ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ"

Transcript

1 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 009 ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Α ΘΕΩΡΙΑ ΘΕΜΑ 1 Ο : α) Ποια μονώνυμα λέγονται αντίθετα; Γράψτε ένα παράδειγμα δύο αντίθετων μονωνύμων. β) Ποια αλγεβρική παράσταση λέγεται πολυώνυμο; Από τις παρακάτω αλγεβρικές παραστάσεις να βρείτε αυτές που είναι πολυώνυμα: ) 4x 5x + x ) 3x 5x 1 x ) xy 5xy+ y + 4) x + xy xy + 3y 3 γ) Τι λέγεται ταυτότητα; Να συμπληρώσετε τις παρακάτω ταυτότητες. 1) ( a β ) =... ) ( α β) 3 =... 3) ( α + β) ( α β) =... 4) 3 3 α + β =... ΘΕΜΑ Ο : y M(x,y) α) Με τη βοήθεια του διπλανού σχήματος να αποδείξετε ότι : ημ ω + συν ω = 1 ρ ω Ο x β) Να μεταφέρετε συμπληρωμένες στο γραπτό σας τις παρακάτω προτάσεις: συν 0 =..., ημ 180 =.... Για δυο παραπληρωματικές γωνίες ω και 180 ο ω ισχύουν: 0 0 ημ(180 ω) =..., συν (180 ω) = Αν για τη γωνία ω ισχύει 0 ω 180 και 0 ημω = ημ60 τότε ω =... 0 συνω = συν 0 τότε ω =...

2 ΑΣΚΗΣΗ 1 η : Β ΑΣΚΗΣΕΙΣ Δίνεται η εξίσωση x +x-1=0 και το κλάσμα x +x-1 K= x-1 α) Να λύσετε την εξίσωση και να παραγοντοποιήσετε το τριώνυμο x +x-1. β) Να απλοποιήσετε το κλάσμα. γ) Να κάνετε τις πράξεις: x + x x 3 1 : + x 1 3x 3 x ΑΣΚΗΣΗ η : Θεωρούμε τις παραστάσεις: Α= ( x-3y ) + ( y+3x) ( 3x-y) -( 3x-y) α) Nα αποδείξετε ότι Α+Β= x-y. και Β= x-y-x -4y β) Nα λύσετε το σύστημα: A+B=5 3x+y=1 ΑΣΚΗΣΗ 3 η : Στο διπλανό σχήμα η ΔΕ//BΓ. Αν ΑΔ =, ΑΕ = 3, ΔΒ =x-1, ΕΓ=x-4, ΔΕ=y και ΒΓ=1, τότε: α) Να υπολογίσετε το x. β) Αφού αποδείξετε ότι τα τρίγωνα ΑΔΕ και ΑΒΓ είναι όμοια να γράψετε τους ίσους λόγους που προκύπτουν από την ομοιότητα των τριγώνων αυτών. γ) Να υπολογίσετε το y. x-1 Β A 3 y 1 Ε x-4 Γ ΠΑΡΑΤΗΡΗΣΗ : Από τα δύο θέματα θεωρίας να απαντήσετε στο ένα και από τις τρεις ασκήσεις να λύσετε τις δύο.

3 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 009 ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΙΑ: Επιλέγετε και απαντάτε σε ένα από τα δύο θέματα θεωρίας ΘΕΜΑ 1 ο Α) Μεταφέρετε στην κόλλα σας και συμπληρώστε την παρακάτω πρόταση: (1 μονάδα) Η μετατροπή μιας παράστασης από άθροισμα σε.. λέγεται. Β) Μεταφέρετε στην κόλλα σας και συμπληρώστε τις παρακάτω ταυτότητες: (3,6 μονάδες) 1. ( α - β ) =. α 3 + β 3 =. Γ) Να αποδείξετε την παρακάτω ταυτότητα : ( μονάδες) (α - β )(α + β ) = α - β ΘΕΜΑ ο Γενικά ισχύει ότι : «αν δύο τρίγωνα έχουν όλες τις πλευρές τους ίσες μία προς μία και τις αντίστοιχες γωνίες τους ίσες είναι ίσα». Α) Για να αποδείξουμε ότι δύο τρίγωνα είναι ίσα, είναι απαραίτητο να αποδείξουμε ότι έχουν όλες τις πλευρές τους και τις αντίστοιχες γωνίες ίσες μια προς μία; Πως ονομάζονται οι προτάσεις που μας βοηθούν να διακρίνουμε αν δύο τρίγωνα είναι ίσα συγκρίνοντας λιγότερα στοιχεία; (1,1 μονάδες) Β) Να διατυπώσετε ένα από τα κριτήρια ισότητας τριγώνων και ένα από τα κριτήρια ισότητας ορθογωνίων τριγώνων. (4 μονάδες) Γ) Συμπληρώστε την παρακάτω πρόταση: Αν από μιας πλευράς ενός τριγώνου φέρουμε ευθεία προς μία άλλη πλευρά του, τότε... (1,5 μονάδες)

4 ΑΣΚΗΣΕΙΣ: Επιλέγετε και απαντάτε σε δύο από τις τρεις ασκήσεις. ΑΣΚΗΣΗ 1 η ίνεται η εξίσωση: χ -=3χ (-χ ) Α) Αφού φέρετε την παραπάνω εξίσωση στην μορφή αχ + βχ+ γ =0 βρείτε τους συντελεστές της α, β, γ και την ιακρίνουσά της. ( μονάδες) Β) Να λύσετε την εξίσωση 3 χ -5χ -=0. και να παραγοντοποιήσετε το τριώνυμο 3 χ -5χ -. ΑΣΚΗΣΗ η Στο διπλανό σχήμα παριστάνεται η γραφική επίλυση του γραμμικού συστήματος χ+ ψ = 1 ( Σ ) : 3χ+ψ = (4,6 μονάδες) Α) Να χαρακτηρίσετε Σωστές ή Λάθος τις παρακάτω προτάσεις μεταφέροντας τους αριθμούς στην κόλλα σας 1. Η ευθεία ε :3χ+ψ= τέμνει τον ψ ψ στο σημείο (0,).. Το σημείο (1,-3) ανήκει στην ευθεία ε 1 :χ+ψ= Το σύστημα (Σ) είναι αδύνατο. 4. Η ευθεία ε 1 :χ+ψ=-1 τέμνει τον χ χ στο σημείο (-1,0) 5. Το ζεύγος (1,-1) είναι η μοναδική λύση του συστήματος (Σ) Β) Να λύσετε αλγεβρικά με όποια μέθοδο θέλετε το παραπάνω σύστημα (Σ) ΑΣΚΗΣΗ 3η Στο διπλανό σχήμα η ΑΒ είναι παράλληλη προς τη Γ. Α) Να εξηγήσετε γιατί τα τρίγωνα ΟΑΒ και ΟΓ είναι όμοια. Β) Αν ΑΒ=4 cm, ΟΒ=3 cm, Γ=6 cm και η περίμετρoς του τριγώνου ΟΑΒ είναι 9 cm να βρείτε τον λόγο ομοιότητας λ του τριγώνου Ο Γ προς το τρίγωνο ΟΑΒ καθώς και το μήκος των πλευρών ΟΓ και Ο του Ο Γ. Γ) Αν το εμβαδόν του τριγώνου (Ο Γ)=6,75 cm να βρείτε το εμβαδόν του τριγώνου (ΟΑΒ). Καλή Επιτυχία!!!

5 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 009 ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΙΑ ΘΕΜΑ 1 ο α) Να συμπληρώσετε τις παρακάτω ισότητες, ώστε να εκφράζουν αξιοσημείωτες ταυτότητες: 1. (α + β) =.... (α + β)(α β) = (α - β) 3 =... β) Να χαρακτηρίσετε τις παρακάτω προτάσεις Σωστές (Σ) ή Λανθασμένες (Λ) 1. Τα μονώνυμα 5 x3 yω και -5x 3 yω είναι όμοια.... Τα μονώνυμα 3x 3 y και -3x y 3 είναι αντίθετα Κάθε αριθμός μπορεί να θεωρηθεί και ως πολυώνυμο Το μηδενικό πολυώνυμο έχει βαθμό 0... ΘΕΜΑ ο α) Πότε δύο τρίγωνα λέγονται ίσα; β) Πότε δύο πολύγωνα λέγονται όμοια; γ) Να συμπληρώσετε τα παρακάτω κενά: 1. Αν δύο τρίγωνα έχουν δύο πλευρές ίσες μια προς μια και., τότε είναι ίσα.. Δύο ορθογώνια τρίγωνα είναι ίσα, όταν έχουν μια αντίστοιχη πλευρά ίση και μια ίση. 3. Δύο κανονικά πολύγωνα που έχουν. είναι όμοια. 4. Ο λόγος των εμβαδών δύο ομοίων σχημάτων είναι ίσος με. του λόγου ομοιότητάς τους.

6 ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1 η Δίνονται οι εξισώσεις : x 9x 5 = 0 και 4x + 4x + 1 = 0. α) Να λύσετε τις παραπάνω εξισώσεις. β) Να παραγοντοποιήσετε τα τριώνυμα x 9x 5 και 4x + 4x + 1. γ) Να απλοποιήσετε το κλάσμα: x 9x 5 4x 4x ΑΣΚΗΣΗ η Να αποδείξετε ότι τα συστήματα: την ίδια λύση. 7x + y y 1 = x x 9y 1 = x και 8x y = 15 x 3y = 1 έχουν ΑΣΚΗΣΗ 3 η Στο διπλανό σχήμα είναι ΑΒ = 1, ΒΓ = 13, ΑΓ = 5, ΔΕ = 4 και ΒΔΕ = 90. α) Να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ορθογώνιο. β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΒΔΕ είναι όμοια. γ) Να υπολογίσετε το μήκος του τμήματος ΒΕ. δ) Να υπολογίσετε το εμβαδόν του τριγώνου ΒΔΕ.

7 ΓΥΜΝΑΣΙΟ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ: ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Τι λέγεται ταυτότητα; (Μονάδες,) Β. Να γράψετε στην κόλλα σας συμπληρωμένες τις παρακάτω ισότητες ώστε να εκφράζουν αξιοσημείωτες ταυτότητες: α) (α β) =.. β) α β = γ) (α β) 3 =.. δ) α 3 + β 3 = (Μονάδες 4,44) ΘΕΜΑ ο Nα διατυπώσετε τα τρία κριτήρια ισότητας τριγώνων και να κατασκευάσετε και στις τρεις περιπτώσεις τα αντίστοιχα σχήματα στα οποία να φαίνονται τα κριτήρια που περιγράφετε. Να επιλέξετε ΜΟΝΟ ΕΝΑ από τα παραπάνω θέματα ΑΣΚΗΣΗ 1 η ΑΣΚΗΣΕΙΣ Δίνονται οι παραστάσεις: Α = x 3 5x + x 10 και B = x 50. α) Nα γίνουν γινόμενο οι παραστάσεις Α και Β. Α β) 1. Να βρείτε για ποιες τιμές του x ορίζεται το κλάσμα. Β Α x +. Να αποδειχθεί ότι = για x 5 και x -5. Β (x + 5) Α γ) Να βρείτε για ποιες τιμές του x ισχύει =1. Β

8 ΑΣΚΗΣΗ η Να λυθεί το σύστημα: 3x+y=1 x-y x + y 4 = ΑΣΚΗΣΗ 3 η Στο διπλανό τραπέζιο ΑΒΓΔ είναι: ΑΒ/ /ΚΜ//ΓΔ, ΑΚ = 6m, KΔ=4m, BΛ=α, ΛΕ=β, BM=3m και BE=9m. Να υπολογίσετε τα α, β και ΒΓ. Να επιλέξετε ΜΟΝΟ ΔΥΟ από τις παραπάνω ασκήσεις ΕΥΧΟΜΑΣΤΕ ΕΠΙΤΥΧΙΑ!

9 ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑ 1 Ο ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 009 ΘΕΩΡΙΑ Α. Τι ονομάζουμε ταυτότητα ; Β. Να συμπληρώσετε τα παρακάτω κενά, ώστε οι ισότητες που θα προκύψουν να εκφράζουν αξιοσημείωτες ταυτότητες: α) ( α β ) = α β) ( α β )( α + β ) =. γ) ( α + β ) 3 = α 3. δ) α 3 β 3 = Θέμα ο Α. Για τη γωνία ω του διπλανού σχήματος ισχύει συνω 0. Να αποδείξτε ότι: ημω εφω = συνω Β. Να χαρακτηρίσετε τις παρακάτω προτάσεις με Ο (Σ), αν είναι σωστές ή με (Λ) αν είναι λανθασμένες. i. ημ0 ο = 1 ii. εφ180 ο = 1 iii. συν90 ο = - 1 iv. Για οποιαδήποτε γωνία ω ισχύει ημω + συνω = 1. y ω ρ Μ(x,y) x

10 ΑΣΚΗΣΕΙΣ Άσκηση 1 η Δίνονται τα πολυώνυμα : Α(χ) = ( χ +3 ) 4χ 3χ και Β(χ) = ( χ 1 )( χ + 1 ) 8( χ + 1 ) + 6 α) Να βρεθούν τα αναπτύγματα των πολυωνύμων Α(χ) και Β(χ), να γίνουν οι αναγωγές ομοίων όρων και να γραφούν κατά τις φθίνουσες δυνάμεις του χ. β) Να αποδείξετε ότι Α(χ) +Β(χ) = χ 5χ + 6. γ) Να λύσετε την εξίσωση Α(χ) +Β(χ) = 0. Άσκηση η Δίνεται η εξίσωση χ κχ + λ = 1 και η παραβολή ψ = χ λχ + κ. α. Να αποδείξετε ότι το είναι λύση της εξίσωσης χ κχ + λ = 1 μόνο όταν λ-κ = -3. β. Να αποδείξετε ότι η παραβολή ψ = χ λχ+κ διέρχεται από το σημείο Α( 1, 3) μόνο όταν κ-λ =. γ. Να βρείτε για ποιες τιμές των κ και λ το είναι λύση της εξίσωσης χ κχ + λ = 1 και το σημείο Α( 1, 3 ) ανήκει στην παραβολή ψ = χ λχ+κ. Άσκηση 3 η Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με (ΑΒ = ΑΓ) και το τμήμα ΑΜ είναι ύ- ψος του. Δίνεται επίσης ότι ΒΔ = ΓΕ. Να αποδείξετε ότι: α. Τα τρίγωνα ΑΒΔ και ΑΓΕ είναι ίσα. β. Το τρίγωνο ΑΔΕ είναι ισοσκελές. γ. Το τμήμα ΑΜ είναι διχοτόμος του τριγώνου ΔΑΕ. Δ Β Α Μ Γ Ε Να απαντήσετε σε ένα θέμα θεωρίας και σε δυο ασκήσεις. ΕΥΧΟΜΑΣΤΕ ΕΠΙΤΥΧΙΑ!

11 ΓΥΜΝΑΣΙΟ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ: ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΙΑ ΘΕΜΑ 1 O (α) Τι ονομάζουμε αλγεβρικές παραστάσεις, μονώνυμα, βαθμό ενός πολυωνύμου, ταυτότητα; (β) Να αποδειχθούν οι ταυτότητες: (α + β) = α + αβ + β (α + β) 3 = α 3 + 3α β + 3αβ + β 3 (γ) Να συμπληρώσετε στην κόλλα σας τον παρακάτω πίνακα αντιστοιχίζοντας σε κάθε αλγεβρική παράσταση της στήλης Α την ίση της από τη στήλη Β στήλη Α στήλη Β α. (α - β) 1. (α β)( α + αβ + β ) β. (α - β) 3. α 3 + 3α β + 3αβ + β 3 γ. (α + β)(α β) 3. α + αβ + β δ. α 3 β 3 4. α 3-3α β + 3αβ - β 3 ε. α 3 + β 3 5. α - αβ + β α β γ δ ε 6. (α +β)( α αβ + β ) 7. α β ΘΕΜΑ O (α) Με τη βοήθεια ενός ορθοκανονικού συστήματος αξόνων και ενός σημείου Μ(x, y) να ορίσετε τους τριγωνομετρικούς αριθμούς μιας γωνίας ω. (β) Να αποδείξετε ότι για οποιαδήποτε γωνία ω ισχύουν οι σχέσεις: ημ ω + συν ω = 1 και εφω = ημω συνω (συνω 0) (γ) Να συμπληρώσετε στην κόλλα σας τον παρακάτω πίνακα αντιστοιχίζοντας σε κάθε τριγωνομετρικό αριθμό της στήλης Α τον ίσο του από τη στήλη Β στήλη Α στήλη Β α. ημ(180 ο ω) 1. συνω β. συν(180 ο ω). 0 γ. εφ180 ο δ. ημ90 ο 4. ημω ε. συν0 ο δεν ορίζεται 7. - συνω 8. - ημω α β γ δ ε

12 ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1 η (α) Να παραγοντοποιήσετε τις παραστάσεις και να βρείτε το Ε.Κ.Π. τους: χ - 4χ, χ - 4, χ 3 + 8, χ + 4χ χ 4χ χ + 8 (β) Δίνονται οι παραστάσεις: Α = και Β = χ 4 χ + 4χ + 4. Να βρείτε τις τιμές του χ για τις οποίες ορίζονται οι δύο παραστάσεις και στη συνέχεια να τις απλοποιήσετε. (γ) Να αποδείξετε ότι: 3Α + Β = χ+ ΑΣΚΗΣΗ η Δίνεται το σύστημα : χ(ψ - 4) = ψ(χ - 6) χ χ - 3 ψ - - = 3 4 (α) Να αποδείξετε ότι το σύστημα μετά από πράξεις παίρνει τη μορφή : 8χ 3ψ = 30 7χ 6ψ = 15 (β) Να λύσετε το παραπάνω σύστημα, με οποιαδήποτε αλγεβρική μέθοδο θέλετε και στη συνέχεια να κάνετε επαλήθευση. ΑΣΚΗΣΗ 3 η Στο τρίγωνο ΑΒΓ είναι ΚΛ // ΒΓ, ΑΒ=10, ΑΚ=x, ΑΛ=x+3 και ΛΓ=x. (α) Να υπολογισθούν τα μήκη ΑΚ, ΑΓ και ΑΛ. (β) Αν είναι χ = 6 και ΚΛ = 8 να υπολογισθεί η πλευρά ΒΓ του τριγώνου ΑΒΓ. ΠΡΟΣΟΧΗ! ΝΑ ΓΡΑΨΕΤΕ ΕΝΑ ΘΕΜΑ ΘΕΩΡΙΑΣ ΚΑΙ ΔΥΟ ΑΣΚΗΣΕΙΣ ΕΥΧΟΜΑΣΤΕ ΕΠΙΤΥΧΙΑ!

13

14 ΓΥΜΝΑΣΙΟ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ: ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΙΑ ΘΕΜΑ 1 Ο : α) Με τη βοήθεια του διπλανού σχήματος να Μ(x,ψ) να ορίσετε τους τριγωνομετρικούς αριθμούς ρ της γωνίας ω. β) Να αποδείξετε ότι : ημω εφω = συνω γ) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας τη λέξη Σωστό ή Λάθος δίπλα στον αριθμό που αντιστοιχεί σε κάθε πρόταση: 1. συν(180 ο - ω) = - συνω.. εφ150 ο > Αν ημω = ημ60 ο τότε ω = 60 ο. 4. Αν εφω = - εφ30 ο τότε ω = 150 ο. 5. Αν ημ ω = 3 5 τότε συν ω = 5. ψ Ο ω x ΘΕΜΑ Ο : α) Τι λέγεται μονώνυμο; Να γράψετε δύο αντίθετα μονώνυμα 3 ου βαθμού ως προς x και y. β) Τι λέγεται ταυτότητα; Να συμπληρώσετε τα παρακάτω κενά ώστε οι ισότητες να εκφράζουν αξιοσημείωτες ταυτότητες: i) (α-β)(α +αβ+β ) =... ii) (α-β) 3 =... iii) (α+β)(α-β) =... γ) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας τη λέξη Σωστό ή Λάθος δίπλα στον αριθμό που αντιστοιχεί σε κάθε πρόταση: 1. Κάθε αριθμός λέγεται μηδενικό μονώνυμο.. Το γινόμενο ομοίων μονωνύμων είναι μονώνυμο όμοιο προς αυτά. 3. Το πολυώνυμο 3x-x +5-x λέγεται τριώνυμο. 4. Το πολυώνυμο 3x -5x-3x +1 είναι ου βαθμού. 5. (α+β) = α +β.

15 ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1 η : Δίνονται τα πολυώνυμα : P(x) = ( x 1) ( x )( x ) ( x 3) Q(x) = ( α β) x + ( α + 3β) x 1 α) Να αποδείξετε ότι: P(x) = 3x x 1 β) Αν P(x) = Q(x) να υπολογίσετε τα α και β. ΑΣΚΗΣΗ η : + + και Δίνεται η παράσταση : x 3 x 1 : x x A = 3x 3 x + x+ 1 x 1 α) Να λύσετε την εξίσωση: x 3x = 0 β) Να παραγοντοποιήσετε τις παραστάσεις : x γ) Να αποδείξετε ότι: ΑΣΚΗΣΗ 3 η : A = 3 3x, 3x 3, x x, x + x + 1 Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές (ΑΒ=ΑΓ) και τα τμήματα ΓΕ, ΒΔ ύψη. Α α) Να εξηγήσετε γιατί τα τρίγωνα ΑΔΒ και ΑΕΓ είναι ίσα και να συμπληρώσετε την ισότητα: ΑΒΔ =... β) Να εξηγήσετε γιατί τα τρίγωνα ΕΒΗ και ΑΕΓ είναι όμοια και να συμπληρώσετε τις ισότητες: ΕΒ ΕΗ ΒΗ = = Β Ε Η Δ Γ ΠΑΡΑΤΗΡΗΣΗ : Από τα δύο θέματα θεωρίας να απαντήσετε στο ένα και από τις τρεις ασκήσεις να λύσετε τις δύο. ΕΥΧΟΜΑΣΤΕ ΕΠΙΤΥΧΙΑ!

16 ΘΕΜΑ 1 ο ΓΥΜΝΑΣΙΟ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ : Γ ΘΕΩΡΙΑ α. Τι λέγεται βαθμός ενός πολυωνύμου ως προς μια ή περισσότερες μεταβλητές του; (Μονάδες 1) ( ) β. Να αποδείξετε την ταυτότητα: α β = α αβ + β (Μονάδες 3,3) γ. Να συμπληρώσετε στην κόλλα σας τον παρακάτω πίνακα αντιστοιχίζοντας σε κάθε παράσταση της στήλης Α το ανάπτυγμα της από τη στήλη Β. Στήλη Α Στήλη Β α. (α+β) 3 1. α +β α β γ δ 3αβ +β 3 β. (α β)(α + β). α 3 + β 3 γ. (α + β)(α αβ +β ) 3. α 3 β 3 δ. (α + β) 4. α β 5. α +αβ+β 6. α 3 + 3α β + (Μονάδες,4) ΘΕΜΑ Ο α. Να διατυπώσετε το θεώρημα του Θαλή. (Μονάδες 3) ε 1 Α Β β. Στο διπλανό σχήμα είναι ε 1 // ε // ε 3. Να γράψετε στην κόλλα σας ε O συμπληρωμένες τις ισότητες: Α Ο... Α Δ = =... Ο Γ... ΑΔ = ΔΒ ΑΕ ΕΓ ε 3 (Μονάδες,3) γ. Να γράψετε στην κόλλα σας συμπληρωμένες τις παρακάτω προτάσεις: i. Για δυο σημεία Δ, Ε των πλευρών ΑΒ, ΑΓ αντιστοίχως ενός τριγώνου ΑΒΓ ισχύει: Aν ii. τότε ΔΕ.. ΒΓ. Γ Αν από το μέσο μιας πλευράς τριγώνου φέρουμε ευθεία παράλληλη προς μία άλλη πλευρά του, τότε αυτή διέρχεται από. (Μονάδες 1,4)

17 ΑΣΚΗΣΗ 1 η Δίνεται το σύστημα: { ΑΣΚΗΣΕΙΣ x+ y x y = 8 ( x+ 1) + ( y ) = x( x ) y(3 y) 5 α. Να αποδείξετε ότι το παραπάνω σύστημα, μετά από πράξεις, { 3x+ 5y= 16 4x y= 10 παίρνει τη μορφή: (Μονάδες 3,7) x 5 Α = 1, με x x { 3x+ 5y= 16 4x y= 10 β. Να λύσετε το σύστημα : (Μονάδες 3) ΑΣΚΗΣΗ η Δίνονται οι παραστάσεις : και Β= : x x x x x 3 x 9 x 0, x 3 και x 3 3 i. Να αποδείξετε ότι: Α= (Μονάδες 1,5) x Β= x + 1 ii. Να αποδείξετε ότι: (Μονάδες,5) iii. Να βρείτε τις τιμές του x ώστε να ισχύει: Α = Β. (Μονάδες,7), με ΑΣΚΗΣΗ 3 η Δίνεται ισοσκελές τρίγωνο ΑΒΓ, με ΑΒ = ΑΓ. Πάνω στην πλευρά ΑΒ θεωρούμε σημείο Ζ και πάνω στην πλευρά ΑΓ θεωρούμε σημείο Η, έτσι ώστε να είναι ΑΖ = ΑΗ. α. Να αποδείξετε ότι : ˆ ˆ ΒΖΓ = ΓΗΒ. (Μονάδες 3,5) β. Αν ΒΖΓ ˆ = φ, ΑΗΒ ˆ = ω και ισχύει ότι συνφ = 3 5, τότε να υπολογίσετε : i. Το συνω. (Μονάδες 1) ii. To ημω και την εφω. (Μονάδες,) ΠΑΡΑΤΗΡΗΣΗ: Να απαντήσεις σε ένα από τα δύο θέματα θεωρίας και σε δύο από τις τρείς ασκήσεις. Β Ζ Α Η Γ ΕΥΧΟΜΑΣΤΕ ΕΠΙΤΥΧΙΑ

18 Γυµνάσιο Αγιάσου Τρίτη 9/5/01 Απολυτήριε εξετάσει Γ Τάξη Γυµνασίου Εξεταζόµενο µάθηµα: Μαθηµατικά Εξεταστική περίοδο : Μάιο Ιούνιο 01 Θεωρία 1 η Θεωρία Α. Αφού γράψετε ποια ισότητα ονοµάζεται ταυτότητα στην συνέχεια να αποδείξετε την ταυτότητα (α β) = α αβ + β. Β. Να χαρακτηρίσετε τι προτάσει που ακολουθούν γράφοντα στην κόλλα σα δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθο αν η πρόταση είναι λάθο. α) Ο βαθµό ενό σταθερού πολυωνύµου είναι 0. β) Το ΕΚΠ των πολυωνύµων x 1 και x+1 είναι το x 1. γ) Ισχύει (α 1)(α + 1)=α + 1. δ) Για να πολλαπλασιάσουµε δύο µονώνυµα κάνουµε αναγωγή οµοίων όρων. ε) Το πολυώνυµο Ρ(x)=3x x+x 3 1 είναι ου βαθµού. Θεωρία η Α. Να διατυπώσετε δύο από τα τρία κριτήρια ισότητα τριγώνων. Β. Να δικαιολογήσετε γιατί τα παρακάτω τρίγωνα είναι όµοια και στην συνέχεια να γράψετε του λόγου οµοιότητα που προκύπτουν από την παραπάνω οµοιότητα. Να απαντήσετε µόνο σε ένα από τα δύο θέµατα θεωρία

19 Ασκήσεις Άσκηση 1 η x+ 5 = y+ 1 ίνεται το σύστηµα:. y 1 = x 4 3 α) Να δείξετε ότι είναι ισοδύναµο µε το σύστηµα: β) Να λυθεί (µε όποια µέθοδο θέλετε). x y= 3. y 3x = 11 Άσκηση η Το διπλανό τρίγωνο ΑΒΓ είναι ισοσκελέ µε ΑΒ=ΑΓ. Φέρνουµε τα ύψη Β και ΓΕ του τριγώνου, τα οποία τέµνονται στο σηµείο Μ. α) Να δείξετε ότι Β =ΓΕ β) Να αποδείξετε ότι η ΑΜ διχοτοµεί την γωνία Α του τριγώνου ΑΒΓ. (δηλ. η ΑΜ είναι διχοτόµο τη γωνία Α) Άσκηση 3 η ίνεται η παράσταση: Α=(3x + 1) + (x 3) (3x 1)(3x+1). α) Να αποδείξετε ότι Α = x² β) Να λύσετε την εξίσωση Α=1x. γ) Να απλοποιήσετε την παράσταση A 1. x 1 Να λύσετε µόνο δύο από τι τρεί ασκήσει Καλή Επιτυχία Ο ΙΕΥΘΥΝΤΗΣ Ο ΕΙΣΗΓΗΤΗΣ ΑΛΕΝΤΑΣ ΓΡΗΓΟΡΙΟΣ ΜΠΑΜΠΟΥΡΑΣ ΓΕΩΡΓΙΟΣ

Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ

Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 007 Σχ. Έτος 006-007 ΤΑΞΗ Γ ΘΕΩΡΙΑ 1. α.) Να συμπληρώσετε τις ταυτότητες : 3 ( α + β ) = ( β ) = α 3 3 3 β.) Να αποδείξετε

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι γνωστή ως θεώρημα

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ ΥΜΝΑΣΙΟ - 010 90 Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Θέματα απολυτήριων εξετάσεων Γ Γυμνασίου σχολικού έτους 013-014 ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ

ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ 1. Να αναπτύξετε τις ταυτότητες: α. (α+8) β. (-) γ. (γ+k) δ. (+γ) ε. (3k-5λ) ζ. (5/κ - 4/λ) η. (/3-χ/4) θ. (χ - 3/χ) ι. (χ/3+3ψ/4) κ. (3χ+χ/) λ. (χ+8)(χ-8)

Διαβάστε περισσότερα

2) Να λύσετε την παρακάτω εξίσωση και να εξετάσετε αν έχει τις ίδιες λύσεις με την παραπάνω εξίσωση.

2) Να λύσετε την παρακάτω εξίσωση και να εξετάσετε αν έχει τις ίδιες λύσεις με την παραπάνω εξίσωση. ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ ΙΟΥΝΙΟΥ ΤΑΞΗ: Γ Α. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Επιλέγετε και απαντάτε σε ένα (1) από τα δύο θέματα θεωρίας ΘΕΜΑ 1 ο Α) Να αποδείξετε την ταυτότητα ( α+β) = α + αβ + β. Β)

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2008 ΘΕΩΡΙΑ

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2008 ΘΕΩΡΙΑ ΖΔΗΔEΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΑΝ. ΜΑΚΕΔΟΝΙΑΣ - ΘΡΑΚΗΣ Δ/ΝΣΗ Δ/ΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΡΟΔΟΠΗΣ 4 Ο ΓΥΜΝΑΣΙΟ ΚΟΜΟΤΗΝΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ

Διαβάστε περισσότερα

Τα παρακάτω θέματα αποτελούν ασκήσεις προαγωγικών εξετάσεων της Γ Γυμνασίου σε κάποια σχολεία της Ελλάδας.

Τα παρακάτω θέματα αποτελούν ασκήσεις προαγωγικών εξετάσεων της Γ Γυμνασίου σε κάποια σχολεία της Ελλάδας. Τα παρακάτω θέματα αποτελούν ασκήσεις προαγωγικών εξετάσεων της Γ Γυμνασίου σε κάποια σχολεία της Ελλάδας. 1.Δίνεται η παράσταση: A x 1 x x 1x 1 α)να αποδείξετε ότι Ax 11 β)να λύσετε την εξίσωση A 1x γ)να

Διαβάστε περισσότερα

ΘΕΜΑ 1 Ο Α. i) Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν σωστές (Σ) ή λάθος (Λ)

ΘΕΜΑ 1 Ο Α. i) Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν σωστές (Σ) ή λάθος (Λ) 1 Ο Α. i) Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν σωστές (Σ) ή λάθος (Λ) α) Για την εξίσωση 6x 3x 1 0 ισχύει α = 3, β = -6, γ = 1 β) Η εξίσωση 3 0 δέχεται σαν λύση τον αριθμό. x 3x 3 ιι) Να συμπληρώσετε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΙΕΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΙΕΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦ 1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΙΕΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦ. Δ/ΝΣΗ Α/ΘΜΙΑΣ & Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠΑ/ΣΗΣ ΔΩΔ/ΣΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ: ΜΑΙΟΥ-ΙΟΥΝΙΟΥ

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο

Μαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο 1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ 1. Τι ονομάζουμε μονώνυμο;. Τι ονομάζουμε ρητή αλγεβρική παράσταση; 3. Ποιες τιμές δεν μπορούν να πάρουν οι μεταβλητές

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Άλγεβρα ( ) = ( 1)( 3 2) ( 1) 2. i) Να αποδείξετε ότι ( ) ii) Να υπολογίσετε την αριθμητική τιμή του ( ) iii) Να λύσετε την εξίσωση P( x ) = 0

Άλγεβρα ( ) = ( 1)( 3 2) ( 1) 2. i) Να αποδείξετε ότι ( ) ii) Να υπολογίσετε την αριθμητική τιμή του ( ) iii) Να λύσετε την εξίσωση P( x ) = 0 ΤΑΞΗ Γ ΓΥΜΝΑΣΙΟΥ MAΘΗΜΑΤΙΚΑ 016 ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Άλγεβρα 1) Δίνεται το πολυώνυμο ( ) = ( + 1)( 1) ( + 1)( 5 + 7) P x x x x x i) Να αποδείξετε ότι ( ) P x = 7x x 8 Να υπολογίσετε την αριθμητική τιμή

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ Θέμα 1 ο α ) Ποια παράσταση καλείται μονώνυμο; Δώστε παράδειγμα. β ) Πότε δυο μονώνυμα είναι όμοια ; Δώστε παράδειγμα όμοιων μονωνύμων. γ ) Για ποιες τιμές των μεταβλητών

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ Προσομοιωμένο διαγώνισμα απολυτήριων εξετάσεων στα Μαθηματικά της Γ Γυμνασίου ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 01-01 ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να συμπληρώσετε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Α. Άλγεβρα 1. Τι ονομάζεται ακέραια αλγεβρική παράσταση και τι είναι μονώνυμο; Ποιες από τις παρακάτω παραστάσεις είναι μονώνυμα; 3xa,, 5, x 3, 5 x a (σελ.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2008 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2008 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ Πειραματικό υμνάσιο Αγίων Αναργύρων Τάξη Μάιος 8 ΘΕΜΑΤΑ ΡΑΠΤΩΝ ΠΡΟΑΩΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 8 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ : ΘΕΩΡΙΑ Έστω η εξίσωση δευτέρου βαθμού : a με a β γ (). α) Ποια παράσταση λέγεται

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ αγγέλης Α Νικολακάκης Μαθηματικός ΛΙΑ ΛΟΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 0, δηλαδή το σύνολο των μονάδων των απολυτήριων

Διαβάστε περισσότερα

Τριγωνομετρικοί αριθμοί παραπληρωματικών γωνιών

Τριγωνομετρικοί αριθμοί παραπληρωματικών γωνιών ΜΕΡΟΣ Β. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΠΑΡΑΠΛΗΡΩΜΑΤΙΚΩΝ ΓΩΝΙΩΝ 491. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΠΑΡΑΠΛΗΡΩΜΑΤΙΚΩΝ ΓΩΝΙΩΝ Τριγωνομετρικοί αριθμοί παραπληρωματικών γωνιών 8 Μ(x,y) 6 ρ 4 180-ω -10-5 5 Ο ω - -4 Οι παραπληρωματικές

Διαβάστε περισσότερα

Γυμνάσιο Μαθηματικά Τάξη Γ

Γυμνάσιο Μαθηματικά Τάξη Γ 1 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στα Μαθηματικά Τάξη Γ ΘΕΜΑ 1 0 Η εξίσωση αχ + βχ +γ = 0 είναι βαθμού εξίσωση και λύνεται χρησιμοποιώντας τους τύπους Δ =.. χ 1 =. χ =.. Η διακρίνουσα Δ της εξίσωσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 Ο Γ ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 Ο Γ ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 Ο 1.2-1.6 Γ ΓΥΜΝΑΣΙΟΥ 1. Σε τρίγωνο ΑΒΓ φέρνουμε τη διάμεσο ΑΔ και μια παράλληλη προς την ΑΔ, η οποία τέμνει τη ΒΓ στο Ε, την ΑΓ στο Ζ και την ΑΒ στο Η. Να αποδείξετε ότι

Διαβάστε περισσότερα

( α β )( α β ) 3. ηµ ω ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 1 + = Α. Στο διπλανό σχήµα δίνεται σηµείο Μ(x,y) τέτοιο ώστε να είναι

( α β )( α β ) 3. ηµ ω ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 1 + = Α. Στο διπλανό σχήµα δίνεται σηµείο Μ(x,y) τέτοιο ώστε να είναι ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ 1 ΘΕΜΑ 1 Ο Α. Για κάθε πραγµατικό αριθµό α και β να δείξετε ότι ( α + β α + αβ + β Β. Να συµπληρώσετε τα αναπτύγµατα των ταυτοτήτων ( α β ( α β 3 ( α β ( α β + ΘΕΜΑ Ο Α. Στο διπλανό σχήµα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΤΑΞΗ Γ 119. Θέμα 1 ο. Θέμα 2 ο. Άσκηση 1 η. Άσκηση 2 η. Άσκηση 3 η

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΤΑΞΗ Γ 119. Θέμα 1 ο. Θέμα 2 ο. Άσκηση 1 η. Άσκηση 2 η. Άσκηση 3 η ΥΜΝΑΣΙΟ ΤΑΞΗ ΥΜΝΑΣΙΟ ΤΑΞΗ 119 α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται. Δώστε ένα παράδειγμα μονωνύμου. β. Να αποδείξετε την ταυτότητα: ( ) α + β = α + αβ + β γ. Να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο 1 ο ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α1.1 Ισότητα τριγώνων Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ=ΑΓ. Προεκτείνουμε τη βάση ΒΓ κατά ίσα τμήματα

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

Θέματα Εξετάσεων ΕΠΑ.Λ. Ορισμένα από τα θέματα συντάχθηκαν πριν την αναδιάταξη της διδακτέας ύλης μεταξύ Α και Β Λυκείου

Θέματα Εξετάσεων ΕΠΑ.Λ. Ορισμένα από τα θέματα συντάχθηκαν πριν την αναδιάταξη της διδακτέας ύλης μεταξύ Α και Β Λυκείου Θέματα Εξετάσεων ΕΠΑ.Λ. Ορισμένα από τα θέματα συντάχθηκαν πριν την αναδιάταξη της διδακτέας ύλης μεταξύ Α και Β Λυκείου Συλλογή-Επιμέλεια: Γ. Κοντογιάννης, Μαθηματικός ΜPhil Α Λυκείου Άλγεβρα Θέματα Εξετάσεων

Διαβάστε περισσότερα

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση

Διαβάστε περισσότερα

Μαθημαηικά Γ Γυμμαζίου

Μαθημαηικά Γ Γυμμαζίου Μαθημαηικά Γ Γυμμαζίου Μεθοδική Επαμάληψη Σηέλιος Μιχαήλογλου 017-18 www.askisopolis.gr Η επαμάληψη ηωμ Μαθημαηικώμ βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις www.askisopolis.gr 1.1. Πράξεις

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα

Ασκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα Ασκήσεις Επανάληψης Τάξη Δ 016-017 Εν. 1: Διανύσματα 1. Να ονομάσετε τα στοιχεία ενός διανύσματος.. Δίνεται το παραλληλόγραμμο ΑΒΓΔ, όπως φαίνεται στο σχήμα. Να χαρακτηρίσετε ΣΩΣΤΟ ή ΛΑΘΟΣ τις πιο κάτω

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 014-015 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΘΕΩΡΙΑ :

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΘΕΩΡΙΑ : ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Θέμα 1 ον ΘΕΩΡΙΑ : α) Τι καλείται αριθμητική παράσταση και τι καλείται αλγεβρική παράσταση ; β) Να συμπληρώσετε

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Αλγεβρικές παραστάσεις.

Κεφάλαιο 1 ο. Αλγεβρικές παραστάσεις. Μαθηματικά Γ Γυμνασίου Κεφάλαιο 1 ο. Αλγεβρικές παραστάσεις. Μέρος Α Θεωρία. 1. Πως προσθέτουμε δύο πραγματικούς αριθμούς; 2. Πως πολλαπλασιάζουμε δύο πραγματικούς αριθμούς; 3. Ποιες είναι οι ιδιότητες

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο :.2 -.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Β Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Β Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Β Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Δώστε ένα παράδειγμα σχετικό με την έννοια της μεταβλητής 2. Να αναφέρετε

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ - Πράξεις ρητών

ΑΣΚΗΣΕΙΣ - Πράξεις ρητών 1 ΑΣΚΗΣΕΙΣ - Πράξεις ρητών 1. Να υπολογιστούν τα παρακάτω αθροίσματα: i. 5 7 ii. 8 6 iii. 6 4 iv. 9 5 v. 15 15 vi. 17 0 vii. 0 15 viii. 13 14 ix. 12 16 2. Να υπολογιστούν τα παρακάτω αθροίσματα: i. 6,35

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν ΑΔ ΒΓ, ΕΔ ΑΒ τότε το τρίγωνο

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΑΡΧΙΑ ΠΕΛΛΑΣ ΣΧΟΛΙΚΟ ΕΤΟΣ : 2005-2006 ΔΙΕΥΘΥΝΣΗ Δ/ΒΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 1 Ο ΓΥΜΝΑΣΙΟ ΑΡΙΔΑΙΑΣ ΑΡΙΔΑΙΑ : 15 / 6 / 2006 ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ (επιλέξτε ένα

Διαβάστε περισσότερα

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ...

β = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ... Αµυραδάκη 0, Νίκαια (104903576) ΝΟΕΜΒΡΙΟΣ 01 ΘΕΜΑ 1 ο i) Αν Α( x 1, y 1 ) και Β(x, y ) δυο σηµεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγµένες του µέσου Μ του ΑΒ, να αποδείξετε ότι : x 1 + x x

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 0/6/0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β) ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΕΝΑ ΑΠΟ ΤΑ ΔΥΟ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΚΑΙ ΔΥΟ ΑΠΟ ΤΙΣ ΤΡΕΙΣ ΑΣΚΗΣΕΙΣ ΟΙ ΑΣΚΗΣΕΙΣ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΙΝΑΙ

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΥ Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΛΙΚΥ ΒΙΒΛΙΥ Σχολικό βιβλίο: Απαντήσεις Λύσεις Κεφάλαιο ο: Συστήματα Γραμμικά συστήματα Α ΜΑΔΑΣ Έχουμε: = 4 i = 6 = + = + = = Άρα, η λύση του συστήματος

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΙΟΥΝΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΙΟΥΝΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΙΟΥΝΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΙΑ ΘΕΜΑ 1 ο : α) Τι λέγετε μονώνυμο και τι πολυώνυμο ; β) Πότε δύο ή περισσότερα μονώνυμα λέγονται όμοια ; Τι είναι το άθροισμα όμοιων

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Α. ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ 1. Στο τρίγωνο ΑΒΓ είναι ΑΒ = 8cm και η γωνία Β = 64 0. Να υπολογίσετε το μήκος της πλευράς ΑΓ. 2. Στο ορθογώνιο τρίγωνο ΑΒΓ είναι ΑΒ = 9cm και εφγ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων των προαγωγικών εξετάσεων

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ 4) Να κάνετε τις πράξεις και μετά να βρείτε την αριθμητική τιμή του

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ 4) Να κάνετε τις πράξεις και μετά να βρείτε την αριθμητική τιμή του ΕΠΑΝΑΗΠΤΙΚΕ ΑΚΗΕΙ Γ ΓΥΜΝΑΙΟΥ ΕΝΟΤΗΤΑ : Αξιοσημείωτες Ταυτότητες 1. Να βρείτε τα αναπτύγματα: 1) 3 ) 3) 5 3 3 5 3 5) 5 4) 3 5 6) ( α 3 + 3β ) 7) (7 + )(7 ) 8) (β 4 + 1)(β + 1)(β + 1)(β 1). Να κάνετε τις

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις για το Πάσχα.

Επαναληπτικές ασκήσεις για το Πάσχα. Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για το Πάσχα. Άλγεβρα. Κεφάλαιο 1 ο. 1. Να υπολογιστούν οι παρακάτω αριθμητικές παραστάσεις : 1 7 1 7 1 1 ) - 1 4 : ) -1 1 : 1 4 10 9 6. Να λυθούν οι εξισώσεις:

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2013-2014 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 16 / 6 / 2014 Αριθμητικά :.... ΒΑΘΜΟΣ:... ΤΑΞΗ: Γ Ολογράφως:......

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

Γεωμετρία. Κεφ 1 ο : Γεωμετρια.

Γεωμετρία. Κεφ 1 ο : Γεωμετρια. Μαθηματικά Γ Γυμνασίου Γεωμετρία. Κεφ 1 ο : Γεωμετρια. Μέρος Α Θεωρία. 1. Με τι είναι ίσο το άθροισμα των γωνιών ενός τριγώνου; 2. Ποιο τρίγωνο λέγετε οξυγώνιο αμβλυγώνιο ορθογώνιο. 3. Ποιο τρίγωνο λέγετε

Διαβάστε περισσότερα

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii) ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.

Διαβάστε περισσότερα

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2017

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2017 ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 016-017 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 017 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ: 100 0 ΗΜΕΡΟΜΗΝΙΑ: 06 / 06 / 017 ΒΑΘΜΟΣ:... Αριθμητικά :.... ΤΑΞΗ: Γ Ολογράφως:......

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ Προαγωγικές εξετάσεις στα Μαθηματικά της Α Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 214-215 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑ 1 ο Α. ΘΕΩΡΙΑ Α. Να γράψετε με πιο σύντομο τρόπο τις επόμενες

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήµα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν Α ΒΓ, Ε ΑΒ τότε το τρίγωνο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΑΡΧΙΑ ΠΕΛΛΑΣ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΔΙΕΥΘΥΝΣΗ Δ/ΒΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΓΥΜΝΑΣΙΟ ΕΞΑΠΛΑΤΑΝΟΥ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΑΡΧΙΑ ΠΕΛΛΑΣ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΔΙΕΥΘΥΝΣΗ Δ/ΒΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΓΥΜΝΑΣΙΟ ΕΞΑΠΛΑΤΑΝΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΑΡΧΙΑ ΠΕΛΛΑΣ ΣΧΟΛΙΚΟ ΕΤΟΣ : 2008-2009 ΔΙΕΥΘΥΝΣΗ Δ/ΒΜΙΑΣ ΕΚΠ/ΣΗΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΓΥΜΝΑΣΙΟ ΕΞΑΠΛΑΤΑΝΟΥ Ονοματεπώνυμο μαθητή/τριας Εξεταζόμενο Μάθημα : ΜΑΘΗΜΑΤΙΚΑ Τάξη : Β

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΥΜΝΣΙΟΥ ΜΙ ΠΡΟΤΟΙΜΣΙ Ι ΤΙΣ ΞΤΣΙΣ - Σελίδα από 6 - . Η ΔΟΜΗ ΤΩΝ ΘΜΤΩΝ ΤΩΝ ΞΤΣΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις. µείς θα πρέπει

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ

Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2014 2015 Πρότυπο Πειραματικό Γυμνάσιο Αγίων Αναργύρων Τάξη Β 2 ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ A ΕΝΟΤΗΤΑ : Πράξεις Ρητών αριθμών 1. Να χαρακτηρίσετε τις παρακάτω

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

Διαβάστε περισσότερα

Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αµυραδάκη 0, Νίκαια (10-4903576) ΝΟΕΜΒΡΙΟΣ 011 ΘΕΜΑ 1 Ο Να αποδείξετε ότι, σε ένα ορθογώνιο τρίγωνο, το τετράγωνο µιας κάθετης πλευράς του ισούται µε το γινόµενο της υποτείνουσας επί την προβολή της στην

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (29) -2- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος

Διαβάστε περισσότερα

Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών

Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών Μαθηματικά Β Γυμνασίου Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών 1. Να χρησιμοποιήσετε μεταβλητές για να εκφράσετε με μια αλγεβρική παράσταση τις παρακάτω φράσεις: a. Η διαφορά δυο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ

ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ ΓΕΩΜΕΤΡΙΑ Α ΚΕΦΑΛΑΙΟ 3 3.1-3.6 Τρίγωνα Πλευρές ΑΒ ή ΒΑ ή γ ΑΓ ή ΓΑ ή β ΒΓ ή ΓΒ ή α Γωνίες ˆ ή ˆ ή ˆ ˆ ή ˆ ή ˆ ˆ ή ˆ ή ˆ μ α δ α υ α Διάμεσος ΑΜ ή μ α Διχοτόμος ΑΔ ή δ α Ύψος

Διαβάστε περισσότερα

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.

Διαβάστε περισσότερα

Αναλογίες. ΘΕΜΑ 2ο. (Μονάδες 5) β) Να υπολογίσετε το ΓΒ συναρτήσει του κ. (Μονάδες 5) ΑΒ από το σημείο Γ ; (Μονάδες 15)

Αναλογίες. ΘΕΜΑ 2ο. (Μονάδες 5) β) Να υπολογίσετε το ΓΒ συναρτήσει του κ. (Μονάδες 5) ΑΒ από το σημείο Γ ; (Μονάδες 15) Αναλογίες 2_20863. Στο παρακάτω σχήμα είναι 12 και 8. α) Να υπολογίσετε τους λόγους και. (Μονάδες 6) β) Να υπολογίσετε το ΑΓ συναρτήσει του κ. (Μονάδες 5) γ) Να υπολογίσετε τον λόγο. Σε τι λόγο λ διαιρείται

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο Άσκηση 1 (2_18984) Θεωρούμε δύο τρίγωνα ΑΒΓ και ΔΕΖ. (α) Να εξετάσετε σε ποιες από τις παρακάτω περιπτώσεις τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια και να δικαιολογήσετε

Διαβάστε περισσότερα

2 Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2010 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

2 Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2010 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 00 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΙΑ Α. Να αντιστοιχίσετε κάθε στοιχείο της πρώτης στήλης με το αντίστοιχο στοιχείο

Διαβάστε περισσότερα

1. 3 3cm 2. E( ) 24 3cm 3. E( ) 12 3cm ) 1. 8cm 2. 18cm 3. E 56 3 cm 4. E 20 3 cm. 6cm, cm, 3 6 cm, E cm )

1. 3 3cm 2. E( ) 24 3cm 3. E( ) 12 3cm ) 1. 8cm 2. 18cm 3. E 56 3 cm 4. E 20 3 cm. 6cm, cm, 3 6 cm, E cm ) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( 1) 3( ) 5( 3). 4 ( 3) 6 3. 3(4 ) 5( 1) 1 3(1 ) 3( ) 4 3 4. 1 5. 4 6 3 1 1 4( ) 1 1 3 6. 1 7. 1 3 6 3 4 3 3 1

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα