ΗΔΛΑ Γ (25 μξμάδεπ) Γ4. E 3 Λξμάδεπ 6. ΤΔΚΞΣ 1ηπ ΑΟΞ 2 ΣΔΚΘΔΔΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΗΔΛΑ Γ (25 μξμάδεπ) Γ4. E 3 Λξμάδεπ 6. ΤΔΚΞΣ 1ηπ ΑΟΞ 2 ΣΔΚΘΔΔΣ"

Transcript

1 ΑΠΧΖ 1ηπ ΣΔΚΘΔΑΣ ΟΠΞΑΓΩΓΘΙΔΣ ΔΝΔΤΑΣΔΘΣ ΟΔΠΘΞΔΞΥ ΛΑΘΞΥ ΘΞΥΜΘΞΥ Ξ ΓΔΜΘΙΞ ΚΥΙΔΘΞ. ΤΠΘΤΖ 24 ΛΑΘΞΥ 2011 ΔΝΔΤΑΕΞΛΔΜΞ ΛΑΗΖΛΑ : ΓΔΩΛΔΤΠΘΑ Α ΚΥΙΔΘΞΥ ΣΥΜΞΚΞ ΣΔΚΘΔΩΜ : ΤΠΔΘΣ ( 3 ) ΗΔΛΑ Α (25 μξμάδεπ) Α1. Να απξδείνεςε όςι ςα εταπςόμεμα ςμήμαςα πξσ άγξμςαι από ρημείξ εκςόπ κύκλξσ είμαι ίρα μεςανύ ςξσπ. Λξμάδεπ 10 A2. Δώρςε ςξμ ξοιρμό ςηπ διακέμςοξσ (ρυήμα ποξαιοεςικό) Λξμάδεπ 3 Α3. Να απαμςήρεςε ρςιπ ακόλξσθεπ ποξςάρειπ με Σ ή Κ αμ κάθε ποόςαρη είμαι ρωρςή ή λάθξπ αμςίρςξιυα. α) Τξ ξοθόκεμςοξ είμαι ςξ ρημείξ ςξμήπ ςχμ διυξςόμχμ ρςξ ςοίγχμξ Λξμάδεπ 3 β) Τξ κσοςό ςεςοάπλεσοξ με όλεπ ςιπ πλεσοέπ ςξσ ίρεπ είμαι πάμςξςε ςεςοάγχμξ Λξμάδεπ 3 γ) Τξ βαούκεμςοξ εμόπ ςοιγώμξσ, απέυει από κάθε κξοστή ςξσ ςα ¾ ςξσ μήκξσπ ςηπ αμςίρςξιυηπ διαμέρξσ Λξμάδεπ 3 δ) Οι βάρειπ ςξσ ςοαπέζιξσ μπξοξύμ μα είμαι ίρεπ Λξμάδεπ 3 ΗΔΛΑ Β (25 μξμάδεπ) Δίμεςαι ςσυαίξ ςοίγχμξ ΑΒΓ. Φέοξσμε ςιπ διαμέρξσπ ΒΜ και ΓΝ και ρςιπ ποξεκςάρειπ ςξσπ παίομξσμε εσθύγοαμμα ςμήμαςα ΜΔ=ΒΜ και ΝΔ=ΓΝ. Να απξδείνεςε όςι: Β1. ΑΔ=ΒΓ Λξμάδεπ 10 Β2. ΑΔ = ΒΓ Λξμάδεπ 10 Β3. Τξ Α είμαι μέρξ ςξσ ΔΔ Λξμάδεπ 5 ΗΔΛΑ Γ (25 μξμάδεπ) Δίμεςαι παοαλληλόγοαμμξ ΑΒΓΔ με 90 και ΑΒ = 2ΒΓ. Θεχοξύμε ςξ ύφξπ ΓΔ ποξπ ςημ πλεσοά ΑΔ και ςα μέρα Μ και Ν ςχμ πλεσοώμ ΔΓ και ΑΒ αμςίρςξιυα, όπχπ ταίμεςαι ρςξ ρυήμα. Να απξδείνεςε όςι : Γ1. Τξ ςεςοάπλεσοξ ΑΝΜΔ είμαι οόμβξπ. Λξμάδεπ 6 Γ2. Τξ ΜΔΑΝ είμαι ιρξρκελέπ ςοαπέζιξ. Λξμάδεπ 6 Γ3. Η ΔΝ είμαι διυξςόμξπ ςηπ γχμίαπ ΜΔΑ. Λξμάδεπ 7 Γ4. E 3 Λξμάδεπ 6 ΤΔΚΞΣ 1ηπ ΑΟΞ 2 ΣΔΚΘΔΔΣ

2 ΑΠΧΖ 2ηπ ΣΔΚΘΔΑΣ ΗΔΛΑ Δ (25 μξμάδεπ) Δίμεςαι ξοθξγώμιξ ΑΒΓΔ (ΑΒ > ΑΔ) με A B 30. Αμ Π, Κ και Μ μέρα ςχμ ΟΔ, ΟΓ και ΑΒ αμςίρςξιυα, όπχπ ταίμεςαι ρςξ ρυήμα ςόςε μα απξδείνεςε όςι: Δ1. Τξ ςοίγχμξ ΔΟΑ είμαι ιρόπλεσοξ. Λξμάδεπ 6 Δ2. Τξ ςοίγχμξ AΠΒ είμαι ξοθξγώμιξ. Λξμάδεπ 4 Δ3. Τξ ΑΠΚΜ είμαι οόμβξπ. Λξμάδεπ 6 Δ4. Αμ ςα υχοιά Αλικαμάπ, Οηγαδάκια, Ιαςαρςάοι και Βξσγιάςξ βοίρκξμςαι ρςα ρημεία Α, Π, Κ, Β αμςίρςξιυα, ςόςε ιραπέυξσμ από ςημ Λπόυαλη πξσ βοίρκεςαι ρςξ ρημείξ Μ. Λξμάδεπ 5 Δ5. AM O AM 2 Λξμάδεπ 4 ΞΔΖΓΘΔΣ (για ςξσπ ενεςαζξμέμξσπ) 1. Γοάφςε ςξ ξμξμαςεπώμσμό ραπ ρςξ επάμχ μέοξπ ςχμ τχςξαμςιγοάτχμ ςα ξπξία θα παοαδώρεςε μαζί με ςξ γοαπςό ρςξ ςέλξπ ςηπ ενέςαρηπ. 2. Να γοάφεςε ςιπ απαμςήρειπ ραπ μόμξ με μπλε ή μαύοξ ρςσλό. 3. Τα ρυήμαςα μπξοξύμ μα γίμξσμ και με μξλύβι. 4. Να απαμςήρεςε ρε όλα ςα θέμαςα. 5. Διάοκεια ενέςαρηπ : Δσξ ( 2 ) ώοεπ. 6. Χοόμξπ δσμαςήπ απξυώοηρηπ : Μιρή ώοα από ςημ έμαονη. Καλή επιτυχία και καλό καλοκαίρι!! Ξ Διεσθσμςήπ Ξι ειρηγηςέπ ΤΔΚΞΣ 2ηπ ΑΟΞ 2 ΣΔΚΘΔΔΣ

3 Δλδεηθηηθέο Λύζεηο Πξναγσγηθώλ εμεηάζεσλ Μαΐνπ Ινπλίνπ Δπηκέιεηα: Χαηδόπνπινο Μάθεο Θέμα Α Α1. Γείηε απόδεημε ζηελ ζειίδα 62 Θεώπημα ΙΙ Α2. Γείηε ζειίδα 63 (νξηζκόο ή ζρήκα είλαη δεκτά, πόζν κάιινλ θαη ηα δύο) Α3. Λ, Λ, Λ, Λ (δειαδή όια ιάζνο) Θέμα Β Β1. Από ζύγθξηζε ηξηγώλσλ ΑΔΝ θαη ΒΝΓ έρνπκε: ΒΝ = ΝΑ (Ν κέζν ΑΒ) (Μνλάδεο 3) ΝΓ = ΝΔ (δεδνκέλν) (Μνλάδεο 3) ˆ ˆ (σο θαηαθνξπθήλ) (Μνλάδεο 3) 1 2 άξα από ην θξηηήξην Π Γ Π παίξλνπκε ΑΔ = ΒΓ (Μνλάδεο 1) Β τπόπορ: Το ΔΑΓΒ είναι παραλληλόγραμμο αθού οι διαγώνιες διτοηομούνηαι, άρα οι απένανηι πλεσρές είναι ίζες, δηλαδή ΔΑ = ΒΓ Β2. Όκνηα από ηελ ηζόηεηα ηξίγσλσλ ΑΜΓ θαη ΜΒΓ Β τπόπορ: Τν ΑΓΓΒ είλαη παξαιιειόγξακκν κε αλάινγν ζθεπηηθό Β3. Από ηηο πξνεγνύκελεο ζρέζεηο παίξλνπκε ΑΔ = ΑΓ (Μνλάδεο 3), προσοχή δελ καο θηάλεη γηα λα ζπκπεξάλνπκε όηη ην Α είλαη κέζν ηνπ ΔΓ, πξέπεη λα απνδείμνπκε όηη είλαη θαη ζηελ ίδηα επζεία (δηλ. ηα Γ, Α, Δ είναι ζσνεσθειακά (Μονάδες 2))! Α τπόπορ: Θα δείξοςμε ότι η γωνία ΔΑΓ είναι Έρνπκε δηαδνρηθά, ˆ ˆ ˆ ˆ ˆ ˆ ˆ 180 * *: Από ηην ιζόηηηα ηων παραπάνω ηριγώνων έτοσμε και ηις γωνίες ηοσς ίζες, δηλαδή ˆ ˆ ˆ ˆ Β τπόπορ: Από ηνλ β ηρόπο ησλ εξσηεκάησλ Β1 θαη Β2 έρνπκε, ΑΔ // ΒΓ (ιόγσ παξαιιεινγξάκκνπ) θαη ΑΓ // ΒΓ, όκσο από ην 5ν αμίσκα παξαιιειίαο από ζεκείν εθηόο επζείαο δηέξρεηαη κνλαδηθή παξάιιειε πξνο απηή, άξα ηα Γ, Α, Δ είλαη ζπλεπζεηαθά. Δπνκέλσο, ην Α είλαη κέζν ηνπ ΓΔ 0

4 Θέμα Γ Γ1. Τν ΑΝΜΓ είλαη ηεηξάπιεπξν κε δύν απέλαληη πιεπξέο ίζεο θαη παξάιιειεο (Μονάδες 4) (ηηο ΑΝ θαη ΜΓ), άξα είλαη παξαιιειόγξακκν θαη επεηδή ΑΓ = ΓΜ είλαη ξόκβνο (δύν δηαδνρηθέο πιεπξέο ίζεο) (Μονάδες 2) Γ2. Θα δείμνπκε όηη: ΜΝ // ΑΔ (δύν απέλαληη πιεπξέο παξάιιειεο) (Μνλάδεο 2) ΜΔ = ΑΝ (νη κε παξάιιειεο πιεπξέο ίζεο) (Μνλάδεο 2) ME / / AN (θαη νη άιιεο πιεπξέο δελ είλαη παξάιιειεο) (Μνλάδεο 2) Έρνπκε, ΜΝ // ΑΓ (από ηνλ ξόκβν) άξα ΜΝ // ΑΔ Σην οπθογώνιο τπίγωνο ΔΓΓ ε ΔΜ είλαη δηάκεζνο νξζνγσλίνπ, άξα παίξλνπκε από γλσζηή πξόηαζε : ΜΔ = ΓΓ/2 δειαδή ΜΔ = ΓΜ = ΑΝ (όμοια από ηον ρόμβο ΑΝΜΓ) Η ΔΜ ηέκλεη ηελ ΓΓ (ζην Μ), όκσο ε ΓΓ είλαη παξάιιειε ηεο ΑΒ άξα θαη ηεο ΑΝ, άξα ε ΔΜ ηέκλεη θαη ηελ ΑΝ, δειαδή ME / / AN Γ3. Θα δείξοςμε ότι: AEN ˆ NEM ˆ Αξρηθά ην ηξίγσλν ΜΔΝ είλαη ηζνζθειέο αθνύ ΔΜ = ΜΝ (=ΓΜ =ΑΓ από ξόκβν θαη δηάκεζν νξζνγσλίνπ) άξα ENM ˆ NEM ˆ (1) (Μονάδες 4) Δπίζεο AEN ˆ ENM ˆ (2) από εληόο ελαιιάμ ησλ παξαιιήισλ ΑΔ, ΜΝ κε ηεκλόκελε ηελ ΔΝ, άξα από (1) θαη (2) παίξλνπκε ην δεηνύκελν (Μονάδες 3) Γ4. Θα δείξοςμε ότι: E 3 Παίξλνπκε ην Α κέινο θαη έρνπκε δηαδνρηθά, E ENM ˆ MNB ˆ MEN ˆ Aˆ (από ηηο παξάιιειεο ΝΜ θαη ΑΓ θαη ην ηζνζθειέο ηξίγσλν ΜΔΝ) (Μνλάδεο 2) MEN ˆ AEM ˆ (από ην ηζνζθειέο ηξαπέδην) (Μονάδες 2) MEN ˆ 2MEN ˆ 3MEN ˆ (από ηελ ΔΝ δηρνηόκνο ηεο γσλίαο AEM ˆ ) (Μονάδες 2) Θέμα Γ Γ1. Τν ηξίγσλν ΓΟΑ είλαη ηζνζθειέο (αθνύ νη δηαγώληεο είλαη ίζεο θαη δηρνηνκνύληαη) θαη ε γσλία ΑΓΒ είλαη 60 0, άξα είλαη ην ηξίγσλν ΓΟΑ είλαη ηζόπιεπξν. Γ2. Αθνύ ΑΠ είλαη δηάκεζνο (ην Π είλαη κέζν ηεο ΓΟ από ηα δεδνκέλα) θαη ηζόπιεπξν (δειαδή ηζνζθειέο από όιεο ηηο θνξπθέο) ζα είλαη θαη ύςνο, δειαδή ε ΑΠ είλαη θάζεηε ζηελ ΒΓ. Γ3. Τν ΠΚ ελώλεη ηα κέζα ησλ ΟΓ θαη ΟΓ άξα είλαη παξάιιειν ζηελ ΓΓ (άξα θαη ζηελ ΑΒ) θαη ίζε κε ην κηζό ηεο, δειαδή, / / / / άξα είλαη παξαιιειόγξακκν αθνύ δύν απέλαληη πιεπξέο 2 2 είλαη ίζεο θαη παξάιιειεο (Μονάδες 3).

5 Δπίζεο, ζην νξζνγώλην ηξίγσλν ΠΑΒ ε γσλία ˆ 30 0 άξα από γλσζηή πξόηαζε παίξλνπκε ΑΠ = ΑΒ/2 δειαδή ΑΠ = ΑΜ, άξα δύν δηαδνρηθέο πιεπξέο ίζεο, άξα ην ηεηξάπιεπξν είλαη παξαιιειόγξακκν (Μονάδες 3). Γ4. Αξθεί λα απνδείμνπκε όηη, ΑΜ = ΠΜ = ΚΜ = ΒΜ, δειαδή κε ιίγα ιόγηα ηα Α, Π, Κ, Β είλαη νκνθπθιηθά (ζηνλ ίδην θύθιν). (Μνλάδεο 2) Τν ΠΑ = ΑΜ = ΠΜ από ηνλ ξόκβν ΑΠΚΜ θαη ην ηζόπιεπξν ηξίγσλν ΠΑΜ (Μον 2) Τν ΚΒ = ΒΜ = ΚΜ από ηνλ ξόκβν ΠΚΒΜ (γηα ηνλ ίδην ιόγν) θαη ην ηζόπιεπξν ηξίγσλν ΜΚΒ (Μον 2) Δπίζεο ΠΑ = ΠΚ = ΚΒ, από ηνπο ξόκβνπο, άξα ηα πξώηα κέιε είλαη ίζα, άξα θαη ηα δεύηεξα θαη έπεηαη ην δεηνύκελν (Μονάδες 1) Γ5. Θα δείμνπκε όηη: ΟΠ < ΑΜ και (Μνλάδεο 2) ΑΜ / 2 < ΟΠ (Μνλάδεο 2) Έρνπκε, Θέινπκε λα απνδείμνπκε όηη ΟΠ < ΑΜ, αξθεί λα απνδείμνπκε όηη ΟΠ < ΠΚ πνπ απηό είλαη πξνθαλέο από ην ηξίγσλν ΠΟΚ, κε ηελ γσλία ΠΟΚ λα είλαη ακβιεία (120 0 ) άξα θαη ε απέλαληη πιεπξά λα είλαη ε κεγαιύηεξε γσλία ηνπ ηξηγώλνπ Δθαξκόδνπκε ηελ ηξηγσληθή αληζόηεηα ζην ηξίγσλν ΑΟΒ θαη έρνπκε, ΑΒ < ΑΟ + ΟΒ (Μνλάδα 1) (Μνλάδα 1) 2

ζρήκα 1 β τπόπορ (από σύγκπιση τπιγώνων):

ζρήκα 1 β τπόπορ (από σύγκπιση τπιγώνων): o Λύκειο Εακύνθος Γεσκεηξία Α Λπθείνπ Κεθάιαην 3ν Άζθεζε Α Γίλεηαη νξζνγώλην ηξίγσλν ΑΒΓ 90 0 θαη ΓΓ δηρνηόκνο ηεο γσλίαο. Να δείμεηε όηη:. Τν ζεκείν Γ απέρεη ηελ ίδηα απόζηαζε από ηηο πιεπξέο ΑΓ θαη ΒΓ.

Διαβάστε περισσότερα

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ ΒΑΓΓΔΛΗ ΦΤΥΑ 2009 ελίδα 2 από 9 ΔΤΘΔΙΔ SIMSON 1 ΒΑΙΚΔ ΠΡΟΣΑΔΙ 1.1 ΔΤΘΔΙΑ SIMSON Γίλεηαη ηξίγσλν AB θαη ηπρόλ ζεκείν ηνπ πεξηγεγξακκέλνπ θύθινπ ηνπ. Αλ 1, 1 θαη 1 είλαη νη πξνβνιέο ηνπ ζηηο επζείεο πνπ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ() ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΘΔΜΑ : Αλ ηζρύεη 3 3, λα δείμεηε όηη ηα ζεκεία Μ, Ν ηαπηίδνληαη. ΘΔΜΑ : Α Β Μ Γ Σην παξαπάλσ ζρήκα είλαη 3. α) Γείμηε όηη

Διαβάστε περισσότερα

όπου R η ακηίνα ηου περιγεγραμμένου κύκλου ηου ηριγώνου.

όπου R η ακηίνα ηου περιγεγραμμένου κύκλου ηου ηριγώνου. ΕΩΜΕΤΡΙ ΛΥΚΕΙΟΥ - ΕΜΔ ΝΩΣΕΙΣ ΘΕΩΡΙΣ Ι ΤΗΝ ΛΥΣΗ ΣΚΗΣΕΩΝ ΕΜΔ Πρόηζε Ίζ πολυγωνικά χωρί έχουν ίζ εμβδά Το νηίζηροθο δεν ιζχύει ηλδή δύο ιζοεμβδικά χωρί δεν είνι κηά νάγκη ίζ Εκβδόλ ηεηργώλοσ πιεσράς Εκβδόλ

Διαβάστε περισσότερα

Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ _ Ι ε ο α μ ε ι κ ό π

Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ _ Ι ε ο α μ ε ι κ ό π Τ ξ ε ύ ο ξ π ς ξ σ ξ ο ί ξ σ _ Ι ε ο α μ ε ι κ ό π Α ο υ ι ς ε κ ς ξ μ ι κ ή ρ ύ μ θ ε ρ η 6 Τ ξ μ έ α π ΘΘΘ, X ώ ο ξ π κ α ι Δ π ι κ ξ ι μ χ μ ί α Η έ μ α : Διδάρκξμςεπ: Τξ εύοξπ ςξσ ξοίξσ Ιεοαμεικόπ

Διαβάστε περισσότερα

Τράπεζα Θεμάτωμ Γεωμετρία Α Λσκείοσ

Τράπεζα Θεμάτωμ Γεωμετρία Α Λσκείοσ Τράπεζα Θεμάτωμ Γεωμετρία Α Λσκείοσ Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς www.askisopolis.gr Οη αζθήζεης ηες ηράπεδας ζεμάηωκ απαιιαγμέκες από ηα ζτήμαηα (όποσ ήηακ δσκαηόκ) β έθδοζε 0/11/015 ΗΡΖΣΕΡΖΑ

Διαβάστε περισσότερα

ΓΔΧΜΔΣΡΗΑ ΓΗΑ ΟΛΤΜΠΗΑΓΔ

ΓΔΧΜΔΣΡΗΑ ΓΗΑ ΟΛΤΜΠΗΑΓΔ ΒΑΓΓΔΛΖ ΦΤΥΑ 011 1 ΒΑΗΚΟΗ ΟΡΗΜΟΗ 11 ΓΤΝΑΜΖ ΖΜΔΗΟΤ Έζησ P ηπρόλ ζεκείν ηνπ επηπέδνπ θύθινπ C (O,R ) (πνπ βξίζθεηαη εθηόο ηνπ θπθιηθνύ δίζθνπ C (O,R ) ) θαη PT ε εθαπηνκέλε από ην P (T ην ζεκείν επαθήο )

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΠΡΟΒΛΗΜΑ Σε έλα ηνπξλνπά βόιετ δήισζαλ ζπκκεηνρή νκάδεο Γπκλαζίσλ ηεο Κύπξνπ.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. καινούργιο σχολ. σελ 35 / παλιό σχολ. 53 Α. Ψευδής, σελ.99 / παλιό σχολ. σελ. 7 αντιπαράδειγμά, f ( ) Α3. σελ 73, παλιό σχολ. σελ. 9 Α. α) Λάθος β)

Διαβάστε περισσότερα

Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1.

Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1. ΘΕΜΑ. Γηα ηελ ζπλάξηεζε f : IR IR ηζρύεη + f() f(- ) = γηα θάζε IR. Να δείμεηε όηη f() =, ΙR. Να βξείηε ηελ εθαπηόκελε (ε) ηεο C f πνπ δηέξρεηαη από ην ζεκείν (-,-) 3. Να βξείηε ην εκβαδόλ Δ(α) ηνπ ρωξίνπ

Διαβάστε περισσότερα

Κεφάλαιο 3o. Γεωμετρία Α Λσκείοσ

Κεφάλαιο 3o. Γεωμετρία Α Λσκείοσ Επιμέλεια: Χατζόποσλος Μάκης lisari.blogspot.com Καθηγητής Μαθηματικώμ 1 ο Λύκειο Ζακύμθοσ Κεφάλαιο 3o Γεωμετρία Α Λσκείοσ Αμαζκόπηζη θεωρίας Μεθοδολογία ίζωμ ημημάηωμ ή γωμιώμ Βοηθηηική εσθεία Αζκήζεις

Διαβάστε περισσότερα

: :

: : ΔΛΛΗΝΙΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ Παλεπηζηεκίνπ (Διεπζεξίνπ Βεληδέινπ) 34 106 79 ΑΘΖΝΑ Τει. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Δleftheriou

Διαβάστε περισσότερα

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο : ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ Ον/μο:.. Γ Λσκείοσ Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη. 11-1-11 Εήηημα 1 ο : Α. Γηα ηελ ζπλάξηεζε f, λα βξείηε ην δηάζηεκα ζην νπνίν είλαη παξαγσγίζηκε θαζώο θαη

Διαβάστε περισσότερα

ΠΟΤΔΑΣΗΡΙΟ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΑ. Δραγάτςη 8, Πειραιάσ Ιερ. Πατριάρχου 45, Αμπελόκηποι. 693.45.22.273 info@neoellinikiglossa.gr.

ΠΟΤΔΑΣΗΡΙΟ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΑ. Δραγάτςη 8, Πειραιάσ Ιερ. Πατριάρχου 45, Αμπελόκηποι. 693.45.22.273 info@neoellinikiglossa.gr. ΠΟΤΔΑΣΗΡΙΟ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΑ Δραγάτςη 8, Πειραιάσ Ιερ. Πατριάρχου 45, Αμπελόκηποι 693.45.22.273 info@neoellinikiglossa.gr e-learning Διδαρκαλία ςξσ μαθήμαςξπ ςηπ Νεξελλημικήπ Γλώρραπ από απόρςαρη ΠΡΟΕΣΟΙΜΑΙΑ

Διαβάστε περισσότερα

Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α

Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano). Να δηαηππώζεηε ην Θ.Bolzano. 5 ΘΔΜΑ Α μονάδες A. Να απνδείμεηε όηη γηα θάζε πνιπωλπκηθή

Διαβάστε περισσότερα

ΔΙΑΒΗΣΗ -ΠΑΙΔΙ ΚΑΙ ΔΙΑΣΡΟΦΗ

ΔΙΑΒΗΣΗ -ΠΑΙΔΙ ΚΑΙ ΔΙΑΣΡΟΦΗ ΔΙΑΒΗΣΗ -ΠΑΙΔΙ ΚΑΙ ΔΙΑΣΡΟΦΗ Ο ξοιρμόπ Ποξήλθε από ςημ ελλημική λένη «διαβαίμχ» όςαμ ξ Αοεςαίειξπ από ςημ Καππαδξκία παοαςήοηρε όςι μεγάλεπ πξρόςηςεπ σγοώμ πέομαγαμ ρςα ξύοα, «διαβαίμξμςαπ» όλξ ςξ ρώμα.

Διαβάστε περισσότερα

Ευκλείδεια Γεωμετρία Α τάξης Γενικού Λυκείου ΓΩΝΗΔ

Ευκλείδεια Γεωμετρία Α τάξης Γενικού Λυκείου ΓΩΝΗΔ Ευκλείδεια εωμετρία τάξης ενικού Λυκείου ΩΝΗΔ Οξηζκόο: Έζησ Ορ θαη Ος δύν εκηεπζείεο πνπ δελ έρνπλ θνηλό θνξέα θαη έζησ p ην εκηεπίπεδν πνπ έρεη αθκή ηνλ θνξέα ηεο Oρ θαη πεξηέρεη ηελ Ος θαη q ην εκηεπίπεδν

Διαβάστε περισσότερα

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013 ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 7 ΜΑΪΟΥ 13 ΘΔΜΑ Α : (Α1) Σρνιηθό βηβιίν ζειίδα 33-335 (Α) Σρνιηθό βηβιίν ζειίδα 6 (Α3) Σρνιηθό βηβιίν ζειίδα (Α) α) Λάζνο β) Σωζηό γ) Σωζηό

Διαβάστε περισσότερα

ΜΟΥΣΙΚΗ ΣΕ ΠΡΩΤΗ ΒΑΘΜΙΔΑ. Παρουσιάσεις εκπαιδευτικού υλικού και διδακτικής μεθοδολογίας 1-2

ΜΟΥΣΙΚΗ ΣΕ ΠΡΩΤΗ ΒΑΘΜΙΔΑ. Παρουσιάσεις εκπαιδευτικού υλικού και διδακτικής μεθοδολογίας 1-2 1-2 09 ΗΛΕΚΤΡΟΝΙΚΗ ΠΕΡΙΟΔΙΚΗ ΕΚΔΟΣΗ ΕΝΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΜΟΥΣΙΚΗΣ ΑΓΩΓΗΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ http://mspv.primarymusic.gr/mspv/ 7 ο & 8 ο ΤΕΥΧΟΣ Παρουσιάσεις εκπαιδευτικού υλικού και διδακτικής μεθοδολογίας

Διαβάστε περισσότερα

α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο

α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο Έξγν ελέξγεηα 3 (Λύζε) Σώκα κάδαο m = 4Kg εξεκεί ζηε βάζε θεθιηκέλνπ επηπέδνπ γσλίαο θιίζεο ζ κε εκζ = 0,6 θαη ζπλζ = 0,8. Τν ζώκα αξρίδεη λα δέρεηαη νξηδόληηα δύλακε θαη μεθηλά λα αλεβαίλεη ζην θεθιηκέλν

Διαβάστε περισσότερα

ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ

ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ 4 o ΔΙΑΓΩΝΙΜΑ ΜΑΡΣΙΟ 016: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ 4 ο ΔΙΑΓΩΝΙΜΑ ΕΝΔΕΙΚΣΙΚΕ ΑΠΑΝΣΗΕΙ ΘΕΜΑ Α 1. β.. δ.. δ. 4. β. 5. α-, β-, γ-λ, δ-λ, ε-. ΘΕΜΑ B 1. χρςή απάμςηρη είμαι

Διαβάστε περισσότερα

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ Εδώ ζα ππνινγίζνπκε ην κεηαζρεκαηηζκό Fourier κεξηθώλ αθόκα ζεκάησλ, πξνζπαζώληαο λα μεθηλήζνπκε από ην κεηαζρεκαηηζκό Fourier γλσζηώλ ζεκάησλ

Διαβάστε περισσότερα

α και γ και να 3. Δίνεται τραπέζιο ΟΑΒΓ με ΟΑ = α, ΟΓ =γ και ΓΒ= 2ΟΑ αποδείξετε ότι ΓΑ = 2ΕΔ ΛΥΣΗ Έχουμε: ΓΑ = ΓΟ + ΟΑ = γ + α

α και γ και να 3. Δίνεται τραπέζιο ΟΑΒΓ με ΟΑ = α, ΟΓ =γ και ΓΒ= 2ΟΑ αποδείξετε ότι ΓΑ = 2ΕΔ ΛΥΣΗ Έχουμε: ΓΑ = ΓΟ + ΟΑ = γ + α 3 Δίνεται τραπέζιο ΟΑΒΓ με ΟΑ = α, ΟΓ =γ και ΓΒ= ΟΑ Αν Δ και Ε είναι τα μέσα των ΑΒ και ΒΓ αντίστοιχα, να βρείτε τα διανύσματα ΓΑ, ΑΒ και ΕΔ συναρτήσει των α και γ και να αποδείξετε ότι ΓΑ = ΕΔ ΛΥΣΗ Έχουμε:

Διαβάστε περισσότερα

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ ΒΑΓΓΔΛΗ ΦΤΥΑ 0 ΒΑΙΚΟΙ ΟΡΙΜΟΙ ΟΜΟΙΟΘΔΣΟ ΗΜΔΙΟΤ Ολνκάδνπκε ομοιοθεζία με κένηπο ηο ζημείο και λόγο ην γεωκεηξηθό κεηαζρεκαηηζκό κε ηνλ νπνίν ζε θάζε ζεκείν ηνπ επηπέδνπ αληηζηνηρνύκε έλα θαη κόλν ζεκείν

Διαβάστε περισσότερα

ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ

ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ ΥΤΙΚΗ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ 3 ο ΔΙΑΓΩΝΙΜΑ ΕΝΔΕΙΚΣΙΚΕ ΑΠΑΝΣΗΕΙ ΘΕΜΑ Α 1. γ.. α. 3. β. 4. γ. 5. α-λ, β-, γ-, δ-, ε-λ. ΘΕΜΑ B 1. ωρςή απάμςηρη είμαι η (α). Ο παοαςηοηςήπ πληριάζει κιμξύμεμξπ

Διαβάστε περισσότερα

Κξιμχμικά δίκςσα ρςξ Internet Η μέα ποόκληρη ρςημ επικξιμχμία για ςη μέα γεμιά

Κξιμχμικά δίκςσα ρςξ Internet Η μέα ποόκληρη ρςημ επικξιμχμία για ςη μέα γεμιά 1 ΠΑΝΔΠΙΣΗΜΙΟ ΠΔΙΡΑΙΩ ΣΜΗΜΑ ΒΙΟΜΗΧΑΝΙΚΗ ΓΙΟΙΚΗΗ & ΣΔΧΝΟΛΟΓΙΑ Κξιμχμικά δίκςσα ρςξ Internet Η μέα ποόκληρη ρςημ επικξιμχμία για ςη μέα γεμιά Κύοιξ Θέμα Η έθθαλζε ηωλ θνηλωληθώλ δηθηύωλ ζην δηαδίθηπν ζα

Διαβάστε περισσότερα

ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) =

ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) = ΘΔΜΑΣΑ Α επηέκβξηνο 9. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(,y) = y.. Να ππνινγηζηνύλ ηα νινθιεξώκαηα: a) ln b) a) 3cos b) e sin 4. Να ππνινγηζηεί ην νινθιήξσκα: S ( y) 3

Διαβάστε περισσότερα

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Μονοψϊνιο Ολιγοψώνιο Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Οπιακή αξία Δπηπξόζζεηα νθέιε από ηελ ρξήζε/θαηαλάισζε κηαο επηπξόζζεηε

Διαβάστε περισσότερα

ATTRACT MORE CLIENTS ΒΕ REMARKABLE ENJOY YOUR BUSINESS ΣΕΛ. 1

ATTRACT MORE CLIENTS ΒΕ REMARKABLE ENJOY YOUR BUSINESS ΣΕΛ. 1 ATTRACT MORE CLIENTS ΒΕ REMARKABLE ENJOY YOUR BUSINESS ΣΕΛ. 1 Εσυαοιρςώ πξσ καςεβάραςε ασςό ςξ e-book Ασςό ρημαίμει όςι έυεςε ήδη κάπξια ιρςξρελίδα ή έμα ηλεκςοξμικό καςάρςημα (e-shop) ή δεμ έυεςε ςίπξςα

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ.

Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ. Απαντήσεις θέματος 2 Απηά πνπ έπξεπε λα γξάςεηε (δελ ρξεηαδόηαλ δηθαηνιόγεζε εθηόο από ην Γ) Α return a*b; Β 0:acegf2, 1: acegf23, 2: acegf234, 3:acegf2345, 4:acegf23456, 5:acegf234567, 6:acegf2345678,

Διαβάστε περισσότερα

Διδακτική τωμ Μαθηματικώμ (Β Φάση ΔΙ.ΜΔ.Π.Α)

Διδακτική τωμ Μαθηματικώμ (Β Φάση ΔΙ.ΜΔ.Π.Α) ΠΑΙΔΑΓΩΓΙΚΗ ΦΟΛΗ ΥΛΩΡΙΝΑ Δ ι δ α σ κ α λ ί α σ τ η Δ Δ η μ ο τ ι κ ο ύ Ν ο μ ί σ μ α τ α κ α ι Δ ε κ α δ ι κ ο ί Α ρ ι θ μ ο ί Διδακτική τωμ Μαθηματικώμ (Β Φάση ΔΙ.ΜΔ.Π.Α) Επ ιιμέλε ιια Εργασ ίίας Καοαμαμίδξσ

Διαβάστε περισσότερα

ΣΥΠΥΔΑ. ΣΥζηημα διασείπιζηρ ΠΥπκαγιών ζε ΔΑζη κωνοθόπων. www. sypyda.gr

ΣΥΠΥΔΑ. ΣΥζηημα διασείπιζηρ ΠΥπκαγιών ζε ΔΑζη κωνοθόπων. www. sypyda.gr ΣΥΠΥΔΑ ΣΥζηημα διασείπιζηρ ΠΥπκαγιών ζε ΔΑζη κωνοθόπων www. sypyda.gr Κύπιορ ζηόσορ ηος έπγος ΣΥΠΥΔΑ ΣΥζηημα διασείπιζηρ ΠΥπκαγιών ζε ΔΑζη κωνοπόθων Κύοιξπ ρςόυξπ ςξσ έογξσ ΣΥΠΥΔΑ, ςξ ξπξίξ υοημαςξδξςείςαι

Διαβάστε περισσότερα

ΓΔΧΜΔΣΡΗΑ ΓΗΑ ΟΛΤΜΠΗΑΓΔ

ΓΔΧΜΔΣΡΗΑ ΓΗΑ ΟΛΤΜΠΗΑΓΔ Βαγγέλης Φύχας 0 ΒΑΗΚΟΗ ΟΡΗΜΟΗ ΗΟΓΧΝΗΔ ΔΤΘΔΗΔ Γύν επζείεο θαη (πνπ δηέξρνληαη από ηε θνξπθή ηεο γωλίαο ιέγνληαη ηζνγώληεο, όηαλ δεκηνπξγνύλ ίζεο γωλίεο κε ηηο πιεπξέο ηεο γωλίαο ηζνδύλακα όηαλ δεκηνπξγνύλ

Διαβάστε περισσότερα

Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ

Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική ΑΔ Άζκηζη ζτέζης κόζηοσς-τρόνοσ (Cost Time trade off) Καηαζκεσαζηική Δίζηε μησανικόρ διοίκηζηρ μεγάληρ καηαζκεςαζηικήρ εηαιπείαρ και καλείζηε να ςλοποιήζεηε ηο έπγο πος πεπιγπάθεηαι από ηον Πίνακα 1. Κωδ.

Διαβάστε περισσότερα

Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα!

Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα! Cpyright 2013 Λόγος & Επικοινωνία // All rights Reserved Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα! Αυηό ηο παιχνίδι έχει ζηόχους: 1. ηελ εθγύκλαζε ηεο αθνπζηηθήο κλήκεο ησλ παηδηώλ 2. ηελ εμάζθεζε ζηελ

Διαβάστε περισσότερα

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η.

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η. Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η. α) το τρίγωνο ΒΑΕ είναι ισοσκελές. (Μονάδες 7) β) το ΔΕΓΒ είναι παραλληλόγραμμο.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ στα ΚΕΦΑΛΑΙΑ 1.2 και 1.3 ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΗΜΕΡΟΜΗΝΙΑ : ΘΕΜΑ 1 A. Να δηαηππώζεηε ην δεύηεξν λόκν ηνπ Νεύησλα κε ιόγηα θαη λα γξάςεηε ηελ αληίζηνηρε καζεκαηηθή ζρέζε (ηύπν) πνπ

Διαβάστε περισσότερα

Πλξήγηρη ρςξ διαδίκςσξ

Πλξήγηρη ρςξ διαδίκςσξ σρςήμξσμε Θεςική ποξρτξοά ςξσ διαδικςύξσ Θεςική ποξρτξοά ςξσ διαδικςύξσ γμώρη εκπαίδεσρη πληοξτξοίεπ Θεςική ποξρτξοά ςξσ διαδικςύξσ επικξιμχμία Θεςική ποξρτξοά ςξσ διαδικςύξσ εμημέοχρη Θεςική ποξρτξοά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ 1 ο Θεώρημα διαμέσου ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ Σε κάθε τρίγωνο, το άθροισμα των τετραγώνων δύο πλευρών τριγώνου ισούται με το διπλάσιο του τετραγώνου της περιεχόμενης διαμέσου, αυξημένο κατά το μισό του τετραγώνου

Διαβάστε περισσότερα

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:

Διαβάστε περισσότερα

Κύοιξ Συέδιξ Δοάρηπ ςηπ Αγξοάπ ςωμ Εμπξοεσμαςικώμ Μεςατξοώμ και ςωμ Logistics ςηπ Ελλάδαπ. Σωςήοηπ Σ. Τοιυάπ

Κύοιξ Συέδιξ Δοάρηπ ςηπ Αγξοάπ ςωμ Εμπξοεσμαςικώμ Μεςατξοώμ και ςωμ Logistics ςηπ Ελλάδαπ. Σωςήοηπ Σ. Τοιυάπ Κύοιξ Συέδιξ Δοάρηπ ςηπ Αγξοάπ ςωμ Εμπξοεσμαςικώμ Μεςατξοώμ και ςωμ Logistics ςηπ Ελλάδαπ Σωςήοηπ Σ. Τοιυάπ 21 Αποιλίξσ 2010 Κύοιξ υέδιξ Δοάρηπ ςηπ Αγξοάπ ςωμ Δμπξοεσμαςικώμ Μεςατξοώμ και ςωμ Logistics

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες

Διαβάστε περισσότερα

ΕΞΟΡΤΞΗ & ΚΑΣΑΚΕΤΕ ΣΗΝ ΕΤΡΩΠΗ ΜΑΘΗΜΑ 43

ΕΞΟΡΤΞΗ & ΚΑΣΑΚΕΤΕ ΣΗΝ ΕΤΡΩΠΗ ΜΑΘΗΜΑ 43 ΕΞΟΡΤΞΗ & ΚΑΣΑΚΕΤΕ ΣΗΝ ΕΤΡΩΠΗ ΜΑΘΗΜΑ 43 Κα ακαθένεηε 5 εονςπασθέξ πώνεξ θαη κα βνείηε ημ είδμξ ημο μνοθημύ ημοξ πιμύημο. Πμημη πανάγμκηεξ επηηνέπμοκ ηεκ θαηαζθεοή μεγάιςκ ηεπκηθώκ ένγςκ; Ε ελόνολε (ελαγςγή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο

Διαβάστε περισσότερα

ΑΡΥΔ ΟΙΚΟΝΟΜΙΚΗ ΘΔΩΡΙΑ ΛΤΔΙ ΓΙΑΓΩΝΙΜΑΣΟ ΚΔΦΑΛΑΙΟΤ 2

ΑΡΥΔ ΟΙΚΟΝΟΜΙΚΗ ΘΔΩΡΙΑ ΛΤΔΙ ΓΙΑΓΩΝΙΜΑΣΟ ΚΔΦΑΛΑΙΟΤ 2 ΑΥΔ ΟΙΚΟΝΟΜΙΚΗ ΘΔΩΙΑ ΛΤΔΙ ΙΑΩΝΙΜΑΣΟ ΚΔΦΑΛΑΙΟΤ 2 1: Λάζος (είλαη ηζνζθειήο ππεξβνιή) Α2: Λάζος (ην ζεηηθό πξόζεκν ζεκαίλεη όηη ε Πνζνζηηαία Μεηαβνιή Δηζνδήκαηνο θαη ε Πνζνζηηαία Μεηαβνιή Πνζόηεηαο ήηαλ

Διαβάστε περισσότερα

Phishing Emails. Τι είναι και Τρόποι αντιμετώπιςησ τουσ. Ευςταθίου Κωνςταντίνοσ. Λαμπιδονίτη Χριςτίνα. Απρίλιοσ, 2013. Λευκωςία

Phishing Emails. Τι είναι και Τρόποι αντιμετώπιςησ τουσ. Ευςταθίου Κωνςταντίνοσ. Λαμπιδονίτη Χριςτίνα. Απρίλιοσ, 2013. Λευκωςία Phishing Emails Τι είναι και Τρόποι αντιμετώπιςησ τουσ Ευςταθίου Κωνςταντίνοσ Λαμπιδονίτη Χριςτίνα Απρίλιοσ, 2013 Λευκωςία 1 1. Τι είναι το Phishing; Phishing ή αλλιώπ φάοεμα (παοαλλαγή fishing), αματέοεςαι

Διαβάστε περισσότερα

ΤΠΟΤΡΓΔΗΟ ΔΘΝΗΚΖ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΧΝ ΠΑΗΓΑΓΧΓΗΚΟ ΗΝΣΗΣΟΤΣΟ. Α θαη Β Γεληθνύ Λπθείνπ. ε 3. ε 2. Γ ε 1

ΤΠΟΤΡΓΔΗΟ ΔΘΝΗΚΖ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΧΝ ΠΑΗΓΑΓΧΓΗΚΟ ΗΝΣΗΣΟΤΣΟ. Α θαη Β Γεληθνύ Λπθείνπ. ε 3. ε 2. Γ ε 1 ΤΠΟΤΡΓΔΗΟ ΔΘΝΗΚΖ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΧΝ ΠΑΗΓΑΓΧΓΗΚΟ ΗΝΣΗΣΟΤΣΟ Α θαη Β Γεληθνύ Λπθείνπ ε 3 Κ Δ Γ ε 1 ε 2 Η Ο Ε κ α Φ Θ Ζ Α ε 4 Β Σόκνο 3νο ΤΠΟΤΡΓΔΗΟ ΔΘΝΗΚΖ ΠΑΗΓΔΗΑ ΚΑΗ ΘΡΖΚΔΤΜΑΣΧΝ ΠΑΗΓΑΓΧΓΗΚΟ ΗΝΣΗΣΟΤΣΟ

Διαβάστε περισσότερα

Β. 1.Το άθροισμα των γωνιών κάθε τριγώνου ισούται με. 2.Η διάμεσος τραπεζίου ισούται με το των δύο βάσεων.

Β. 1.Το άθροισμα των γωνιών κάθε τριγώνου ισούται με. 2.Η διάμεσος τραπεζίου ισούται με το των δύο βάσεων. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΕΝΙΚΟ ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΙΑΙΟΥ ΘΕΜΑ 1 Ο ΡΑΠΤΕΣ ΠΡΟΑΩΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΙΟΥΝΙΟΥ ΣΤΗΝ ΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ Α. Να αποδείξετε ότι τα εφαπτόμενα τμήματα

Διαβάστε περισσότερα

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» 1 o ΔΙΑΓΩΝΙΜΑ ΙΑΝΟΤΑΡΙΟ 2015: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» 1 o ΔΙΑΓΩΝΙΜΑ ΙΑΝΟΤΑΡΙΟ 2015: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ o ΔΙΑΓΩΝΙΜΑ ΙΑΝΟΤΑΡΙΟ 05: ΔΝΔΔΙΚΣΙΚΔ ΑΠΑΝΣΗΔΙ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. β.. α. 3. δ. 4. α. 5. α-λ, β-, γ-λ, δ-λ, ε-. ΘΕΜΑ B. Η ρωρςή απάμςηρη

Διαβάστε περισσότερα

Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση

Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέρξη ζηηγκήο ην κνλνπώιην έρεη ζεσξεζεί ζαλ κηα επηρείξεζε ε νπνία πσιεί ην πξντόλ ηεο ζε θάζε πειάηε ζηελ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΑΣΚΗΣΕΙΣ ΟΜΑΔΑ 1 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΑΣΚΗΣΕΙΣ ΟΜΑΔΑ 1 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΑΣΚΗΣΕΙΣ ΟΜΑΔΑ 1 ΟΝΟΜΑ : ΒΡΤΩΝΗ ΥΑΡΑΛΑΜΠΟΤ ΑΕΜ : 12781 ΕΞΑΜΗΝΟ: 5 ν Άσκηση 1: ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ (α) Έλα αζηέξη θηλείηαη παξάιιεια κε ηνλ ηζεκεξηλό θαη δεκηνπξγεί έλα ζθαηξηθό ηξίγσλν

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53

Διαβάστε περισσότερα

1. Η απιή αξκνληθή ηαιάλησζε πνπ εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη πιάηνο Α = 20 cm θαη

1. Η απιή αξκνληθή ηαιάλησζε πνπ εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη πιάηνο Α = 20 cm θαη ΛΤΜΔΝΔ ΑΚΖΔΗ ΣΖΝ ΔΤΡΔΖ ΑΡΥΗΚΖ ΦΑΖ 1. Η αιή αξκνληθή ηαιάλησζε ν εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη ιάηνο Α = cm θαη ζρλόηεηα f = 5 Hz. Τε ρξνληθή ζηηγκή = ην κηθξό ζώκα δηέξρεηαη αό ηε ζέζε ανκάθξλζεο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ 1 (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

ΓΕΩΜΕΣΡΙΑ Α ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ

ΓΕΩΜΕΣΡΙΑ Α ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΓΕΩΜΕΣΡΙΑ Α ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ Διδακηέα ύλη Από ην βηβιίν «Ευκλείδεια Γεωμετρία Α θαη Β Δληαίνπ Λπθείνπ» ησλ Αξγπξόπνπινπ Η., Βιάκνπ Π., Καηζνύιε Γ., Μαξθάηε., ίδεξε Π. Κεθ.3 ο : Σρίγωνα 3.1

Διαβάστε περισσότερα

Αρ. Υακ.: Α.Ι.Σ. 1 /2013 Α.Κ.Ι. 1/2011

Αρ. Υακ.: Α.Ι.Σ. 1 /2013 Α.Κ.Ι. 1/2011 Αρ. Υακ.: Α.Ι.Σ. 1 /2013 Α.Κ.Ι. 1/2011 Σοποθέτηση της Αρχής Ισότητας αμαφορικά με τη δημοσίευση αγγελιώμ για θέσεις εργασίας που είτε απευθύμομται στο έμα μόμο φύλο είτε με τους όρους που θέτουμ φωτογραφίζουμ

Διαβάστε περισσότερα

TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΠΡΟΑΡΜΟΓΗ: ΒΑΛΚΑΝΙΩΣΗ ΔΗΜ. ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 TOOLBOOK ΜΑΘΗΜΑ 2

TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΠΡΟΑΡΜΟΓΗ: ΒΑΛΚΑΝΙΩΣΗ ΔΗΜ. ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 TOOLBOOK ΜΑΘΗΜΑ 2 TOOLBOOK (μάθημα 2) Δεκηνπξγία βηβιίνπ θαη ζειίδσλ ΕΚΠΑΙΔΕΤΣΙΚΟ ΠΕ19 1 Δημιουργία σελίδων και βιβλίων Έλα θαηλνύξην βηβιίν πεξηέρεη κία άδεηα ζειίδα κε έλα άδεην background. Δελ κπνξνύκε λα μερσξίζνπκε

Διαβάστε περισσότερα

ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ

ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ ΦΤΛΛΟ ΕΡΓΑΙΑ (Θεοδώρα Γιώηη, Νικόλας Καραηάζιος- Τπεύθσνη εκ/κος Λ. Παπαηζίμπα) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ:.., ΗΜΕΡΟΜΗΝΙΑ:.// Σε ακαμίδην πνπ κπνξεί λα θηλείηαη ρσξίο ηξηβέο πάλσ

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ιήμεο 11.00 Κάπνηνο άξρηζε λα δηαβάδεη έλα βηβιίν ηελ 1 ε Δεθεκβξίνπ. Κάζε κέξα δηάβαδε ηνλ ίδην αξηζκό ζειίδσλ

Διαβάστε περισσότερα

ΔΥΚΛΔΙΓΗΣ 2008 ΛΥΣΔΙΣ ΘΔΜΑΤΩΝ

ΔΥΚΛΔΙΓΗΣ 2008 ΛΥΣΔΙΣ ΘΔΜΑΤΩΝ 1 ΔΥΚΛΔΙΓΗΣ 008 ΛΥΣΔΙΣ ΘΔΜΑΤΩΝ Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Αλ ηζρύεη όηη 8x10y 1, λα βξείηε ηελ ηηκή ηεο παξάζηαζεο 008 x 5y 8x 60 y. (1 ος τρόπος) 008 x 5y 8x 60y x y x y x y x y 008 5 6 8 10 008 8 10 6 8

Διαβάστε περισσότερα

Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Όµοια λέγονται δύο πολύγωνα που έχουν τις πλευρές τους ανάλογες και τις αντίστοιχες γωνίες τους ίσες. Λόγος οµοιότητας δύο όµοιων πολυγώνων λέγεται ο λόγος δύο

Διαβάστε περισσότερα

ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000.

ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000. ΔΕΟ 13 Ποσοτικές Μέθοδοι Σσνάρηηζη Κόζηοσς C(), μέζο κόζηος C()/. Παράδειγμα 1 Μηα εηαηξεία δαπαλά γηα θάζε πξντόλ Α πνπ παξάγεη 0.0 λ.κ. Τα πάγηα έμνδα ηεο εηαηξείαο είλαη 800 λ.κ. Ζεηείηαη 1) Να πεξηγξάςεηε

Διαβάστε περισσότερα

Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο:

Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο: Πίνακες Σσμβόλων Έλαο πίνακας σσμβόλων ππνζηεξίδεη δύν βαζηθέο ιεηηνπξγίεο: Εηζαγσγή ελόο ζηνηρείνπ Αλαδήηεζε ζηνηρείνπ κε δεδνκέλν θιεηδί Άιιεο ρξήζηκεο ιεηηνπξγίεο είλαη: Δηαγξαθή ελόο θαζνξηζκέλνπ ζηνηρείνπ

Διαβάστε περισσότερα

H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ

H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ Φξεζηκόηεηα καζεκαηηθώλ Αξρή θαηακέηξεζεο Όζα έδσζαλ νη Έιιελεο... Τξίγσλνη αξηζκνί Τεηξάγσλνη αξηζκνί Δπηκήθεηο αξηζκνί Πξώηνη αξηζκνί Αξηζκνί κε μερσξηζηέο ηδηόηεηεο Γίδπκνη πξώηνη

Διαβάστε περισσότερα

ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Αθροίσματα, Γινόμενα και Ασσμπτωτικές Εκτιμήσεις

ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ. Αθροίσματα, Γινόμενα και Ασσμπτωτικές Εκτιμήσεις ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ Αθροίσματα, Γινόμενα και Ασσμπτωτικές Εκτιμήσεις Ο Δηζνδεκαηίαο Σην ηειεπαηρλίδη «Ο Δηζνδεκαηίαο» ν Αξλανύηνγινπ γηα πξώηε θνξά δίλεη δύν επηινγέο: Να πάξεηο 50.000 Δπξώ θάζε ρξόλν

Διαβάστε περισσότερα

Services SMART. Messaging. Bulk SMS. SMS messaging services THE + Services. www.ipdigital.gr. IP Digital

Services SMART. Messaging. Bulk SMS. SMS messaging services THE + Services. www.ipdigital.gr. IP Digital Bulk SMS Services THE + SMART Messaging Services IP Digital Οοταμίδξσ 6 54624, Θερραλξμίκη info@ipdigital.gr T: 2310 511 396 F: 2315 151 166 SMS messaging services www.ipdigital.gr Η Εηαιρεία H IP Digital

Διαβάστε περισσότερα

ΑΛΤΣΕ ΑΚΘΕΙ. 3) ε τρίγωνο ΑΒΓ είναι β>γ. Εάν ΑΔ διάμεςοσ αυτοφ, δείξτε ότι: α) ΑΔΓ >

ΑΛΤΣΕ ΑΚΘΕΙ. 3) ε τρίγωνο ΑΒΓ είναι β>γ. Εάν ΑΔ διάμεςοσ αυτοφ, δείξτε ότι: α) ΑΔΓ > ΑΛΤΣΕ ΑΚΘΕΙ 1) Εάν 0 1,0 2,0 3 είναι τα ςυμμετρικά του περικζντρου Ο του τριγϊνου ΑΒΓ, ωσ προσ τισ πλευρζσ ΒΓ,ΓΑ,ΑΒ αντίςτοιχα δείξτε ότι: α) Σο τρίγωνο ΑΒΓ είναι ίςο με το τρίγωνο 0 1,0 2,0 3 β) Σο Ο

Διαβάστε περισσότερα

ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ Α ΛΤΚΕΙΟΤ

ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ Α ΛΤΚΕΙΟΤ Α/Α : 0_3207/391 1. Τελ άιιε κέξα νη Τξηάθνληα, πνιύ ηαπεηλσκέλνη θαη ληώζνληαο εγθαηαιειεηκκέλνη, ζπγθεληξώζεθαλ ζην ρώξν ησλ ζπλεδξηάζεσλ παξάιιεια, νη «ηξεηο ρηιηάδεο», ζε όια ηα ζεκεία όπνπ είραλ ηνπνζεηεζεί,

Διαβάστε περισσότερα

ΠΡΟ: ΚΟΗΝ: ΘΕΜΑ:"Αμακξίμωρη-Ποόρκληρη για μεςάςανη σπαλλήλωμ ρςξ Γεμικό Νξρξκξμείξ Καοδίςραπ."

ΠΡΟ: ΚΟΗΝ: ΘΕΜΑ:Αμακξίμωρη-Ποόρκληρη για μεςάςανη σπαλλήλωμ ρςξ Γεμικό Νξρξκξμείξ Καοδίςραπ. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΤΠΟΤΡΓΕΙΟ ΤΓΕΙΑ 5 η Τγειξμξμική Πεοιτέοεια Θερραλίαπ & ςεοεάπ Δλλάδαπ ΓΕΝΙΚΟ ΝΟΟΚΟΜΕΙΟ ΚΑΡΔΙΣΑ Σατ. Γ/νση: Σέομα Σασοχπξύ 43100 ΚΑΡΔΙΣΑ Γιεύθσνση: Σμήμα Δ.Α.Δ. E-mail: prosopiku@noskard.gr

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ

ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ 1) Ο λόγος των μηκών δύο κύκλων ( Ο, ρ ) και ( Ο, ρ ) είναι 1 3. Αν ρ = 1,15 cm να βρείτε : Την ακτίνα ρ. Το μήκος του ( Ο, ρ ) Το λόγο των διαμέτρων τους. 2) Οι περίμετροι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ )

ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ ) ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ.3-4-5-6.) 1. Δίνεται ισόπλευρο τρίγωνο ΑΒΓ. Στην προέκταση της ΑΓ προς το Γ παίρνουμε τμήμα ΓΔ=ΑΓ. Έστω Ε τυχαίο σημείο της πλευράς ΒΓ και Ζ σημείο της προέκτασης της ΓΒ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Θέµα 1 Α. Να υπολογίσετε την πλευρά λ και το απόστηµα α τετραγώνου εγγεγραµµένου σε κύκλο (Ο, R) συναρτήσει της ακτίνας R (10 Μονάδες) Β. Να χαρακτηρίσετε τις

Διαβάστε περισσότερα

Διιεληθά Σειρά Moov Δγτειρίδιο τρήζηη Δνημέρφζης ταρηών Web Αλαζεώξεζε: R00 (2010/05) Πώς να ενημερώζφ ηοσς τάρηες; Υπάξρνπλ ηέζζεξα βήκαηα γηα ηελ ελεκέξσζε ηνπ ράξηε. Βήκα

Διαβάστε περισσότερα

( ) ( ) ( ) ( )( ) ( )( ) ( ) ν περνά από σταθερό σημείο. ν περνά από το σταθερό μέσο του επίσης σταθερού ΚΛ. Το διανυσματικό άθροισμα f Μ γράφεται:

( ) ( ) ( ) ( )( ) ( )( ) ( ) ν περνά από σταθερό σημείο. ν περνά από το σταθερό μέσο του επίσης σταθερού ΚΛ. Το διανυσματικό άθροισμα f Μ γράφεται: Το διανυσματικό άθροισμα f Μ γράφεται: f Μ = x ΜΑ+ x ΜΑ+ΑΒ + x ΜΑ+ΑΓ = ΜΑ + ΜΑ + ΜΑ + ΑΒ + ΑΓ ( x) ( x) ( x ) ( x) ( x ) = ( x + x + x ) ΜΑ + ( x) ΑΒ + ( x ) ΑΓ = ( x 4x+ ) ΜΑ+ ( x) ΑΒ+ ( x ) Α Γ f Μ είναι

Διαβάστε περισσότερα

Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2

Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2 ΣΡΙΓΩΝΟΜΔΣΡΙΚΔ EΞΙΩΔΙ Πνηα παξαδείγκαηα εμηζώζεσλ ή θαη πξνβιεκάησλ πηζηεύεηαη όηη είλαη θαηάιιεια γηα ηελ επίιπζε ηνπο θαηά ηελ δηάξθεηα ηεο δηδαθηηθήο δηαδηθαζίαο κέζα ζηελ ηάμε; 1 ε ΓΙΓΑΚΣΙΚΗ ΩΡΑ Α.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 204-205 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/204 A ΟΜΑΓΑ Οδηγία: Να γράυεηε ζηο ηεηράδιο ζας ηον αριθμό κάθε μιας από ηις παρακάηφ ερφηήζεις Α.-Α.8 και

Διαβάστε περισσότερα

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο; 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

1 Είζοδορ ζηο Σύζηημα ΣΔΕΔ ή BPMS

1 Είζοδορ ζηο Σύζηημα ΣΔΕΔ ή BPMS ΟΤΑ Επισειπηζιακή Νοημοζύνη: Οδεγίεο πξνο ηνπο εθπαηδεπόκελνπο γηα ηε ζύλδεζε κε ην ύζηεκα Γηαρείξηζεο Δπηρεηξεζηαθώλ Γηαδηθαζηώλ γηα ηελ εθηέιεζε ηωλ Πξαθηηθώλ Αζθήζεωλ ηωλ ππν(δλνηήηωλ) Bc1.1.4, Bc1.1.5,

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 015-016 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 9 Ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΟΡΘΕΣ ΠΡΟΒΟΛΕΣ Το τμήμα ΒΔ λέγεται προβολή του.. πάνω στην Το τμήμα

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο

Διαβάστε περισσότερα

Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε:

Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε: 1 ΟΡΙΜΟΙ MONOTONIA AKΡOTATA Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε: Σν ιέγεηαη ζέζε ή ζεκείν ηνπ ηνπηθνύ κεγίζηνπ θαη ην ( ηνπηθό κέγηζην.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΔΤΝΑΣΟΣΗΣΕ 3 2. ΓΡΗΓΟΡΗ ΕΚΚΙΝΗΗ (QUICK START) - ΙΟΚΡΑΣΗ 4 3. ΑΝΑΛΤΣΙΚΗ ΕΠΕΞΗΓΗΗ 5

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΔΤΝΑΣΟΣΗΣΕ 3 2. ΓΡΗΓΟΡΗ ΕΚΚΙΝΗΗ (QUICK START) - ΙΟΚΡΑΣΗ 4 3. ΑΝΑΛΤΣΙΚΗ ΕΠΕΞΗΓΗΗ 5 Εγχειρίδιο χρήσης Ο Ιςοκράτησ Πιάνο είναι το απόλυτο εργαλείο για έναν Καθηγητή, Ψάλτη ή Μαθητή τησ Βυζαντινήσ Μουςικήσ, ή για έναν Μουςικό ή Μαθητή τησ Ευρωπαΰκήσ Μουςικήσ. Περιέχει Πιάνο (97+)-πλήκτρων

Διαβάστε περισσότερα

Κεθάλαιο 7. Πξνζθνξά ηνπ θιάδνπ Μ. ΨΥΛΛΑΚΗ

Κεθάλαιο 7. Πξνζθνξά ηνπ θιάδνπ Μ. ΨΥΛΛΑΚΗ Κεθάλαιο 7 Πξνζθνξά ηνπ θιάδνπ 1 Προζθορά ανηαγωνιζηικού κλάδοσ Πώο πξέπεη λα ζπλδπαζηνύλ νη απνθάζεηο πξνζθνξάο ησλ πνιιώλ επηκέξνπο επηρεηξήζεσλ ελόο αληαγσληζηηθνύ θιάδνπ γηα λα βξνύκε ηελ θακπύιε πξνζθνξάο

Διαβάστε περισσότερα

ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP

ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP ηότοι εργαζηηρίοσ ην πιαίζην ηνπ ζπγθεθξηκέλνπ εξγαζηεξίνπ ζα παξνπζηαζηνύλ βαζηθέο ιεηηνπξγίεο ησλ Windows XP πνπ ζρεηίδνληαη

Διαβάστε περισσότερα

Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο:

Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Σύνθεζη ηαλανηώζεων Α. Σύλζεζε δύν α.α.η ηεο ίδιας ζστνόηηηας Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Η απνκάθξπλζε

Διαβάστε περισσότερα

Κόληξα πιαθέ ζαιάζζεο κε δηαζηάζεηο 40Υ40 εθ. Καξθηά 3 θηιά πεξίπνπ κε κήθνο ηξηπιάζην από ην πάρνο ηνπ μύινπ θπξί κεγάιν θαη ππνκνλή

Κόληξα πιαθέ ζαιάζζεο κε δηαζηάζεηο 40Υ40 εθ. Καξθηά 3 θηιά πεξίπνπ κε κήθνο ηξηπιάζην από ην πάρνο ηνπ μύινπ θπξί κεγάιν θαη ππνκνλή Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΙΩΝ ΠΡΩΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ ΔΝΟΣΗΣΑ 10 ε : ΜΗΥΑΝΙΚΗ ΜΔΡΟ Β ΠΙΔΗ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Καξέθια θαθίξε Όξγαλα Τιηθά Κόληξα πιαθέ ζαιάζζεο κε δηαζηάζεηο 40Υ40 εθ.

Διαβάστε περισσότερα

ΛΙΜΝΗ ΤΣΑΝΤ. Σρήκα 1. Σρήκα 2

ΛΙΜΝΗ ΤΣΑΝΤ. Σρήκα 1. Σρήκα 2 ΛΙΜΝΗ ΤΣΑΝΤ Τν Σρήκα 1 δείρλεη ηελ αιιαγή ηεο ζηάζκεο ηεο Λίκλεο Τζαλη, ζηε Σαράξα ηεο Βόξεηαο Αθξηθήο. Η Λίκλε Τζαλη εμαθαλίζηεθε ηειείσο γύξσ ζην 20.000 π.χ., θαηά ηε δηάξθεηα ηεο ηειεπηαίαο επνρήο ησλ

Διαβάστε περισσότερα

Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12

Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12 Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 11-12 Project 6: Ταμίδη κε ηε Μεραλή ηνπ Φξόλνπ Υπεύζπλνη Καζεγεηέο: Ε. Μπηιαλάθε Φ. Αλησλάηνο Δρώηηζη 3: Πνηα από ηα παξαθάησ ΜΜΕ ηεξαξρείηε από πιεπξάο ζεκαζίαο;

Διαβάστε περισσότερα

Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis

Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training Dipl.Biol.cand.med. Stylianos Kalaitzis Stylianos Kalaitzis Μνλνϋβξηδηζκνο 1 Γπν γνλείο, εηεξόδπγνη γηα ηνλ αιθηζκό θάλνπλ παηδηά. Πνία ε πηζαλόηεηα

Διαβάστε περισσότερα

Εξίσωση - Φάση Αρµονικού Κύµατος 4ο Σετ Ασκήσεων - Χειµώνας 2012. Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός. http://perifysikhs.wordpress.

Εξίσωση - Φάση Αρµονικού Κύµατος 4ο Σετ Ασκήσεων - Χειµώνας 2012. Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός. http://perifysikhs.wordpress. Εξίσωση - Φάση Αρµονικού Κύµατος - Χειµώνας 2012 Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός http://perifysikhs.wordpress.com Α. Ερωτήσεις πολλαπλής επιλογής Α.1. Κατά τη διάδοση ενός κύµατος σε ένα

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ Όνομα:.....Επώνυμο:...Ομάδα: Α μ 3x8 1. Στο διπλανό παραλληλόγραμμο η περίμετρός του είναι ίση με: 3χ-1 Α. 40 Β. 60 Γ. 48 Δ. 24 Ε. 36 2χ 10 2. Στο διπλανό παραλληλόγραμμο

Διαβάστε περισσότερα

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο των διανυσμάτων θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο των διανυσμάτων θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο των διανυσμάτων θα πρέπει να είναι σε θέση: Να δίνει τον ορισμό του διανύσματος και των εννοιών που είναι κλειδιά όπως: κατεύθυνση φορά ή διεύθυνση, μηδενικό διάνυσμα,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΦΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Μάθημα: Πιθανόηηηες και Σηαηιζηική Διδάζκων: Σ. Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΦΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Μάθημα: Πιθανόηηηες και Σηαηιζηική Διδάζκων: Σ. Γ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Τρίπολη 06/07/2007 Τα θέμαηα 1-5 είναι σποτρεωηικά και έτοσν ηοσς ίδιοσς (ίζοσς) ζσνηελεζηές βαρύηηηας Το θέμα 6 δίνει επιπλέον βαθμούς με βαρύηηηα 10% για βεληίωζη ηης βαθμολογίας ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ Α ΛΤΚΕΙΟΤ

ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ Α ΛΤΚΕΙΟΤ ΜΑΘΗΜΑ : ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ Α ΛΤΚΕΙΟΤ Α/Α : 0_1382/153 1. Καη όηαλ έγηλε ε ππνρώξεζε αξγά ην απόγεπκα, επεηδή θνβήζεθαλ νη νιηγαξρηθνί κήπσο νη δεκνθξαηηθνί, αθνύ θάλνπλ επίζεζε, θαηαιάβνπλ

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΕΝΑ ΑΠΟ ΤΑ ΔΥΟ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΚΑΙ ΔΥΟ ΑΠΟ ΤΙΣ ΤΡΕΙΣ ΑΣΚΗΣΕΙΣ ΟΙ ΑΣΚΗΣΕΙΣ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΙΝΑΙ

Διαβάστε περισσότερα