Snimanje karakteristika dioda

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Snimanje karakteristika dioda"

Transcript

1 FIZIČKA ELEKTRONIKA Laboratorijske vežbe Snimanje karakteristika dioda VAŽNA NAPOMENA: ZA VREME POSTAVLJANJA VEŽBE (SASTAVLJANJA ELEKTRIČNE ŠEME) I PRIKLJUČIVANJA MERNIH INSTRUMENATA MAKETA MORA BITI ODVOJENA OD NAPAJANJA! TEK NAKON ŠTO PREDMETNI ASISTENT ODOBRI UPOTREBU VEŽBE MOŽE SE PRIKLJUČITI MAKETA. NE PISATI PO OVOM UPUTSTVU. PRIPREMA MAKETE Prilikom izrade ove vežbe koristi se ispravljač napona, maketa, otpornik 180Ω, četri diode i dva merna instrumenta (voltmetar i ampermetar). Odmah na početku, a pre priključivanja na maketu, voltmetar je potrebno postaviti na opseg 20V, a ampermetar na opseg 20mA, vidi sliku 1. Pomoću makte i potrebnih komponenata sastaviti električnu šema kola koja je data je na slici 2. Gotova maketa treba da izgleda kao na slici 3. Potenciometar za promenu napona napajanja makete treba okrenuti u krajnji levi položaj. Priključiti ampermetar i voltmetar. Pozvati predmetnog asistenta radi provere ispravnosti sastavljene makete i nakon toga pristupiti izradi vežbe. Slika 1 Slika 2 1

2 Slika 3 IZRADA VEŽBE Potenciometar za promenu napona napajanja makete lagano oketati udesno dok se na voltmetru ne očita potreban napon (vidi tabele). Zatim zapisati očitanu vrednost struje prikazanu na ampermetru. Po završetku snimanja karakteristike jedne diode smanjiti napon napajanja na 0V, promeniti diodu i ponoviti postupak snimanja karakteristike. LED zelena V D N4007 V D Schottky dioda V D IC dioda V D

3 IZVEŠTAJ U izveštaju je potrebno navesti električnu šemu ove vežbe, postupak merenja i izmerene podatke u vidu tabela i grafikona (V D ). Karakteristike za sve četri diode nacrtati na istom grafikonu, koristeći milimetarski papir. Dimezije grafikona treba da budu približno fomata A4. Odrediti napon praga za svaku diodu (Presečna tačka tangente na karakteristiku diode u radnom režimu i x-ose). Svesku sa izveštajem OBAVEZNO predati asistentu radi overe na prvom narednom času laboratorijskih vežbanja. 3

4 FIZIČKA ELEKTRONIKA Laboratorijske vežbe Upotreba zener dioda VAŽNA NAPOMENA: ZA VREME POSTAVLJANJA VEŽBE (SASTAVLJANJA ELEKTRIČNE ŠEME) I PRIKLJUČIVANJA MERNIH INSTRUMENATA MAKETA MORA BITI ODVOJENA OD NAPAJANJA! TEK NAKON ŠTO PREDMETNI ASISTENT ODOBRI UPOTREBU VEŽBE MOŽE SE PRIKLJUČITI MAKETA. NE PISATI PO OVOM UPUTSTVU. PRIPREMA MAKETE Prilikom izrade ove vežbe koristi se ispravljač napona, maketa, otpornik 1kΩ, tri zener diode i dva merna instrumenta (voltmetri). Odmah na početku, a pre priključivanja na maketu, voltmetre je potrebno postaviti na opseg 20V, vidi sliku 1. Pomoću makete i potrebnih komponenata sastaviti električnu šema kola koja je data je na slici 2. Gotova maketa treba da izgleda kao na slici 3. Potenciometar za promenu napona napajanja makete treba okrenuti u krajnji levi položaj. Priključiti voltmetre. Pozvati predmetnog asistenta radi provere ispravnosti sastavljene makete i nakon toga pristupiti izradi vežbe. Slika 1 Slika 2 4

5 Slika 3 IZRADA VEŽBE a) Potenciometar za promenu napona napajanja makete lagano oketati udesno i time postepeno povećavati napon napajanja makete. Istovremeno očitavati napon Vin i napon Vout, a vrednosti uneti u tabelu. Posebno obratiti pažnju da se u blizini zenerovog napona korak smanji na oko 0.1~0.2 V, a kasnije, kada dioda provede korak može da bude 1V. Po završetku snimanja karakteristike jedne diode smanjiti napon napajanja na 0V, zameniti diodu od 2V1 diodom 5V6 i ponoviti postupak snimanja karakteristike. D1(2V1) V in V out D2(5V6) V in V out b) Da bi se ilustrovala upotreba zener dioda kao ograničavača i pozitivnog i negativnog napona potrebno je sastaviti maketu kao na slici 4. Električna šema je data na slici 5. Postupak izrade ovog dela vežbe je podeljen u dva dela. Najpre treba da se snimi Vout(Vin) kao u slučaju po a). Zatim vratiti potenciometar skroz ulevo (napon napajanje makete je time vraćen na 0V) i promeniti međusobno mesta priključcima za napajanje makete. Time praktično dovodimo negativan napon na maketu u odnosu na prethodni slučaj. Ponoviti postupak za snimanje karakteristike Vout(Vin). Ove dve karakteristike se snimaju samo za diode 2V1. Obe karakteristike treba da se nacrtaju na istom dijagramu (1. i 3. kvadrant). 5

6 Slika 4 c) Slika 5 Da bi se ilustrovala upotreba zener dioda kao stabilizatora različitih napona iz istog izvora napajanja, potrebno je sastaviti maketu kao na slici 6. Električna šema je data na slici 7. Slika 6 6

7 Slika 7 Kao i uslučaju pod a) potrebno je snimiti krivu Vout(Vin). Koristi se samo pozitivan napon napajanja kao u slučaju pod a). Na istom dijagramu nacrtati napone na diodama D1 i D2 u funkciji napona napajanja. IZVEŠTAJ U izveštaju je potrebno navesti električnu šemu ove vežbe, postupak merenja i izmerene podatke u vidu tabela i grafikona. Koristiti milimetarski papir. Dimezije grafikona treba da budu približno fomata A4. Svesku sa izveštajem OBAVEZNO predati asistentu radi overe na prvom narednom času laboratorijskih vežbanja. 7

8 FIZIČKA ELEKTRONIKA Laboratorijske vežbe Snimanje karakteristike bipolarnog tranzistora VAŽNA NAPOMENA: ZA VREME POSTAVLJANJA VEŽBE (SASTAVLJANJA ELEKTRIČNE ŠEME) I PRIKLJUČIVANJA MERNIH INSTRUMENATA MAKETA MORA BITI ODVOJENA OD NAPAJANJA! TEK NAKON ŠTO PREDMETNI ASISTENT ODOBRI UPOTREBU VEŽBE MOŽE SE PRIKLJUČITI MAKETA. NE PISATI PO OVOM UPUTSTVU. PRIPREMA MAKETE Prilikom izrade ove vežbe koristi se ispravljač napona, maketa, otpornici 180E I 100K, bipolarni transistor BC107 i tri merna instrumenta (2 voltmetra i ampermetar). Odmah na početku, a pre priključivanja na maketu, voltmetar je potrebno postaviti na opseg 20V, a ampermetar na opseg 20mA, vidi sliku 1. Pomoću makete i potrebnih komponenata sastaviti električnu šema kola koja je data je na slici 2. Gotova maketa treba da izgleda kao na slici 3. Potenciometar za promenu napona napajanja makete i potenciometar za promenu bazne struje tranzistora treba okrenuti u krajnji levi položaj. Priključiti ampermetar i voltmetre. Pozvati predmetnog asistenta radi provere ispravnosti sastavljene makete i nakon toga pristupiti izradi vežbe. Slika 1 Slika 2 8

9 Slika 3 IZRADA VEŽBE Potenciometar za promenu bazne struje tranzistora podesiti tako da voltmetar V 1 pokazuje 1V. S obzirom da je V 1 napon na otporniku od 100k, to znači da je bazna struja I B =V 1 /R=1V/100k=10 A. Potenciometar za promenu napona napajanja makete lagano oketati udesno dok se na voltmetru ne očita potreban napon V CE (vidi tabele). Zatim zapisati očitanu vrednost struje I C izmerenu ampermetrom. Za vreme snimanja karakteristike bazna struja se mora održavati konstantnom. Ukoliko je potrebno, izvršiti korekciju potenciometrom za podešavanje bazne struje. Po završetku snimanja karakteristike za jednu vrednost bazne struje smanjiti napon napajanja na 0V, povećati baznu struju i ponoviti postupak snimanja karakteristike. I B =10 A (V 1 =1V) V CE I C I B =20 A (V 1 =2V) V CE I C I B =30 A (V 1 =3V) V CE I C 9

10 IZVEŠTAJ U izveštaju je potrebno navesti električnu šemu ove vežbe, postupak merenja i izmerene podatke u vidu tabela i grafikona I C (V CE ). Karakteristike za sve tri bazne struje (10 A, 20 A, 30 A) nacrtati na istom grafikonu. Ukoliko se grafikon crta ručno, koristiti milimetarski papir. Dimezije grafikona treba da budu približno fomata A4. Odrediti pojačanje ovog tranzistora: izabrati dve tačke u aktivnoj oblasti rada tranzistora na karakteristikama za 10 A i 30 A, a pojačanje izračunati kao: = I C / I B =I C3 -I C1 /I B3 -I B1 Na grafikonu označiti oblasti rada tranzistora. Svesku sa izveštajem OBAVEZNO predati asistentu radi overe na prvom narednom času laboratorijskih vežbanja. 10

11 FIZIČKA ELEKTRONIKA Laboratorijske vežbe Snimanje karakteristike MOS tranzistora VAŽNA NAPOMENA: ZA VREME POSTAVLJANJA VEŽBE (SASTAVLJANJA ELEKTRIČNE ŠEME) I PRIKLJUČIVANJA MERNIH INSTRUMENATA MAKETA MORA BITI ODVOJENA OD NAPAJANJA! TEK NAKON ŠTO PREDMETNI ASISTENT ODOBRI UPOTREBU VEŽBE MOŽE SE PRIKLJUČITI MAKETA. NE PISATI PO OVOM UPUTSTVU. PRIPREMA MAKETE Prilikom izrade ove vežbe koristi se ispravljač napona, maketa, otpornici 180E i 100K, MOS transistor IRF510 i tri merna instrumenta (2 voltmetra i ampermetar). Odmah na početku, a pre priključivanja na maketu, voltmetar je potrebno postaviti na opseg 20V, a ampermetar na opseg 20mA, vidi sliku 1. Pomoću makete i potrebnih komponenata sastaviti električnu šema kola koja je data je na slici 2. Gotova maketa treba da izgleda kao na slici 3. Potenciometar za promenu napona napajanja makete i potenciometar za promenu napona V GS tranzistora treba okrenuti u krajnji levi položaj. Priključiti ampermetar i voltmetre. Pozvati predmetnog asistenta radi provere ispravnosti sastavljene makete i nakon toga pristupiti izradi vežbe. Slika 1 Slika 2 11

12 Slika 3 IZRADA VEŽBE Potenciometar za promenu napona V GS tranzistora podesiti tako da voltmetar pokazuje 2.80V. Potenciometar za promenu napona napajanja makete lagano oketati udesno dok se na voltmetru ne očita potreban napon V DS (vidi tabele). Zatim zapisati očitanu vrednost struje izmerenu ampermetrom. Za vreme snimanja karakteristike napon V GS se mora održavati konstantnim. Ukoliko je potrebno, izvršiti korekciju potenciometrom za podešavanje ovog napona. Po završetku snimanja karakteristike za jednu vrednost napona V GS smanjiti napon napajanja na 0V, povećati napon V GS i ponoviti postupak snimanja karakteristike. V GS =2.80V V DS V GS =2.90V V DS V GS =3.00V V DS

13 IZVEŠTAJ U izveštaju je potrebno navesti električnu šemu ove vežbe, postupak merenja i izmerene podatke u vidu tabela i grafikona (V DS ). Karakteristike za sve tri vrednosti napona V GS (2.80V, 2.90V, 3.00V) nacrtati na istom grafikonu. Ukoliko se grafikon crta ručno, koristiti milimetarski papir. Dimezije grafikona treba da budu približno fomata A4. Na grafikonu označiti oblasti rada tranzistora. Svesku sa izveštajem OBAVEZNO predati asistentu radi overe na prvom narednom času laboratorijskih vežbanja. 13

LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE. Laboratorijske vežbe

LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE. Laboratorijske vežbe LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE Laboratorijske vežbe 2014/2015 LABORATORIJSKI PRAKTIKUM-ELEKTRONSKE KOMPONENTE Laboratorijske vežbe Snimanje karakteristika dioda VAŽNA NAPOMENA: ZA VREME

Διαβάστε περισσότερα

LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE. Laboratorijske vežbe

LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE. Laboratorijske vežbe LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE Laboratorijske vežbe 2017/2018 LABORATORIJSKI PRAKTIKUM-ELEKTRONSKE KOMPONENTE Laboratorijske vežbe Određivanje osvetljenosti laboratorije korišćenjem fotootpornika

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR

OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

LINEARNA ELEKTRONIKA VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM

LINEARNA ELEKTRONIKA VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU LINEARNA ELEKTRONIKA LABORATORIJSKE VEŽBE VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM.. IME I PREZIME BR. INDEKSA

Διαβάστε περισσότερα

ENERGETSKA ELEKTRONIKA UPRAVLJANJE BUCK KONVERTOROM: IMPULSNO-ŠIRINSKA MODULACIJA

ENERGETSKA ELEKTRONIKA UPRAVLJANJE BUCK KONVERTOROM: IMPULSNO-ŠIRINSKA MODULACIJA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU ENERGETSKA ELEKTRONIKA LABORATORIJSKE VEŽBE VEŽBA BROJ 4: UPRAVLJANJE BUCK KONVERTOROM: IMPULSNO-ŠIRINSKA MODULACIJA Autori: Predrag Pejović i

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

PRAKTIKUM ZA LABORATORIJSKE VJEŽBE IZ ELEKTRONIKE

PRAKTIKUM ZA LABORATORIJSKE VJEŽBE IZ ELEKTRONIKE TEHNIČKI ŠKOLSKI CENTAR ZVORNIK PRAKTIKUM ZA LABORATORIJSKE VJEŽBE IZ ELEKTRONIKE II RAZRED Zanimanje: Tehničar računarstva MODUL 3 (1 čas nedeljno, 36 sedmica) PREDMETNI PROFESOR: Biljana Vidaković 0

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) II deo Miloš Marjanović Bipolarni tranzistor kao prekidač BIPOLARNI TRANZISTORI ZADATAK 16. U kolu sa slike bipolarni

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

ENERGETSKA ELEKTRONIKA UPRAVLJANJE BUCK KONVERTOROM: PROGRAMIRANJE STRUJE

ENERGETSKA ELEKTRONIKA UPRAVLJANJE BUCK KONVERTOROM: PROGRAMIRANJE STRUJE ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU ENERGETSKA ELEKTRONIKA LABORATORIJSKE VEŽBE VEŽBA BROJ 5: UPRAVLJANJE BUCK KONVERTOROM: PROGRAMIRANJE STRUJE Autori: Predrag Pejović i Vladan

Διαβάστε περισσότερα

Budi kreativan/kreativna

Budi kreativan/kreativna ELEKTROTEHNI CKI FAKULTET, UNIVERZITET U BEOGRADU KATEDRA ZA ELEKTRONIKU UVOD U ELEKTRONIKU - OO1UE LABORATORIJSKA VE ZBA BROJ 4 Budi kreativan/kreativna 1. 2. IME I PREZIME BROJ INDEKSA BROJ GRUPE OCENA

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

2.2 Pojačavač snage. Autori: prof. dr Predrag Petković, dr Srđan Đorđević,

2.2 Pojačavač snage. Autori: prof. dr Predrag Petković, dr Srđan Đorđević, 2.2 Pojačavač snage Autori: prof. dr Predrag Petković, dr Srđan Đorđević, 2.2.1 Cilj vežbe Ova vežba treba da omugući studentima da sagledaju osobine pojačavača velikih signala koji rade u klasi AB i B.

Διαβάστε περισσότερα

ENERGETSKA ELEKTRONIKA TROFAZNI ISPRAVLJAČ

ENERGETSKA ELEKTRONIKA TROFAZNI ISPRAVLJAČ ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU ENERGETSKA ELEKTRONIKA LABORATORIJSKE VEŽBE VEŽBA BROJ 6: TROFAZNI ISPRAVLJAČ Autori: Predrag Pejović i Vladan Božović A. OPIS VEŽBE Vežba obuhvata

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Elementi elektronike septembar 2014 REŠENJA. Za vrednosti ulaznog napona

Elementi elektronike septembar 2014 REŠENJA. Za vrednosti ulaznog napona lementi elektronike septembar 2014 ŠNJA. Za rednosti ulaznog napona V transistor je isključen, i rednost napona na izlazu je BT V 5 V Kada ulazni napon dostigne napon uključenja tranzistora, transistor

Διαβάστε περισσότερα

Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa

Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa Tranzistori s efektom polja Spoj zajedničkog uvoda U ovoj vježbi ispitujemo pojačanje signala uz pomoć FET-a u spoju zajedničkog uvoda. Shema pokusa Postupak Popis spojeva 1. Spojite pokusni uređaj na

Διαβάστε περισσότερα

PRAKTIKUM ZA LABORATORIJSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) Aneta Prijić Miloš Marjanović

PRAKTIKUM ZA LABORATORIJSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) Aneta Prijić Miloš Marjanović Univerzitet u Nišu Elektronski fakultet PRAKTIKUM ZA LABORATORIJSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) Aneta Prijić Miloš Marjanović SPISAK VEŽBI 1. Ispravljačka diodna

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

Laboratorijske vežbe iz Osnova elektronike

Laboratorijske vežbe iz Osnova elektronike ELEKTROTEHNIČKI FAKULTET U BEOGRADU ODSEK ZA ELEKTRONIKU Radivoje Đurić Milan Ponjavić Laboratorijske vežbe iz Osnova elektronike priručnik za rad u laboratoriji Beograd, 05. Laboratorijske vežbe iz Osnova

Διαβάστε περισσότερα

Vežba 5 Uvod u NI ELVIS okruženje. Cilj vežbe

Vežba 5 Uvod u NI ELVIS okruženje. Cilj vežbe Vežba 5 Uvod u NI ELVIS okruženje Cilj vežbe Cilj vežbe je da studente upozna sa merenjem u NI ELVIS I okruženju kroz nekoliko primera merenja karakteristika električnih komponenti i kola. U svakom od

Διαβάστε περισσότερα

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

PRAKTIKUM ZA IZVOĐENJE LABORATORIJSKIH VEŽBANJA IZ PREDMETA:

PRAKTIKUM ZA IZVOĐENJE LABORATORIJSKIH VEŽBANJA IZ PREDMETA: ELEKTRONSKI FAKULTET NIŠ KATEDRA ZA ELEKTRONIKU predmet: ELEKTRONIKA Godina 2006/2007 PRAKTIKUM ZA IZVOĐENJE LABORATORIJSKIH VEŽBANJA IZ PREDMETA: ELEKTRONIKA (SGE, SGMIM, SGUS) ELEKTRONIKA U TELEKOMUNIKACIJAMA

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE

RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE ELEKTRONSKI FAKULTET NIŠ KATEDRA ZA ELEKTRONIKU predmet: OSNOVI ELEKTRONIKE studijske grupe: EMT, EKM Godina 2014/2015 RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE 1 1. ZADATAK Na slici je prikazano električno

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi

Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. Strujna zrcala pomoću BJT tranzistora 2. Strujni izvori sa BJT tranzistorima 3. Tranzistor kao sklopka 4. Stabilizacija radne točke 5. Praktični sklopovi s tranzistorima Strujno

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Klizni otpornik. Ampermetar. Slika 2.1 Jednostavni strujni krug

Klizni otpornik. Ampermetar. Slika 2.1 Jednostavni strujni krug 1. LMNT STOSMJNOG STJNOG KGA Jednostavan strujni krug (Slika 1.1) sastoji se od sljedećih elemenata: 1 Trošilo Aktivni elementi naponski i strujni izvori Pasivni elementi trošilo (u istosmjernom strujnom

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

LABORATORIJSKE VEŽBE IZ PREDMETA OSNOVI OPTIKE za generaciju 2015/16.

LABORATORIJSKE VEŽBE IZ PREDMETA OSNOVI OPTIKE za generaciju 2015/16. LABORATORIJSKE VEŽBE IZ PREDMETA OSNOVI OPTIKE za generaciju 2015/16. Spisak vežbi: 1. Određivanje žižne daljine sočiva pomoću direktne metode 2. Određivanje parametara otootpornika 3. Snimanje karakteristike

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

4 IMPULSNA ELEKTRONIKA

4 IMPULSNA ELEKTRONIKA 4 IMPULSNA ELEKTRONIKA 1.1 Na slici 1.1 prikazano je standardno TTL kolo sa parametrima čije su nominalne vrednosti: V cc = 5V, V γ = 0, 65V, V be = V bc = V d = 0, 7V, V bes = 0, 75V, V ces = 0, 1V, R

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator Sadržaj predavanja: 1. Mreže sa kombiniranim DC i AC izvorima 2. Sklopovi sa Zenner diodama 3. Zennerov regulator Dosadašnja analiza je bila koncentrirana na DC analizu, tj. smatralo se da su elementi

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Priprema za državnu maturu

Priprema za državnu maturu Priprema za državnu maturu E L E K T R I Č N A S T R U J A 1. Poprečnim presjekom vodiča za 0,1 s proteče 3,125 10¹⁴ elektrona. Kolika je jakost struje koja teče vodičem? A. 0,5 ma B. 5 ma C. 0,5 A D.

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

TREĆA LABORATORIJSKA VEŽBA

TREĆA LABORATORIJSKA VEŽBA TREĆA LABORATORIJSKA VEŽBA RADNI REŽIMI POGONA SA ASINHRONIM MOTOROM 1. UVOD Na laboratorijskom modelu grupe koju čini jednosmerni motor sa nezavisnom pobudom i trofazni asinhroni motor sa kaveznim rotorom,

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Trofazno trošilo je simetrično ako su impedanse u sve tri faze međusobno potpuno jednake, tj. ako su istog karaktera i imaju isti modul.

Trofazno trošilo je simetrično ako su impedanse u sve tri faze međusobno potpuno jednake, tj. ako su istog karaktera i imaju isti modul. Zadaci uz predavanja iz EK 500 god Zadatak Trofazno trošilo spojeno je u zvijezdu i priključeno na trofaznu simetričnu mrežu napona direktnog redoslijeda faza Pokazivanja sva tri idealna ampermetra priključena

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

IMPULSNA ELEKTRONIKA Zbirka rešenih zadataka

IMPULSNA ELEKTRONIKA Zbirka rešenih zadataka IMPULSNA ELEKTRONIKA Zbirka rešenih zadataka Stančić Goran Jevtić Milun Niš, 2004 2 IMPULSNA ELEKTRONIKA Glava 1 Logička kola i njihova primena 3 4 IMPULSNA ELEKTRONIKA 1.1 Na slici 1.1 prikazano je standardno

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. Punovalni ispravljač 2. Rezni sklopovi 3. Pritezni sklopovi

Elektronički Elementi i Sklopovi. Sadržaj predavanja: 1. Punovalni ispravljač 2. Rezni sklopovi 3. Pritezni sklopovi Sadržaj predavanja: 1. Punovalni ispravljač 2. Rezni sklopovi 3. Pritezni sklopovi Najčešći sklop punovalnog ispravljača se može realizirati pomoću 4 diode i otpornika: Na slici je ulazni signal sinusodialanog

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

1.1 Osnovni pojačavački stepeni

1.1 Osnovni pojačavački stepeni 1.1 Osnovni pojačavački stepeni Autori: prof. dr Vlastimir Pavlović, dipl. inž. Dejan Mirković 1.1.1 Cilj vežbe Ova vežba treba da omugući studentima da sagledaju osobine osnovnih tipova pojačavača sa

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

ANALIZA TTL, DTL I ECL LOGIČKIH KOLA

ANALIZA TTL, DTL I ECL LOGIČKIH KOLA ANALIZA TTL, DTL I ECL LOGIČKIH KOLA Zadatak 1 Za DTL logičko kolo sa slike 1.1, odrediti: a) Logičku funkciju kola i režime rada svih tranzistora za sve kombinacije logičkih nivoa na ulazu kola. b) Odrediti

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Elektronički Elementi i Sklopovi

Elektronički Elementi i Sklopovi Elektronički Elementi i Sklopovi Sadržaj predavanja: 1. Teoretski zadaci sa diodama 2. Analiza linije tereta 3. Elektronički sklopovi sa diodama 4. I i ILI vrata 5. Poluvalni ispravljač Teoretski zadaci

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave

TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

TREĆA LABORATORIJSKA VEŽBA

TREĆA LABORATORIJSKA VEŽBA TREĆA LABORATORIJSKA VEŽBA 1. UVOD RADNI REŽIMI I UPRAVLJANJE POGONOM SA ASINHRONIM MOTOROM Na laboratorijskom modelu grupe koju čini trofazni asinhroni motor sa kaveznim rotorom i jednosmerni motor sa

Διαβάστε περισσότερα

Električna merenja Analogni instrumenti

Električna merenja Analogni instrumenti Električna merenja Analogni instrumenti 4..7. Analogni instrumenti Elektro-mehanički instrumenti Elektronski instrumenti Elektro-mehanički instrumenti Prednosti Ampermetri i voltmetri ne zahtevaju izvor

Διαβάστε περισσότερα

Tranzistori u digitalnoj logici

Tranzistori u digitalnoj logici Tranzistori u digitalnoj logici Za studente koji žele znati malo detaljnije koja je funkcija tranzistora u digitalnim sklopovima, u nastavku je opisan pojednostavljen način rada tranzistora. Pri tome je

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE II Vježba 11.

OSNOVE ELEKTROTEHNIKE II Vježba 11. OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER

L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER L E M I L I C E LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm LEMILICA WELLER SP40 220V 40W Karakteristike: 220V, 40W, VRH 6,3 mm LEMILICA WELLER SP80 220V 80W Karakteristike: 220V,

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

VEŽBA 4 DIODA. 1. Obrazovanje PN spoja

VEŽBA 4 DIODA. 1. Obrazovanje PN spoja VEŽBA 4 DIODA 1. Obrazovanje PN spoja Poluprovodnik može da bude tako obrađen da mu jedan deo bude P-tipa, o drugi N-tipa. Ovako se dobije PN spoj. U oblasti P-tipa šupljine čine pokretni oblik elektriciteta.

Διαβάστε περισσότερα

DIGITALNI MULTIMETAR UT-70A UPUTSTVO ZA UPOTREBU

DIGITALNI MULTIMETAR UT-70A UPUTSTVO ZA UPOTREBU DIGITALNI MULTIMETAR UT-70A UPUTSTVO ZA UPOTREBU KRATAK OPIS UREĐAJA UreĎaj UT70A je prenosivi digitalni multimetar. To je multifunkcionalan ureďaj savremenog dizajna, poseduje pregledan displej i pouzdane

Διαβάστε περισσότερα

Radivoje Đurić Milan Ponjavić OSNOVI ELEKTRONIKE PRIRUČNIK ZA LABORATORIJSKE VEŽBE. Beograd, 2005.

Radivoje Đurić Milan Ponjavić OSNOVI ELEKTRONIKE PRIRUČNIK ZA LABORATORIJSKE VEŽBE. Beograd, 2005. ELEKTROTEHNIČKI FAKULTET U BEOGRADU ODSEK ZA ELEKTRONIKU Radioje Đurić Milan Ponjaić OSNOI ELEKTRONIKE PRIRUČNIK ZA LABORATORIJSKE EŽBE JEP 78- Beograd, 5. SADRŽAJ. UODNA LABORATORIJSKA EŽBA. ISPITIANJE

Διαβάστε περισσότερα

ANALIZA RADA 6T_SRAM I 1T_DRAM MEMORIJSKE ĆELIJE

ANALIZA RADA 6T_SRAM I 1T_DRAM MEMORIJSKE ĆELIJE KATEDRA ZA ELEKTRONIKU Laboratorijske vežbe DIGITALNA ELEKTRONIKA (smer EL) ANALIZA RADA 6T_SRAM I 1T_DRAM MEMORIJSKE ĆELIJE NAPOMENA: Prilikom rada na računaru mora se poštovati sledeće: - napajanje na

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Radivoje Đurić Milan Ponjavić OSNOVI ELEKTRONIKE PRIRUČNIK ZA LABORATORIJSKE VEŽBE. Beograd, 2005.

Radivoje Đurić Milan Ponjavić OSNOVI ELEKTRONIKE PRIRUČNIK ZA LABORATORIJSKE VEŽBE. Beograd, 2005. ELEKTROTEHNIČKI FAKULTET U BEOGRADU ODSEK ZA ELEKTRONIKU Radioje Đurić Milan Ponjaić OSNOI ELEKTRONIKE PRIRUČNIK ZA LABORATORIJSKE EŽBE JEP 78- Beograd, 5. SADRŽAJ. UODNA LABORATORIJSKA EŽBA. ISPITIANJE

Διαβάστε περισσότερα

Magneti opis i namena Opis: Napon: Snaga: Cena:

Magneti opis i namena Opis: Napon: Snaga: Cena: Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

4. Programski paket ORIGIN

4. Programski paket ORIGIN 4. Programski paket ORIGIN Teorijski zadaci Zadatak. (Osnovna podešavanja grafika) Dodati novu kolonu u trenutnoj radnoj svesci (workbook) i uneti podatke iz tabele. Nacrtati grafik tipa line + symbol

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα