LINEARNA ELEKTRONIKA VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM
|
|
- Πάνθηρας Κορομηλάς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU LINEARNA ELEKTRONIKA LABORATORIJSKE VEŽBE VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM.. IME I PREZIME BR. INDEKSA GRUPA OCENA DATUM VREME DEŽURNI U LABORATORIJI
2 A. Opis vežbe: U vežbi se analiziraju aktivni iltri sa jednim operacionim pojačavačem. Ispituju se koniguracije iltra propusnika niskih učestanosti (NF), iltra propusnika visokih učestanosti (VF) i iltra propusnika opsega učestanosti (PO) prikazane na slikama, 5 i 8, respektivno. Od interesa je snimanje amplitudske i azne karakteristike. Kolo se realizuje na univerzalnoj radnoj ploči (protobord) i napaja se iz dve baterije za napajanje V i -V. Test signali se dovode iz generatora unkcija, a mere se pomoću osciloskopa. B. Priprema za vežbu: Teorijska priprema za vežbu (obavezan preduslov za rad u laboratoriji): Naučiti gradivo izloženo na predavanjima i vežbama koje se odnosi na OP RC aktivne iltre. Praktična priprema za vežbu (samo za studente koji žele da dobiju poene za laboratorijske vežbe u okviru predispitnih obaveza): B.. Koristeći simulator električnih kola (PSPICE) odrediti amplitudsku i aznu karakteristiku NF iltra sa slike sa vrednostima elemenata kao u tački D.. u opsegu učestanosti od Hz do MHz sa 5 tačaka po dekadi. B.. Koristeći simulator električnih kola (PSPICE) odrediti amplitudsku i aznu karakteristiku iltra propusnika visokih učestanosti sa slike 5 sa vrednostima elemenata kao u tački D.. u opsegu učestanosti od Hz do MHz sa 5 tačaka po dekadi. B.3. Koristeći simulator električnih kola (PSPICE) odrediti amplitudsku i aznu karakteristiku iltra propusnika opsega učestanosti sa slike 8 sa vrednostima elemenata kao u tački D.3., kao i spektralnu karakteristiku šuma na ulazu u opsegu učestanosti od Hz do MHz sa 5 tačaka po dekadi. B.4. Koristeći simulator električnih kola (PSPICE) odrediti osetljivosti unkcije prenosa PO iltra sa slike 8 na promene vrednosti otpornosti R, R, R, R a i R b. Analizu osetljivosti izvršiti određivanjem konačnog priraštaja na centralnoj učestanosti propusnog opsega ω C, pomoću simulacija amplitudske karakteristike za dve veoma bliske vrednosti parametra u odnosu na koji se traži osetljivost i odgovarajućeg proračuna u skladu sa deinicijom osetljivosti. H ( C ) S ω H ( C ) = ; S ω H ( C ) = ; S ω H ( C ) = ; S ω H ( C ) = ; S ω = ; R R R NAPOMENA: Priprema za vežbu se radi pre dolaska u laboratoriju. Pri dolasku u laboratoriju, student donosi i dežurnom asistentu predaje datoteke za simulator električnih kola (PSPICE), i na osnovu njih prikazuje dobijene rezultate. Potrebno je da osim pomenutih datoteka, student donese i preda i odgovarajući izveštaj u pd ormatu u kome će biti prikazani svi traženi rezultati (uključujući i dijagrame izvršenih simulacija). Ra Rb
3 C. Potreban pribor, instrumenti i materijal: izvor za napajanje operacioni pojačavač LM74 (raspored pinova je prikazan na slici ) otpornici tolerancije % snage /4W sledećih vrednosti: kωx, kωx, 43kΩx, 39kΩx, 6,kΩx, 39kΩx kondenzatori sledećih vrednosti: 39pFx i 8pFx osciloskop generator signala univerzalna radna ploča (protobord) Slika D. Zadatak: D.. Filtar propusnik niskih učestanosti (NF) Na slici prikazan je iltar propusnik niskih učestanosti, koji je realizovan korišćenjem operacionog pojačavača LM74. Za dati iltar propusni opseg i Q aktor su: RR CC ω p = Q =. RR CC R b R C R C R R C a C v g R R C vi R a R b Slika D... Povezati na protobordu šemu iltra propusnika niskih učestanosti kao na slici, sa sledećim vrednostima elemenata: C =C =39pF, R =39kΩ, R =43kΩ, R a =kω i R b =6,kΩ. D... Priključiti izvore za napajanje V CC =V, V EE =V. 3
4 D..3. Uključiti generator signala i podesiti da njegov izlaz bude sinusoidalnog oblika dvostruke vrednosti amplitude V g pk-pk =V. Povezati izlaz generatora signala na ulaz iltra. D..4. Jedan kanal osciloskopa povezati na ulaz iltra, a drugi kanal osciloskopa povezati na izlaz iltra. D..5. Merenjem odrediti amplitudsku i aznu karakteristiku iltra u opsegu učestanosti od Hz do MHz. Rezolucija merenja treba da bude 3 tačke po dekadi. D..6. Dobijenu amplitudsku i aznu karakteristiku ucrtati na slike 3 i 4. A() [db] - -4 F [ ] [Hz] Slika 3 3 [Hz] Slika 4 Uporediti eksperimentalne podatke sa rezultatima simulacija i teorijski očekivanim rezultatima i obrazložiti dobijene rezultate. Objasniti izgled amplitudske i azne karakteristike na višim učestanostima (u smislu odstupanja od karakteristike koja bi se teorijski dobila sa idealnim operacionim pojačavačem). 4
5 D.. Filtar propusnik visokih učestanosti (VF) Na slici 5 prikazan je iltar propusnik visokih učestanosti, koji je realizovan korišćenjem operacionog pojačavača LM74. Za dati iltar propusni opseg i Q aktor su: RR CC ω p = Q =. RR CC R b R C R C R R C a D... Povezati šemu iltra propusnika visokih učestanosti kao na slici 5, sa sledećim vrednostima elemenata: C =C =39pF, R =43kΩ, R =39kΩ, R a =kω i R b =6,kΩ. R v g C C R vi Ra Rb Slika 5 D... Priključiti izvore za napajanje V CC =V i V EE =V. D..3. Uključiti generator signala i podesiti da njegov izlaz bude sinusoidalnog oblika dvostruke vrednosti amplitude V g pk-pk =V. Povezati izlaz generatora signala na ulaz iltra. D..4. Jedan kanal osciloskopa povezati na ulaz iltra, a drugi kanal osciloskopa povezati na izlaz iltra. D..5. Merenjem odrediti amplitudsku i aznu karakteristiku iltra u opsegu učestanosti od 5Hz do MHz. Rezolucija merenja treba da bude 3 tačke po dekadi. U slučaju pojave izobličenja izlaznog napona, smanjiti amplitudu ulaznog napona dok izobličenja u potpunosti ne nestanu i izvršiti merenja. D..6. Dobijenu amplitudsku i aznu karakteristiku ucrtati na slike 6 i 7. 5
6 A() [db] [Hz] Slika 6 F [ ] 3 [Hz] Slika 7 Uporediti eksperimentalne podatke sa rezultatima simulacija i teorijski očekivanim rezultatima i obrazložiti dobijene rezultate. Objasniti izgled amplitudske i azne karakteristike na višim učestanostima (u smislu odstupanja od karakteristike koja bi se teorijski dobila sa idealnim operacionim pojačavačem). 6
7 D.3. Filtar propusnik opsega učestanosti (PO) Na slici 8 prikazan je iltar propusnik opsega učestanosti, koji je realizovan korišćenjem operacionog pojačavača LM74. Za dati iltar centralna učestanost propusnog opsega i Q aktor su: R R ( R R ) RR RCC ω C = Q =. RR R CC R ( ) b R R C C RC R R Ra R v g R C C R vi Ra Rb Slika 8 D.3.. Povezati šemu iltra propusnika opsega učestanosti kao na slici 8, sa sledećim vrednostima elemenata: C =C =8pF, R =R =kω, R =39kΩ i R a =R b =kω. D.3.. Priključiti izvore za napajanje V CC =V i V EE =V. D.3.3. Uključiti generator signala i podesiti da njegov izlaz bude sinusoidalnog oblika dvostruke vrednosti amplitude V g pk-pk =V. Povezati izlaz generatora signala na ulaz iltra. D.3.4. Jedan kanal osciloskopa povezati na ulaz iltra, a drugi kanal osciloskopa povezati na izlaz iltra. D.3.5. Merenjem odrediti amplitudsku i aznu karakteristiku iltra u opsegu učestanosti od Hz do MHz. Rezolucija merenja treba da bude 3 tačke po dekadi. U slučaju pojave izobličenja izlaznog napona, smanjiti amplitudu ulaznog napona dok izobličenja u potpunosti ne nestanu i izvršiti merenja. D.3.6. Dobijenu amplitudsku i aznu karakteristiku ucrtati na slike 9 i. 7
8 A() [db] [Hz] Slika 9 F [ ] 3 [Hz] Slika Uporediti eksperimentalne podatke sa rezultatima simulacija i teorijski očekivanim rezultatima i obrazložiti dobijene rezultate. Objasniti izgled amplitudske i azne karakteristike na višim učestanostima (u smislu odstupanja od karakteristike koja bi se teorijski dobila sa idealnim operacionim pojačavačem). 8
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA
STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA
Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
PRAKTIKUM ZA IZVOĐENJE LABORATORIJSKIH VEŽBANJA IZ PREDMETA:
ELEKTRONSKI FAKULTET NIŠ KATEDRA ZA ELEKTRONIKU predmet: ELEKTRONIKA Godina 2006/2007 PRAKTIKUM ZA IZVOĐENJE LABORATORIJSKIH VEŽBANJA IZ PREDMETA: ELEKTRONIKA (SGE, SGMIM, SGUS) ELEKTRONIKA U TELEKOMUNIKACIJAMA
LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE. Laboratorijske vežbe
LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE Laboratorijske vežbe 2014/2015 LABORATORIJSKI PRAKTIKUM-ELEKTRONSKE KOMPONENTE Laboratorijske vežbe Snimanje karakteristika dioda VAŽNA NAPOMENA: ZA VREME
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)
Vežba 8 Osciloskop 2. Uvod
Vežba 8 Osciloskop Uvod U prvom delu vežbe ispituju se karakteristike realnih pasivnih i aktivnih filtara. U drugom delu vežbe demonstrira se mogućnost osciloskopa da radi kao jednostavan akvizicioni sistem.
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Snimanje karakteristika dioda
FIZIČKA ELEKTRONIKA Laboratorijske vežbe Snimanje karakteristika dioda VAŽNA NAPOMENA: ZA VREME POSTAVLJANJA VEŽBE (SASTAVLJANJA ELEKTRIČNE ŠEME) I PRIKLJUČIVANJA MERNIH INSTRUMENATA MAKETA MORA BITI ODVOJENA
ENERGETSKA ELEKTRONIKA UPRAVLJANJE BUCK KONVERTOROM: IMPULSNO-ŠIRINSKA MODULACIJA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU ENERGETSKA ELEKTRONIKA LABORATORIJSKE VEŽBE VEŽBA BROJ 4: UPRAVLJANJE BUCK KONVERTOROM: IMPULSNO-ŠIRINSKA MODULACIJA Autori: Predrag Pejović i
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
SIMULACIJA MREŽA U FREKVENCIJSKOM DOMENU
Univerzitet u Banjaluci Teorija električnih kola Elektrotehnički fakultet Laboratorijske vježbe Katedra za opštu elektrotehniku Student: Datum: Broj indeksa: Ocjena: Vježba broj. SIMULACIJA MEŽA U FEKVENCIJSKOM
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
ENERGETSKA ELEKTRONIKA UPRAVLJANJE BUCK KONVERTOROM: PROGRAMIRANJE STRUJE
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU ENERGETSKA ELEKTRONIKA LABORATORIJSKE VEŽBE VEŽBA BROJ 5: UPRAVLJANJE BUCK KONVERTOROM: PROGRAMIRANJE STRUJE Autori: Predrag Pejović i Vladan
OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić
OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti
Laboratorijske vežbe iz Osnova elektronike
ELEKTROTEHNIČKI FAKULTET U BEOGRADU ODSEK ZA ELEKTRONIKU Radivoje Đurić Milan Ponjavić Laboratorijske vežbe iz Osnova elektronike priručnik za rad u laboratoriji Beograd, 05. Laboratorijske vežbe iz Osnova
LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE. Laboratorijske vežbe
LABORATORIJSKI PRAKTIKUM- ELEKTRONSKE KOMPONENTE Laboratorijske vežbe 2017/2018 LABORATORIJSKI PRAKTIKUM-ELEKTRONSKE KOMPONENTE Laboratorijske vežbe Određivanje osvetljenosti laboratorije korišćenjem fotootpornika
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
ANALIZA RADA 6T_SRAM I 1T_DRAM MEMORIJSKE ĆELIJE
KATEDRA ZA ELEKTRONIKU Laboratorijske vežbe DIGITALNA ELEKTRONIKA (smer EL) ANALIZA RADA 6T_SRAM I 1T_DRAM MEMORIJSKE ĆELIJE NAPOMENA: Prilikom rada na računaru mora se poštovati sledeće: - napajanje na
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER
L E M I L I C E LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm LEMILICA WELLER SP40 220V 40W Karakteristike: 220V, 40W, VRH 6,3 mm LEMILICA WELLER SP80 220V 80W Karakteristike: 220V,
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
PRAKTIKUM ZA LABORATORIJSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) Aneta Prijić Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet PRAKTIKUM ZA LABORATORIJSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) Aneta Prijić Miloš Marjanović SPISAK VEŽBI 1. Ispravljačka diodna
Analogna mikroelektronika
Analogna mikroelektronika Z. Prijić Elektronski fakultet Niš Katedra za mikroelektroniku Predavanja 2014. Idealni operacioni pojačavač Diferencijalni pojačavač Deo I Operacioni pojačavači Idealni operacioni
, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
FAKULTET PROMETNIH ZNANOSTI
SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
2.2 Pojačavač snage. Autori: prof. dr Predrag Petković, dr Srđan Đorđević,
2.2 Pojačavač snage Autori: prof. dr Predrag Petković, dr Srđan Đorđević, 2.2.1 Cilj vežbe Ova vežba treba da omugući studentima da sagledaju osobine pojačavača velikih signala koji rade u klasi AB i B.
1.1 Osnovni pojačavački stepeni
1.1 Osnovni pojačavački stepeni Autori: prof. dr Vlastimir Pavlović, dipl. inž. Dejan Mirković 1.1.1 Cilj vežbe Ova vežba treba da omugući studentima da sagledaju osobine osnovnih tipova pojačavača sa
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
Program testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Algoritmi zadaci za kontrolni
Algoritmi zadaci za kontrolni 1. Nacrtati algoritam za sabiranje ulaznih brojeva a i b Strana 1 . Nacrtati algoritam za izračunavanje sledeće funkcije: x y x 1 1 x x ako ako je : je : x x 1 x x 1 Strana
Kola u ustaljenom prostoperiodičnom režimu
Kola u ustalenom prostoperiodičnom režimu svi naponi i sve strue u kolu su prostoperiodične (sinusoidalne ili kosinusoidalne funkcie vremena sa istom kružnom učestanošću i u opštem slučau različitim fazama
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
UPUTSTVA ZA INSTRUMENTE I OPREMU
ELEKTROTEHNIČKI FAKULTET U BEOGRADU LABORATORIJA ZA ELEKTRONIKU UPUTSTVA ZA INSTRUMENTE I OPREMU MULTIMETAR FLUKE 111 I PROTOBORD- Vladimir Rajović IZVOR ZA NAPAJANJE Agilent E3630A-Dušan Ćurapov GENERATOR
Visoka tehnička škola Niš
Visoka tehnička škola Niš Studijski program: Komunikacione tehnologije Predmet: Merenja u elektronici (12) Merni izvori Prof. dr Zoran Veličković, dipl. inž. el. Decembar, 2015. Merni izvori Generisanje
Elementi elektronike septembar 2014 REŠENJA. Za vrednosti ulaznog napona
lementi elektronike septembar 2014 ŠNJA. Za rednosti ulaznog napona V transistor je isključen, i rednost napona na izlazu je BT V 5 V Kada ulazni napon dostigne napon uključenja tranzistora, transistor
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Budi kreativan/kreativna
ELEKTROTEHNI CKI FAKULTET, UNIVERZITET U BEOGRADU KATEDRA ZA ELEKTRONIKU UVOD U ELEKTRONIKU - OO1UE LABORATORIJSKA VE ZBA BROJ 4 Budi kreativan/kreativna 1. 2. IME I PREZIME BROJ INDEKSA BROJ GRUPE OCENA
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Osnove elektrotehnike II parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti.
Osnove elektrotehnike II parijalni ispit 1.01.01. VRIJNT Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni oijeniti. Zadatak 1 (Jasno i preizno odgovoriti na
Poluprovodničke komponente -prateći materijal za računske i laboratorijske vežbe-
Aneta Prijić Poluprovodničke komponente -prateći materijal za računske i laboratorijske vežbe- Studijski program Mikroelektronika i mikrosistemi (IV semestar) Označavanje jednosmernih i naizmeničnih veličina
ENERGETSKA ELEKTRONIKA TROFAZNI ISPRAVLJAČ
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU ENERGETSKA ELEKTRONIKA LABORATORIJSKE VEŽBE VEŽBA BROJ 6: TROFAZNI ISPRAVLJAČ Autori: Predrag Pejović i Vladan Božović A. OPIS VEŽBE Vežba obuhvata
OSNOVI ELEKTRONIKE UVODNA LABORATORIJSKA VEŽBA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU ODSEK ZA ELEKTRONIKU OSNOVI ELEKTRONIKE LABORATORIJSKE VEŽBE UVODNA LABORATORIJSKA VEŽBA Autori: Radivoje Đurić i Milan Ponjavić 1. 2. IME I PREZIME BR. INDEKSA GRUPA
Radivoje Đurić Milan Ponjavić OSNOVI ELEKTRONIKE PRIRUČNIK ZA LABORATORIJSKE VEŽBE. Beograd, 2005.
ELEKTROTEHNIČKI FAKULTET U BEOGRADU ODSEK ZA ELEKTRONIKU Radioje Đurić Milan Ponjaić OSNOI ELEKTRONIKE PRIRUČNIK ZA LABORATORIJSKE EŽBE JEP 78- Beograd, 5. SADRŽAJ. UODNA LABORATORIJSKA EŽBA. ISPITIANJE
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Vežba 5 Uvod u NI ELVIS okruženje. Cilj vežbe
Vežba 5 Uvod u NI ELVIS okruženje Cilj vežbe Cilj vežbe je da studente upozna sa merenjem u NI ELVIS I okruženju kroz nekoliko primera merenja karakteristika električnih komponenti i kola. U svakom od
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE
ELEKTRONSKI FAKULTET NIŠ KATEDRA ZA ELEKTRONIKU predmet: OSNOVI ELEKTRONIKE studijske grupe: EMT, EKM Godina 2014/2015 RAČUNSKE VEŽBE IZ PREDMETA OSNOVI ELEKTRONIKE 1 1. ZADATAK Na slici je prikazano električno
Radivoje Đurić Milan Ponjavić OSNOVI ELEKTRONIKE PRIRUČNIK ZA LABORATORIJSKE VEŽBE. Beograd, 2005.
ELEKTROTEHNIČKI FAKULTET U BEOGRADU ODSEK ZA ELEKTRONIKU Radioje Đurić Milan Ponjaić OSNOI ELEKTRONIKE PRIRUČNIK ZA LABORATORIJSKE EŽBE JEP 78- Beograd, 5. SADRŽAJ. UODNA LABORATORIJSKA EŽBA. ISPITIANJE
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Poglavlje 7. Blok dijagrami diskretnih sistema
Poglavlje 7 Blok dijagrami diskretnih sistema 95 96 Poglavlje 7. Blok dijagrami diskretnih sistema Stav 7.1 Strukturni dijagram diskretnog sistema u kome su sve veliqine prikazane svojim Laplasovim transformacijama
PRAKTIKUM ZA LABORATORIJSKE VJEŽBE IZ ELEKTRONIKE
TEHNIČKI ŠKOLSKI CENTAR ZVORNIK PRAKTIKUM ZA LABORATORIJSKE VJEŽBE IZ ELEKTRONIKE II RAZRED Zanimanje: Tehničar računarstva MODUL 3 (1 čas nedeljno, 36 sedmica) PREDMETNI PROFESOR: Biljana Vidaković 0
ELEKTRIČNA MERENJA laboratorijske vežbe. Vežba broj 4 Merenje impedanse pomoću osciloskopa
Univerzitet u Beogradu, Elektrotehnički fakultet, Katedra za elektroniku ELEKTRIČNA MERENJA laboratorijske vežbe Vežba broj 4 Merenje impedanse pomoću osciloskopa ime i prezime: broj indeksa: grupa: datum:
Glava 3 INSTRUMENTACIONI POJAČAVAČI
ioje Đurić - Osnoi analogne elektronike Glaa 3 NSTUMENTACON POJAČAVAČ ETF u eogru - Osek za elektroniku 3 nstrumentacioni pojačaači 33 X G Slika 3 A 3 Na ulaz instrumentacionog pojačaača sa slike 3 ooi
Čas 11: Optimizacija parametara električnih mreža sa EM komponentama
Čas 11: Optimizacija parametara električnih mreža sa EM komponentama Kratak uvod. EM projekti i komponente mogu se uvesti (importovati) u MW Circuit Solver na tri načina: 1. Iz biblioteke gotovih EM komponenti.
Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa
Tranzistori s efektom polja Spoj zajedničkog uvoda U ovoj vježbi ispitujemo pojačanje signala uz pomoć FET-a u spoju zajedničkog uvoda. Shema pokusa Postupak Popis spojeva 1. Spojite pokusni uređaj na
OPERACIONI POJAČAVAČI. Doc. dr. Neđeljko Lekić
OPERACIONI POJAČAVAČI Doc. dr. Neđeljko Lekić ŠTO JE OPERACIONI POJAČAVAČ? Pojačavač visokog pojačanja Ima diferencijalne ulaze Obično ima jedan izlaz Visoka ulazna i mala izlazna otpornost Negativnom
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Juniorski četverac bez kormilara sezona 2014/2015 sa osvrtom na završne pripreme pred EP i SP. Aleksandar Smiljanić
Juniorski četverac bez kormilara sezona 2014/2015 sa osvrtom na završne pripreme pred EP i SP Aleksandar Smiljanić Generacija 1996 / 1997 8 + SP Hamburg 2014 4 - SP Rio de Janeiro 1. Cvijetić Nikola (1997)
MAGNETNO SPREGNUTA KOLA
MAGNETNO SPEGNTA KOA Zadatak broj. Parametri mreže predstavljene na slici su otpornost otpornika, induktivitet zavojnica, te koeficijent manetne spree zavojnica k. Ako je na krajeve mreže -' priključen
PROJEKTOVANJE CELINE AVAČA
PROJEKTOVANJE CELINE POJAČAVA AVAČA Johan Huijsing, OPERATIONAL AMPLIFIERS, Theory and Design, Kluwer Academic Publishers, 2001, Ch 6 1 Pored aspekata specifičnih za ulazni odnosno izlazni stepen, operacioni
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
OSNOVE ELEKTROTEHNIKE II Vježba 11.
OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone
TEORIJSKA POSTAVKA LABORATORIJSKIH VEŽBANJA IZ PREDMETA ELEKTRONIKA
ELEKTRONSKI FAKULTET NIŠ KATEDRA ZA ELEKTRONIKU predmet: ELEKTRONIKA Godina 2005/2006 TEORIJSKA POSTAVKA LABORATORIJSKIH VEŽBANJA IZ PREDMETA ELEKTRONIKA Sadržaj 1 Merenje karakteristika i parametara
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
HEMIJSKA VEZA TEORIJA VALENTNE VEZE
TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) II deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) II deo Miloš Marjanović Bipolarni tranzistor kao prekidač BIPOLARNI TRANZISTORI ZADATAK 16. U kolu sa slike bipolarni
Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.
Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu
Zadatak Vul[V] Vul[V]
Zadatak 11.1. a) Projektovati kolo A/D konvertora sa paralelnim komparatorima koji ulazni napon u opsegu 0 8V kovertuje u 3 bitni binarni broj prema karakteristici sa Slike 11.1.1. a). U slučaju kada je