρ c, Ρ και ΡΡ. c π 5 π Ε Ρ Ε Ρ Ε π m m 4m Στο απειρόβαθο πηγάδι δυναµικού προφανώς η δυναµική ενάργεια είναι µηδέν, ( ) V V x dx dx o, έτσι o 5 π E V T V T T E m iet / iet / iet / πx i( EE) t / πx ( xt, ) e e e sin e sin e iet / π x i( EE) t/ π x sin e sin ^ iet / iet / e e πx πx iωt πx iωt πx P ( x, t) p ( x, t) dx sin sin e i sin e sin dx x iπ πx iωt πx πx iωt πx iπ πx πx sin e sin cos e cos dx [ sin cos dx i ω t iωt πx πx πx πx πx πx sin cos dx e cos sin dx e sin cos ] iωt cos cos cos cos cos 4 i π πx πx πx πx πx iωt e d d e π π π 7

8 4πx iπ iωt 3πx πx iωt 3πx cos ] e cos cos e cos 4π π 3 3 iωt iωt i 4 iωt 4 iωt 8 e e 8 E e e sin E 3 π ωt 3 3, όπου ω 3 i 3 m Χρησιµοποιώντας το θεώρηµα του Ehrenfest, µπορούµε να εκτιµήσουµε την χρονοεξαρτήµενη µέση θέση του ηλεκτρονίου. Έχουµε d x p p dt 8 6 d x x c sinωtdt c cosωt dt m m 3mω 9π Αρκεί να βρούµε την σταθερά c, η οποία είναι προφανώς το x όταν cosωt. π π Π.χ. για t cosωt cos ω π π πx i πx iet Όταν ω t ή xt, sin e sin e ω π e ie t/ sin x isin x π π και π c x π x dx t ω / πx πx πx πx πx πx sin isin x sin isin dx sin xdx sin xdx sin πx x sin πx sin πx xsin πx, καθώς τα δύο παραπάνω ολοκληρώµατα δεν είναι παρά οι µέσες θέσεις του σωµατιδίου στις δύο πρώτες καταστάσεις (θέσεις asin π x π x και πρώτη διεγερµένη asin ), για τις οποίες οι κατανοµές πιθανότητας είναι συµµετρικές ως προς το µέσον του πηγαδιού, και οι αντίστοιχες µέσες θέσεις του σωµατιδίου θα ισούνται και οι δύο µε /. Θεµελιωµένη Πρώτη ιεγερµένη Το τελευταίο γίνεται κατανοητό πιο εύκολα, όταν µετατοπίσουµε το σύστηµα αναφοράς κατά, οπότε το πηγάδι είναι συµµετρικό ως προς το. Οι κυµατοσυναρτήσεις του πλέον άρτιες ή περιττές και προφανώς το (η πιθανότητα) είναι άρτια συνάρτηση ενώ το χ 6 περιττή, έτσι το ολοκλήρωµα xdx µηδενίζεται. Έτσι βρήκαµε x, f 9π αφήνουµε στον φοιτητή να επιβεβαιώσει ότι < x <. t 8

9 Φυσικά το ίδιο αποτέλεσµα θα βρούµε αν υπολογίσουµε το <x> από το ολοκλήρωµα ( x, t) x(, ) πx πx 8 xsin sin dx. 9π x t dx. Το αφήνουµε ως εξάσκηση στον φοιτητή, µε την υπόδειξη ότι Τέλος η πιθανότητα, P x t x, t x, t dx π iωt π π iωt π dx sin e sin sin e sin dx Γενικά η P(x,t) είναι χρονοεξαρτώµενη, ας το επιβεβαιώσει αυτό ο φοιτητής δοκιµάζοντας να βρει το P(x,t) και P(x,t)

10 ΑΣΚΗΣΗ Να µελετηθούν οι καταστάσεις σκέδασης και οι δέσµιες καταστάσεις σε δέλτα πηγάδι δυναµικού, V(x)cδ(x) (c>) Αρχικά µελετάµε τις καταστάσεις σκέδασης δηλαδή καταστάσεις όπου η ενέργεια είναι θετική Ε>. Έχουµε ( ) ikx x e Ae ikx (προσπίπτων και ikx ανακλώµενο) και II ( x) Be I me, όπου k Από την συνέχεια των κυµατοσυναρτήσεων στο x (ισοδύναµο των δύο περιοχών Ι και ΙΙ ) έχουµε I() II() A B () Λόγω της παρουσίας του δέλτα δυναµικού οι παράγωγοι δεν είναι συνεχείς. Από την E m εξίσωση Schrödinger έχουµε V ( x) ολοκληρώνονται από ε έως ε, ε ε ε ε dx V x dx dx m m c x x dx έχουµε ( ) Ε ( ε) ( ε) δ( ) ( ) ε ε ε ε ε Ε( x) dx ( ε) ( ε) c ( ) ( x) Edx m, θεωρούµε το όριο όταν ε, ε τότε προφανώς ε ε ε ( x) dx E ( x) dx Ε ε ε ε (αφού (x) συνεχής) και έχουµε την συνθήκη mc mc ( ) ( ) ( ) II ( ) I ( ) ( ) οπότε έχουµε mc mc ik( B A) B λb (όπου λ ) λ ik( A A) λ( A) ikaλλa ( ik λ) Aλ A καθώς λ ik λ λ λ P A AA λ ik λ ik λ k και 4κ Τ- οπότε ο συντελεστής λ 4κ 4 ανάκλασης (πιθανότητα ανάκλασης) είναι R c c E (προσοχή το c έχει διαστάσεις m δυναµικής ενέργειας επί απόσταση). Ακριβώς το ίδιο αποτέλεσµα θα πάρουµε αν µελετήσουµε τις καταστάσεις σκέδασης δυναµικού V(x)cδ(x) (c>) (για Ε>, οπότε και έχουµε σκέδαση)

11 γ me. Στην συνέχεια µελετάµε τις καταστάσεις µε Ε< δηλαδή τις δέσµιες καταστάσεις. Οι κυµατοσυναρτήσεις στις περιοχές Ι και ΙΙ, για να είναι τετραγωνικά ολοκληρώσιµες, είναι της µορφής ΙΑe γx και µορφής ΙΙΑe -γx, όπου Η συνέχεια των κυµατοσυναρτήσεων στο x δίνει Ι() ΙΙ() άρα ΑΒ. Ενώ για τις παραγώγους έχουµε ύ λ II ( ) I ( ) λ( ) Bγ Aγ λa αϕο Aλ λa γ A B me mc me m c mc E για Ε<. όπου είναι η µοναδική δέσµια κατάσταση x γ e γ. Απαιτώντας η κυµατοσυνάρτηση να είναι κανονικοποιηµένη βρίσκουµε ( ) x Μικρός αυτοσχεδιασµός για να δούµε αν υπάρχει δέσµια κατάσταση για Ε. Τώρα η συνάρτηση Schrödinger γίνεται ΑxΒ, αλλά για να έχουµε ( ± ) ± πρέπει (x)β, δηλαδή ΙΒΙ και ΙΙΒΙΙ. Από την ( ) ( ) B B και ( ) ( ) λb B B B B ( x) II I I I II I II I II I II, µόνο αποδεκτή λύση καθώς παντού η πιθανότητα Ρ(x). Άρα έχουµε µία και µία δέσµια κατάσταση Αν θεωρήσουµε το δέλτα πηγάδι δυναµικού, ως οριακή περίπτωση τετραγωνικού πηγαδιού, όπου το V και το a mc E < Επειδή όµως πρέπει το εµβαδόν να είναι σταθερό, δηλαδή V ( x) dx c δ ( x) dx c, θα πρέπει το V να είναι ανάλογο του /α. Τις ιδιοενέργειες του τετραγωνικού πηγαδιού τις βρίσκουµε από την γραφική λύση nπ της cosθ θ λ λ, όπου λ a V. Στην περίπτωση του δέλτα δυναµικού a και nπ καθώς λ a V a a και λ όταν a, τότε έχουµε > n εκτός από το a λ. n, και έχουµε µόνο µια λύση µε θ~ Στηριζόµενος στην παραπάνω επιχειρηµατολογία, ελέγξτε ποια από τα παρακάτω τετραγωνικά πηγάδια δυναµικού έχουν µία µόνο δέσµια κατάσταση. (a) Πολύ πλατύ πηγάδι ( a, U πεπερασµένο)

12 (b) Πολύ στενό πηγάδι ( a, U πεπερασµένο) (c) Πολύ ρηχό πηγάδι ( U, α πεπερασµένο) (d) Πολύ βαθύ πηγάδι ( U, α πεπερασµένο) Π.χ. Έχουµε ακριβώς το επιχείρηµα της δέλτα συνάρτησης για το ρηχό καθώς λ (µια κατάσταση) ενώ το πλατύ a λ και έχουµε θ~π/ λ U και

13 ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΑΣΚΗΣΗ Να αποδειχθεί ότι στο φυσικό σύστηµα µονάδων, οι αποστάσεις είναι πολλαπλάσια του mω και οι ενέργειες του ω. Για τον αρµονικό ταλαντωτή η εξίσωση του Schrödinger είναι: d ω m dx m x E (χρονοανεξάρτητη εξίσωση Schrödinger). Θέλουµε να κάνουµε την εξίσωση Schrödinger αδιάστατη, προφανώς διαιρούµε µε κάποια ποσότητα ενέργειας Ε (άγνωστη αρχικά!). Τώρα η συνάρτηση γράφεται: d x E E () {όπου το E E είναι καθαρός αριθµός} E x mω d me Προφανώς τα me και E mω έχουν διαστάσεις απόστασης στο τετράγωνο για να είναι και το αριστερό σκέλος της εξίσωσης αδιάστατο (καθαρός αριθµός) όπως και το δεξί (για να ακριβολογούµε η εξίσωση δεν είναι αδιάστατη, αλλά έχει τις διαστάσεις της, όπου είναι / απόστασης. Φυσικά θα πρέπει οι παραπάνω ποσότητες να αντιστοιχούν σε κάποια τετραγωνική x απόσταση x x E ω και E ω me mω. Έτσι η () γράφεται ως mω mω mω d x d E x E (3) αδιάστατη εξίσωση x x dx d x Schrödinger, όπου γνωρίζουµε ότι τα αποτελέσµατα µας θα είναι καθαροί αριθµοί και όταν χρειαστεί να πάρουν τις ορθές µονάδες τους θα πολλαπλασιαστούν µε ω οι ενέργειες και µε mω οι αποστάσεις. Η εξίσωση (3) ονοµάζεται εξίσωση Schrödinger του αρµονικού ταλαντωτή στο φυσικό σύστηµα µονάδων, γιατί φορµαλιστικά την παίρνουµε από την () µε αντικατάσταση των m ω...φυσικά θα µπορούσατε να ακολουθήσετε την µεθοδολογία του βιβλίου σας που είναι και η µεθοδολογία που ακολουθούν «άπαντες» στην ελληνική και διεθνή βιβλιογραφία. Προσωπικά την βρίσκω µεγάλη σε έκταση και «λίγη» σε περιεχόµενο. E 3

14 ΑΣΚΗΣΗ Θεωρούµε σύστηµα µονοδιάστατου αρµονικού ταλαντωτή, για το οποίο γνωρίζουµε ότι δεδοµένη χρονική στιγµή η κατάσταση του είναι µια επαλληλία της θεµελιώδους και της πρώτης διεγερµένης κατάστασης. Να προσδιορισθεί επακριβώς η κατάσταση του συστήµατος αν γνωρίζουµε ότι x p. Πόση η E την ίδια χρονική στιγµή. Να βρεθεί το (x,t). Η πιο γενική µορφή της κυµατοσυνάρτησης είναι ( x) c c ιδιοκαταστάσεις του αρµονικού ταλαντωτή για n και n και και cc, όπου και c, c τέτοια ώστε cc P iφ P πιθανότητες να έχουµε και. Προφανώς η γενική λύση είναι c e P iφ και c e P, όπου Φ και Φ σταθερές, αλλά τότε i i i i( ) ( x) e Φ P e Φ P e Φ ( P e Φ Φ i P ) και ο όρος e Φ δεν έχει καµία φυσική σηµασία, έτσι η πιο γενική λύση είναι c P, c P. Έχουµε ( ) ( ) cc xdx cc xdx cc xdx cc xdx x c c x c c dx i i e e cc Φ Φ dx cc dx PP PP cosϕ όπου λάβαµε υπόψη ότι τα ολοκληρώµατα ix i καθώς το ix i είναι περιττή συνάρτηση και την /4 x / σχέση x καθώς π e /4 / π e x. p c c i c c dx x Για την µέση ορµή έχουµε ( ) ( ) ' ' c c i ( c c)( c c ) dxi ( c c) c dx PP PP iφ iφ i e e PP sinϕ / / και / / n n x /, µε π ( x ) ( ) (), όπου χρησιµοποιήσαµε τις σχέσεις /4 x / n π n! Hn e και την ορθοκανονικότητα των n. e / και γενικό τύπο την 4

15 Τώρα x PP cosϕ και p PP sinϕ x p ( PP ) PP P( P) P P και 4 π iϕ π π cosϕ sinϕ ϕ e cos isin i Άρα ( ) i i xt, e e e e ( i) i t ( x, t) e ω ( i) i ( e ω στο φυσικό σύστηµα) Έτσι ( ) Ενώ x ie t/ ie t/ ie t/ i( EE) t/ 3 E PE PE, στο φυσικό σύστηµα µονάδων όπου m ω. Έτσι E ω ω, x x και p x mω mω 5

16 ΙΠΛΟ ΚΒΑΝΤΙΚΟ ΠΗΓΑ Ι ΥΝΑΜΙΚΟΥ Παρατηρούµε ότι VVR-V είναι ίσο µε το V(x), το δυναµικό του διπλού κβαντικού πηγαδιού. Θα προσπαθήσουµε να γράψουµε την κυµατοσυνάρτηση του διπλού πηγαδιού ως γραµµικό συνδυασµό των κυµατοσυναρτήσεων των δύο απλών πηγαδιών, καθώς αυτή θα είναι και η ακραία λύση όταν τα δύο πηγάδια βρίσκονται σε άπειρη απόσταση µεταξύ τους. Προφανώς η µεθοδολογία που ακολουθούµε προσεγγιστική και θα είναι τόσο πιο ακριβής όσο µεγαλύτερη είναι η απόσταση µεταξύ των δύο πηγαδιών. Αναζητούµε λοιπόν λύσεις της µορφής a br (), όπου a και b µιγαδικοί συντελεστές και και R οι κυµατοσυναρτήσεις του απλού κβαντικού πηγαδιού µε δυναµικό V και VR αντίστοιχα. ηλαδή d H V ( x) E () mdx d HR R V R x R ER R (), mdx και ( ) d E (3). mdx ενώ έχουµε H V ( x) d mdx Η (3) γράφεται ισοδύναµα V VR V ( a b R ) E( a b R ) d d R R [ ] [ ] a V a V V b V R b V V R ae be R mdx mdx 6

17 ( R ) R ( ) (( ) ( R )) (( R ) ( )) ae a V V be R b V V R ae be R () () a E E V V b E E V V R (4) Πολλαπλασιάζουµε την εξίσωση (4) µε και R από αριστερά, ( ) ( R ) ( R ) ( ) ( ) ( ) ( ) ( ) a E E a V V b E E R b V V R (4α) a E E R a R V V b E E b R V V R (4β) R R Στην συνέχεια θα επικεντρωθούµε στις καταστάσεις όπου E, E V, δηλαδή θα ασχοληθούµε µε την θεµελιώδη κατάσταση των πηγαδιών V και VR. Αν ακόµα έχουµε πολύ ασθενή σύζευξη, δηλαδή οι όροι R, ( V V ) και ( ) R R R V V R µπορούν να παραληφθούν (βλέπε άρθρο A.Yarin et.al., σελίδα 367, σχέση (9), το άρθρο µπορείτε να το κατεβάσετε από την ιστοσελίδα του διδάσκοντα). Επειδή ακόµα το διπλό πηγάδι είναι συµµετρικό, αναµένουµε E E ( ε ) και ( V V ) R R ( V V ) ( δ ) θα R R δώσουµε µία γραφική λύση για την ισότητα των ( V V ) R και ( ) R V V R V V R V R, όπου Έχουµε ( ) περιοχή) Ανάλογα ( ) R R dx dx R R (αριστερή R V V V R, όπου R dx dx R R (δεξιά περιοχή) Για την θεµελιώδη κατάσταση είναι προφανές ότι dx > R άρα ( ) ( ) δ V V R R V V < R Οι εξισώσεις (4α) και (4β) γράφονται ae ( E) bδ και aδ b( E E), αντικαθιστώντας ΕREε υπό µορφή πίνακα έχουµε ε E δ a ε E δ det δ ε E b δ ε E R (4) E± ε ± δ (ιδιοτιµές) οι ιδιοκαταστάσεις ενέργειας µε ιδιοσυναρτήσεις (βλέπε Άσκηση, Αναπαράσταση τελεστών µε µήτρες) ( R )/ και ( R )/ Η συµµετρική ιδιοκατάσταση µε ιδιοενέργεια εδ, είναι η θεµελιώδης κατάσταση (δ<) και η αντισυµµετρική ιδιοκατάσταση µε ενέργεια ε-δ (µεγαλύτερη της εδ). Η χρονική εξέλιξη του συστήµατος µπορεί να µελετηθεί από την ανάπτυξη της κυµατοσυνάρτησης ως συνάρτηση των ιδιοκαταστάσεων ( ) xt ce n ce ce ient / ie t/ iet /, n (πάλι βλέπε άσκηση ) 7

18 Μία εναλλακτική µεθοδολογία, ξεκινά από την σχέση (4), που µπορεί να γραφεί ως ε δ a a E που είναι η χρονοανεξάρτητη εξίσωση Schrödinger, (ΗΕ) γραµµένη δ ε b b υπό µορφή µήτρας. Για να πάµε στην χρονοεξαρτώµενη εξίσωση Schrödinger, χρειαζόµαστε να αντικαταστήσουµε την Ε(ενέργεια) µε τον τελεστή ενέργειας i. Έτσι t a a έχουµε i ε δ i a εa δb (Α) και (Β) b δ ε b i b δ a ε b Προσθέτουµε (Α)(Β) ι ( ) ( ε δ)( ( ) ( ) ( ) ( )( a b a b) και αφαιρώντας (Α)-(Β) ι a b ε ab δ a b ε δ a b), µε λύσεις προφανώς i( ) t/ a b c e ε δ i( ) t/ a b c e ε δ, δηλαδή Και η κυµατοσυνάρτηση είναι (, ) iδt/ iδt/ iεt/ ce ce a e και x t a b R iδt iε t/ ce ce b e / iδt/ Έστω αρχικά το ηλεκτρόνιο είναι εντοπισµένο στο αριστερό πηγάδι οπότε έχουµε α(t) και b(t) και για τα c c c c c και c έχουµε a και b c c iεt/ iεt/ Άρα a e cos δt/ και b e sin δt/. Η πιθανότητα να βρίσκεται το ηλεκτρόνιο στο αριστερό πηγάδι είναι P aa δt cos / και η P bb δt R sin /. και Το ηλεκτρόνιο κινείται περιοδικά από το ένα πηγάδι στο άλλο. Η περίοδος της κίνησης αυτής είναι αντιστρόφως ανάλογη του δ (δ, ουσιαστικά είναι το ολοκλήρωµα αλληλοεπικάλυψης των και µέσα σε ένα από τα δύο πηγάδια). Αναµένεται αυτή η συµπερ ιφορά; R 8

Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L.

Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L. Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδια(ΑΚΠα) Να µελετηθεί το απειρόβαθο κβαντικό πηγάδι µε θετικές ενεργειακές καταστάσεις ( E > ). Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού

Διαβάστε περισσότερα

. Να βρεθεί η Ψ(x,t).

. Να βρεθεί η Ψ(x,t). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο

Διαβάστε περισσότερα

Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για τις δέσµιες καταστάσεις.

Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για τις δέσµιες καταστάσεις. Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδια(ΑΚΠα), < Θεωρούµε κβαντικό πηγάδι µε δυναµικό της µορφής V( ) = VΘ( ), Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για τις δέσµιες καταστάσεις V Ε Ι ΙΙ Σχήµα ΑΚΠα1

Διαβάστε περισσότερα

H = H 0 + V (0) n + Ψ (1) n + E (2) (3) >... Σε πρώτη προσέγγιση µπορούµε να δεχτούµε ότι. n και E n E n

H = H 0 + V (0) n + Ψ (1) n + E (2) (3) >... Σε πρώτη προσέγγιση µπορούµε να δεχτούµε ότι. n και E n E n 3 Θεωρία διαταραχών 3. ιαταραχή µη εκφυλισµένων καταστάσεων 3.. Τοποθέτηση του προβλήµατος Θέλουµε να λύσουµε µε τη ϑεωρία των διαταραχών το πρόβληµα των ιδιοτιµών και ιδιοσυναρτήσεων ενός συστή- µατος

Διαβάστε περισσότερα

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά

Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά Δομή Διάλεξης Τετραγωνικό Πηγάδι Δυναμικού: Δέσμιες καταστάσεις - ιδιοτιμές Οριακές Περιπτώσεις: δ δυναμικό, άπειρο βάθος Σκέδαση σε μια διάσταση: Σκαλοπάτι

Διαβάστε περισσότερα

ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2

ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2 Σπουδές στις Φυσικές Επιστήµες ΦΥΕ 40 Κβαντική Φυσική 014-015 ΕΡΓΑΣΙΑ 3 η Υπόδειξη λύσεων ΑΣΚΗΣΗ 1 Η άρτια κυµατοσυνάρτηση θα δίνεται από (x) = A 3 e γ x x < a b / A cos(kx) B sin(kx) a b / < x < b / A

Διαβάστε περισσότερα

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Βασικά σημεία της κβαντομηχανικής Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει

ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις

Διαβάστε περισσότερα

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Στέλιος Τζωρτζάκης Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ 1 3 4 Το δυναμικό του αρμονικού ταλαντωτή Η παραβολική προσέγγιση βρίσκει άμεση

Διαβάστε περισσότερα

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για

και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 7: Διερεύνηση εξίσωσης Schro dinger και απειρόβαθο πηγάδι δυναμικού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 7: Διερεύνηση εξίσωσης Schro dinger και απειρόβαθο πηγάδι δυναμικού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 7: Διερεύνηση εξίσωσης Schro dinger και απειρόβαθο πηγάδι δυναμικού Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να σκιαγραφηθεί

Διαβάστε περισσότερα

Κβαντομηχανική σε μία διάσταση

Κβαντομηχανική σε μία διάσταση vrsy of Io Dr of Mrls Scc & grg Couol Mrls Scc κή Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 76 ldor@cc.uo.gr csl.rls.uo.gr/ldor σταση Μία ιάσ ανική σε Μ κή Θεωρ ρία της Ύλης: Κβα αντομηχα Κβαντομηχανική

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης ΤΜΗΜΑ Β ΕΞΕΤΑΣΤΙΚΗ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΚΑ. ΕΤΟΣ - ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 7 Φεβρουαρίου ΘΕΜΑ ον ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ :

Διαβάστε περισσότερα

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους. Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J.

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ.30 2 Αρµονικοί ταλαντωτές q Μερικά από τα θέµατα που θα καλύψουµε: q Μάζες σε ελατήρια, εκκρεµή q Διαφορικές εξισώσεις: d 2 x dt 2 + K m x = 0 Ø Mε λύση της µορφής:

Διαβάστε περισσότερα

Αρμονικός Ταλαντωτής

Αρμονικός Ταλαντωτής Αρμονικός Ταλαντωτής Δομή Διάλεξης Η χρησιμότητα του προβλήματος του αρμονικού ταλαντωτή Η Hamiltonian και οι τελεστές δημιουργίας και καταστροφής Το φάσμα ιδιοτιμών της Hamiltonian Οι ιδιοκαταστάσεις

Διαβάστε περισσότερα

KYMATA Ανάκλαση - Μετάδοση

KYMATA Ανάκλαση - Μετάδοση ΦΥΣ 131 - Διαλ.34 1 KYMATA Ανάκλαση - Μετάδοση q Παλµός πάνω σε χορδή: Ένα άκρο της σταθερό (δεµένο) Προσπίπτων Ο παλµός ασκεί µια δύναµη προς τα πάνω στον τοίχο ο οποίος ασκεί µια δύναµη προς τα κάτω

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 5: Κυματομηχανική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι η ερμηνεία της κυματοσυνάρτησης, δηλαδή της λύσης της εξίσωσης

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας

Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Δομή Διάλεξης Χρονική εξέλιξη Gaussian κυματοσυνάρτησης σε μηδενικό δυναμικό (ελέυθερο σωμάτιο): Μετατόπιση και Διασπορά Πείραμα διπλής οπής: Κροσσοί συμβολής για

Διαβάστε περισσότερα

Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac)

Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac) Συνεχές ϕάσµα Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac) Στην κβαντική µηχανική τα ϕυσικά µεγέθη παρίστανται µε αυτοσυζυγείς τελεστές. Για έναν αυτοσυζυγή τελεστή ˆΩ = ˆΩ είναι γνωστό ότι οι ιδιοτιµές του

Διαβάστε περισσότερα

ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΚΕΦ. 4. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ ΤΟΥ DIRAC ΚΕΦ. 5. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΚΕΦ. 7.

ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΚΕΦ. 4. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ ΤΟΥ DIRAC ΚΕΦ. 5. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΚΕΦ. 7. stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 01. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ Στέλιος Τζωρτζάκης ΚΕΦ. 2. ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ΚΕΦ.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ Στέλιος Τζωρτζάκης 1 3 4 Ο νόμος της χρονικής μεταβολής των μέσων τιμών και το

Διαβάστε περισσότερα

Όνοµα: Λιβαθινός Νικόλαος 2291

Όνοµα: Λιβαθινός Νικόλαος 2291 ΠΡΩΤΗ ΆΣΚΗΣΗ ΣΤΗΝ ΚΡΥΠΤΟΓΡΑΦΙΑ Όνοµα: Λιβαθινός Νικόλαος 9 Ηµεροµηνία: 3/5/003 Άσκηση ώστε όλες τις υποοµάδες των Z και Ζ 5 * Προκειµένου να δώσουµε τις υποοµάδες θα πρέπει αρχικά να ορίσουµε τα σύνολα

Διαβάστε περισσότερα

ΦΥΣ Διαλ.33 1 KYMATA

ΦΥΣ Διαλ.33 1 KYMATA ΦΥΣ 131 - Διαλ.33 1 KYMATA q Κύµατα εµφανίζονται σε συστήµατα µε καταστάσεις ισορροπίας. Τα κύµατα είναι διαταραχές από τη θέση ισορροπίας. q Τα κύµατα προκαλούν κίνηση σε πολλά διαφορετικά σηµεία σε ένα

Διαβάστε περισσότερα

Η Αναπαράσταση της Θέσης (Position Representation)

Η Αναπαράσταση της Θέσης (Position Representation) Η Αναπαράσταση της Θέσης (Position Representation) Δομή Διάλεξης Το παρατηρήσιμο μέγεθος της θεσης και τα αντίστοιχα πλάτη πιθανότητας (συνεχές φάσμα ιδιοτιμών και ιδιοκαταστάσεων) Οι τελεστές της θέσης

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Κβαντομηχανική Ι 2o Σετ Ασκήσεων. Άσκηση 1

Κβαντομηχανική Ι 2o Σετ Ασκήσεων. Άσκηση 1 Κβαντομηχανική Ι 2o Σετ Ασκήσεων Άσκηση 1 Ξεκινάμε με την περίπτωση Ε

Διαβάστε περισσότερα

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x. 3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την

Διαβάστε περισσότερα

Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς

Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς Στόχος : Να εξηγήσουμε την επίδραση του δυναμικού του κρυστάλλου στις Ε- Ειδικώτερα: Το δυναμικό του κρυστάλλου 1. εισάγονται χάσματα στα σημεία όπου τέμνονται

Διαβάστε περισσότερα

Το κυματοπακέτο. (Η αρίθμηση των εξισώσεων είναι συνέχεια της αρίθμησης που εμφανίζεται στο εδάφιο «Ελεύθερο Σωμάτιο».

Το κυματοπακέτο. (Η αρίθμηση των εξισώσεων είναι συνέχεια της αρίθμησης που εμφανίζεται στο εδάφιο «Ελεύθερο Σωμάτιο». Το κυματοπακέτο (Η αρίθμηση των εξισώσεων είναι συνέχεια της αρίθμησης που εμφανίζεται στο εδάφιο «Ελεύθερο Σωμάτιο». Ένα ελεύθερο σωμάτιο δεν έχει κατ ανάγκη απολύτως καθορισμένη ορμή. Αν, για παράδειγμα,

Διαβάστε περισσότερα

Κεφάλαιο 11. Η Εξίσωση Schrödinger σε μια διάσταση

Κεφάλαιο 11. Η Εξίσωση Schrödinger σε μια διάσταση Κεφάλαιο 11. Η Εξίσωση Schrödinger σε μια διάσταση Εισαγωγικές Παρατηρήσεις Στο προηγούμενο κεφάλαιο είχαμε μια πρώτη επαφή με την εξίσωση του Schrödinger, σε μια διάσταση, και την «επίλυση» της για ένα

Διαβάστε περισσότερα

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες.

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες. Στην περίπτωση της ταλάντωσης µε κρίσιµη απόσβεση οι δύο γραµµικώς ανεξάρτητες λύσεις εκφυλίζονται (καταλήγουν να ταυτίζονται) Στην περιοχή ασθενούς απόσβεσης ( ) δύο γραµµικώς ανεξάρτητες λύσεις είναι

Διαβάστε περισσότερα

Άσκηση 1. h 2 B = 1 + A = Για τις περιοχές A : x < 0, B : x > 0 η εξίσωση Schroedinger θα έχει τη μορφή της ελεύθερης εξίσωσης, αφού V(x) = 0:

Άσκηση 1. h 2 B = 1 + A = Για τις περιοχές A : x < 0, B : x > 0 η εξίσωση Schroedinger θα έχει τη μορφή της ελεύθερης εξίσωσης, αφού V(x) = 0: Άσκηση 1 Για τις περιοχές A : x < 0, B : x > 0 η εξίσωση Schroediger θα έχει τη μορφή της ελεύθερης εξίσωσης, αφού Vx = 0: Ψ A + κ Ψ A = 0 Ψ B + κ Ψ B = 0 Για το σημείο x = 0 η εξίσωση Schroediger θα είναι:

Διαβάστε περισσότερα

Το θεώρηµα πεπλεγµένων συναρτήσεων

Το θεώρηµα πεπλεγµένων συναρτήσεων 57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Σειρά Fourier Ορθοκανονικές Συναρτήσεις Στοεδάφιοαυτόθαδιερευνήσουμεεάνκαικάτωαπό

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα 4 θέματα με σαφήνεια συντομία. Η πλήρης απάντηση θέματος εκτιμάται ιδιαίτερα. Καλή

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

ˆ pˆ. παραγωγίστε ως προς το χρόνο και χρησιμοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυματοσυνάρτησης. Θα βρείτε.

ˆ pˆ. παραγωγίστε ως προς το χρόνο και χρησιμοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυματοσυνάρτησης. Θα βρείτε. Άσκηση. Η Hamiltoia ενός συστήματος έχει τη γενική μορφή ˆ pˆ H V ( xˆ ) m Δείξτε ότι d V ( xˆ ) pˆ F( xˆ) t dt x def. t Υπόδειξη: Ξεκινείστε από τον ορισμό της αναμενόμενης τιμής pˆ dx ( x, t) pˆ( x,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου t (α) Αν το παραπάνω σύστηµα, ( m, s,

Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου t (α) Αν το παραπάνω σύστηµα, ( m, s, Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου 9-1 ιάρκεια εξέτασης :3 5//1 Ι. Σ. Ράπτης Ε. Φωκίτης Θέµα 1. Ένας αρµονικός ταλαντωτής µε ασθενή απόσβεση (µάζα m σταθερά ελατηρίου

Διαβάστε περισσότερα

Λύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση f µιας αντιστρέψιµης συνάρτησης f είναι

Διαβάστε περισσότερα

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i.

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i. http://elern.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 00-0: Άσκηση (0 µον) Θεωρούµε το µιγαδικό αριθµό z= i. α) (5 µον) Βρείτε την τριγωνοµετρική µορφή του z.

Διαβάστε περισσότερα

Σηµειώσεις στις συναρτήσεις

Σηµειώσεις στις συναρτήσεις Σηµειώσεις στις συναρτήσεις 4 Η έννοια της συνάρτησης Ο όρος «συνάρτηση» χρησιµοποιείται αρκετά συχνά για να δηλώσει ότι ένα µέγεθος, µια κατάσταση κτλ εξαρτάται από κάτι άλλο Και στα µαθηµατικά ο όρος

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: , Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 10 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 10 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr Ε ΟΥΑΡ ΟΣ ΛΑΓΑΝΑΣ, Ph.D KENTΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ &

Διαβάστε περισσότερα

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς

Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z

Διαβάστε περισσότερα

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1) 1 ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης (1) όπου οι συντελεστές είναι δοσµένες συνεχείς συναρτήσεις ορισµένες σ ένα ανοικτό διάστηµα. Ορισµός 1. Ορίζουµε τον διαφορικό τελεστή µέσω της

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ12 «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 16 Ιουλίου 2003 http://edueapgr/pli/pli/studetshtm Page of 6 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ «ΜΑΘΗΜΑΤΙΚΑ Ι» Επαναληπτική Τελική Εξέταση 6 Ιουλίου Απαντήστε όλα

Διαβάστε περισσότερα

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x Ευκλείδειοι Χώροι Ορίζουµε ως R, όπου N, το σύνολο όλων διατεταµένων -άδων πραγµατικών αριθµών x, x,, x ) Tο R λέγεται ευκλείδειος -χώρος και τα στοιχεία του λέγονται διανύσµατα ή σηµεία Το x i λέγεται

Διαβάστε περισσότερα

Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε

Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε ηλεκτροµαγνητικό κύµα κυκλ. Συχνότητας ω. Παρατηρούµε ότι η πολωσιµότητα του µέσου εξαρτάται µε την εκφραση 2.42

Διαβάστε περισσότερα

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013

ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC Στέλιος Τζωρτζάκης Ο γενικός φορμαλισμός Dirac 1 3 4 Εικόνες και αναπαραστάσεις Επίσης μια πολύ χρήσιμη ιδιότητα

Διαβάστε περισσότερα

2.1 (i) f(x)=x -3x+2 Η f(x) ορίζεται x R

2.1 (i) f(x)=x -3x+2 Η f(x) ορίζεται x R ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ ο. (i) f()= -3+ Η f() ορίζεται R Έχει Π.Ο ολόκληρο το R Για το Π.Τ της f() έχουµε : ος τρόπος 3 9 3 = -3+= - - += - - () Το Π.Τ. της f() θα είναι οι τιµές που παίρνει το R. Από

Διαβάστε περισσότερα

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας 7 Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας Συζευγµένες ταλαντώσεις Βιβλιογραφία F S Crawford Jr Κυµατική (Σειρά Μαθηµάτων Φυσικής Berkeley, Τόµος 3 Αθήνα 979) Κεφ H J Pai Φυσική των ταλαντώσεων

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ

ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ η Ερώτηση Γνωρίζουµε πως η κυµατοσυνάρτηση είναι η λύσης της κυµατικής εξίσωσης, που περιγράφει το µέγεθος της ιαταραχής, ( rt, ) r. Ψ= σε κάθε χρονική στιγµή, t, και σε κάθε θέση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να αναδείξει την ερμιτιανότητα

Διαβάστε περισσότερα

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005 ΑΤΜΟΦ Απαντησεις στις ερωτησεις της εξετασης της 4 ης Ιουνιου 005. Ερωτηση που αφορα στις ασκησεις του εργαστηριου. Α) Με βάση τη σχέση που συνδέει τις αποστάσεις α και b με την εστιακή απόσταση του σφαιρικού

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR 6 Ορισµοί Ορισµός 6 Εστω α είναι µία πραγµατική ακολουθία και είναι πραγµατικοί αριθµοί Ένα άπειρο πολυώνυµο της µορφής: a ( ) () = καλείται δυναµοσειρά µε κέντρο το

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

fysikoblog.blogspot.com

fysikoblog.blogspot.com fysikobog.bogspot.co Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις ΙΙΙ: Σφαιρικές Αρμονικές Στις σημειώσεις αυτές δίνομε την αναπαράσταση των ιδιοανυσμάτων της

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Νόμοι Διατήρησης κβαντικών αριθμών Αρχές Αναλλοίωτου Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 6. Βέλτιστες προσεγγίσεις σε ευκλείδειους χώρους Στο κεφάλαιο αυτό θα ασχοληθούµε µε προσεγγίσεις που ελαχιστοποιούν αποστάσεις σε διανυσµατικούς χώρους, µε νόρµα που προέρχεται

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο

Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Δομή Διάλεξης Χαμιλτονιανή και Ρεύμα Πιθανότητας για Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Μετασχηματισμοί Βαθμίδας Αρμονικός Ταλαντωτής σε Ηλεκτρικό Πεδίο Σωμάτιο

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά Κυµατική ΦΥΕ4 5/7/8 Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ4 Ιούλιος 8 KYMATIKH ιάρκεια: λεπτά Θέµα ο (Μονάδες:.5) A) Θεωρούµε τις αποστάσεις

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα

Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα ΦΥΣ 11 - Διαλ.3 1 Συζευγμένα ταλαντώσεις - Ένα άλλο σύστημα q Το παρακάτω σύστημα είναι ανάλογο με το σύστημα των δύο εκκρεμών. q Οι δυο ιδιοσυχνότητες του συστήματος είναι ίδιες με τις ιδιοσυχνότητες

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

Μετασχηματισμοί Καταστάσεων και Τελεστών

Μετασχηματισμοί Καταστάσεων και Τελεστών Μετασχηματισμοί Καταστάσεων και Τελεστών Δομή Διάλεξης Μετασχηματισμοί Καταστάσεων Τελεστής Μετατόπισης Συνεχείς Μετασχηματισμοί και οι Γεννήτορές τους Τελεστής Στροφής Διακριτοί Μετασχηματισμοί: Parity

Διαβάστε περισσότερα

. Κουζούδης 1 ΠΑΡΑΓΩΓΟΙ

. Κουζούδης 1 ΠΑΡΑΓΩΓΟΙ 1 ΠΑΡΑΓΩΓΟΙ Ποια είναι η χρήση των παραγώγων στην Φυσική και τι ακριβώς είναι; Ένα παράδειγµα θα µας διαφωτίσει. Έστω ότι ένα αυτοκίνητο βρίσκεται την χρονική στιγµή t = 0 s στο σηµείο x = 0 m και κινείται

Διαβάστε περισσότερα

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε Άλγεβρα υκείου επιµ.: άτσιος ηµήτρης ΣΣΤΗΜΤ ΜΜΩΝ ΞΣΩΣΩΝ Μ ΝΩΣΤΣ ΣΩΣ ΝΝΣ ρισµός: Μια εξίσωση της µορφής αχ+βψ=γ ονοµάζεται γραµµική εξίσωση µε δυο αγνώστους. ύση της εξίσωσης αυτής ονοµάζεται κάθε διατεταγµένο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα

Κεφάλαιο T4. Υπέρθεση και στάσιµα κύµατα

Κεφάλαιο T4. Υπέρθεση και στάσιµα κύµατα Κεφάλαιο T4 Υπέρθεση και στάσιµα κύµατα Κύµατα και σωµατίδια Τα κύµατα είναι πολύ διαφορετικά από τα σωµατίδια. Τα σωµατίδια έχουν µηδενικό µέγεθος. Τα κύµατα έχουν ένα χαρακτηριστικό µέγεθος το µήκος

Διαβάστε περισσότερα

ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ Επιστήµη και Τεχνολογία των Υπολογιστών Α.Μ.: 403. Πρώτη Οµάδα Ασκήσεων

ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ Επιστήµη και Τεχνολογία των Υπολογιστών Α.Μ.: 403. Πρώτη Οµάδα Ασκήσεων ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΘΕΜΕΛΙΩΣΕΩΝ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ LIBATI@CEIDUPATRASGR Επιστήµη και Τεχνολογία των Υπολογιστών ΑΜ: Πρώτη Οµάδα Ασκήσεων 8// Να βρεθούν οι OGF για καθεµία από τις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα