ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ-ΦΥΣΙΚΗ Ι,

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ-ΦΥΣΙΚΗ Ι, 2013-14"

Transcript

1 ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Με τη λέξη σφάλμα στις θετικές επιστήμες αναφερόμαστε στην αβεβαιότητα που υπάρχει στην εύρεση του αποτελέσματος που προκύπτει από μια μέτρηση. Το να εκτιμήσουμε και να βρούμε τα σφάλμα στις μετρήσεις είναι ένα από τα βασικότερα προβλήματα ενός πειράματος. Μια μέτρηση χαρακτηρίζεται από επαναληψιμότητα, αξιοπιστία και ακρίβεια. Όταν πραγματοποιούμε πολλές μετρήσεις ενός μεγέθους ενός αντικείμενου (πχ το μήκος μιας ράβδου), θα παρατηρήσουμε ότι παρότι παίρνουμε όλες τις δυνατές προφυλάξεις δεν βρίσκουμε πάντα την ίδια τιμή, οπότε καταλαβαίνουμε ότι η αναζήτηση της αληθινής τιμή ενός μεγέθους δεν έχει νόημα, γιατί δεν είναι δυνατό να προσδιορίσει πειραματικά. Προσπαθούμε λοιπόν να βρούμε μια τιμή με τη μεγαλύτερη πιθανότητα να πλησιάζει την αληθινή τιμή καθώς και το σφάλμα στις μετρήσεις μας, που θα μας βοηθήσει στην εκτίμηση της ακρίβειας στις μετρήσεις μας Είδη σφαλμάτων Συστηματικά σφάλματα: πρόκειται για σφάλματα που τείνουν να μετατοπίσουν όλες τις μετρήσεις με συστηματικό τρόπο έτσι ώστε η μέση τιμή να είναι μετατοπισμένη προς μία διεύθυνση πχ εάν μια ζυγαριά να έχει μια μετατόπιση του μηδενός, η μέτρηση κάθε βάρους θα έχει σταθερό συστηματικό σφάλμα. Τα συστηματικά σφάλματα μπορεί να οφείλονται στην κακή βαθμονόμηση των οργάνων, στη λανθασμένη χρήση των οργάνων ή στην παράβλεψη ορισμένων φαινομένων ή σε εξωτερικά αίτια που μπορεί να αλλάξουν τα αποτελέσματα του πειράματος (υγρασία, πίεση, θερμοκρασία κ.λπ.), καθώς κα σε σφάλματα Θεωρητικής Φύσης (Μη ακριβές Θεωρητικό Μοντέλο, Προσέγγιση ) Τα συστηματικά σφάλματα επενεργούν πάντοτε κατά την ίδια κατεύθυνση μετατοπίζοντας «συστηματικά» την καταγραφόμενη τιμή του υπό μέτρηση μεγέθους είτε μόνιμα σε μεγαλύτερη, είτε μόνιμα σε μικρότερη ένδειξη. Σε ένα σωστό πείραμα τα μεγάλα συστηματικά σφάλματα περιορίζονται με σύγκριση των τιμών με διαφορετικές μεθόδους. Χαρακτηριστικό παράδειγμα διάπραξης συστηματικού σφάλματος είναι το εξής: Υποθέστε ότι επιχειρούμε τη μέτρηση μάζας με μία «ελαττωματική» ζυγαριά, που δε μετρά «πραγματικά» κιλά, αλλά είναι έτσι κατασκευασμένη ώστε να καταγράφει το 98% κάθε «πραγματικού» κιλού. Μπορούμε να εκτιμήσουμε ποσοτικά την τάξη μεγέθους ενός συστηματικού σφάλματος, παρά μόνο αν συγκρίνουμε το μετρητικό όργανο που χρησιμοποιούμε με κάποιο άλλο που θεωρείται πρότυπο. Αυτός είναι ο μόνος τρόπος να ποσοτικοποίηση τα συστηματικά σφάλματα. Τα τυχαία σφάλματα πρόκειται για σφάλματα που δείχνουν τις διακυμάνσεις που έχουν οι μετρήσεις ενός επαναλαμβανόμενου πειράματος που γίνεται κάτω από τις ίδιες φαινομενικά συνθήκες και τα οποία οδηγούν στην κατανομή των αποτελεσμάτων γύρω από μία μέση τιμή. Τα τυχαία σφάλματα σχετίζονται με την ακρίβεια μιας μέτρησης 1

2 Μπορεί να οφείλονται στην έλλειψη ευαίσθητης απόκρισης του οργάνου ή στον παρατηρητή (σφάλματα ανάγνωσης), στον εξωτερικό «θόρυβο», ή σε στατιστικές διαδικασίες (όπως είναι η ρίψη ενός ζαριού). Τα τυχαία σφάλματα είναι αναπόφευκτα και εμφανίζονται ακόμα και όταν έχουν απαλειφτεί τα συστηματικά. Επιπλέον μπορούν να ληφθούν και να εκτιμηθούν υπόψη μόνο στατιστικά. Σύμφωνα με τη στατιστική θεωρία εάν ένα φαινόμενο είναι πράγματι τυχαίο τότε η οριακή κατανομή που θα προκύψει (μετά από άπειρες προσπάθειες) θα είναι μια κανονική κατανομή ή κατανομή Gauss. Η κατανομή Gauss είναι ίσως η πιο κοινή κατανομή στη θεωρία των πιθανοτήτων και περιγράφεται μαθηματικά από τις παρακάτω καμπύλες (Σχήμα 1) Υπάρχουν φαινόμενα που ακολουθούν την κανονική κατανομή όπως οι ταχύτητες μορίων σε ιδανικά αέρια, φαινόμενα που προσεγγίζονται από την κανονική κατανομή, όπως διάφορες καταστάσεις, όπως εξηγείται από το κεντρικό οριακό θεώρημα, δηλαδή, όταν το άθροισμα ενός ικανοποιητικά μεγάλου αριθμού ανεξάρτητων και ισόνομων τυχαίων μεταβλητών και φαινόμενα των οποίων κατανομές που μοντελοποιούνται ως κανονικές, όπως ορισμένα φυσιολογικά μεγέθη, όπως η πίεση του αίματος των ενηλίκων ή τα υπολογιστικά λάθη σε φυσικά πειράματα, τα όποια μοντελοποιούνται συχνά μέσω της κανονικής κατανομής. Χαρακτηριστικά μεγέθη στον υπολογισμό των τυχαίων σφαλμάτων Όταν μετράμε μία φυσική ποσότητα x, την οποία μετράμε πολλές φορές, έστω Ν, υπολογίσουμε αρχικά τη «μέση τιμή» της σειράς των Ν μετρήσεων, ως εξής: xk x1 x2... xk... xn k 1 x (1) N N όπου x i οι μετρούμενες τιμές της φυσικής ποσότητας x (τα αποτελέσματα των μετρήσεων μας), Ν το πλήθος των μετρήσεων και x ο τρόπος συμβολισμού της μέσης τιμής της ποσότητας x. N 2

3 Το σφάλμα που προκύπτει από τις επαναλαμβανόμενες μετρήσεις μιας φυσικής ποσότητας x, μπορεί να εκφραστεί με το λεγόμενο τυπικό σφάλμα της μέσης τιμής, το οποίο συνδέεται με την τυπική απόκλιση της κανονικής κατανομής και υπολογίζεται από την σχέση: (2) To σχετικό σφάλμα της μέσης τιμής ως ποσοστό επί τοις εκατό δηλαδή (3), που συνήθως αναφέρεται ως Οι δύο εκφράσεις των σφαλμάτων (σχέσεις 2, 3 & 4) είναι πολύ συγγενείς και αλληλένδετες μεταξύ τους. Από τη στιγμή που γνωρίζουμε το ένα απ αυτά, μπορούμε να υπολογίσουμε και το άλλο (αρκεί να ξέρουμε τη μέση τιμή) και σε τελική ανάλυση νομιμοποιούμαστε να ισχυριστούμε ότι το σχετικό σφάλμα δεν είναι τίποτε άλλο παρ εκτός η αναφορά του απόλυτου σφάλματος υπό τη μορφή ποσοστού. Επειδή ακριβώς το σχετικό σφάλμα (σχέση 3 η 4) εκφράζεται ως ποσοστό, δηλαδή λόγος δύο ομοειδών μεγεθών, γι αυτό είναι και αδιάστατο (είναι όπως λέμε ένας καθαρός αριθμός ή δεν έχει μονάδες μέτρησης). Παράδειγμα Σε ένα πείραμα καταμέτρησης μιας μάζας (gr) που προσπίπτουν σε μια ζυγαριά, έγιναν εννέα μετρήσεις και τα αποτελέσματα καταγράφονται στον παρακάτω πίνακα. Έτσι Πινάκας 1 (4) A/A x i (x i - x ) Σ

4 i 9 i 1 9 x x 100 gr και Άρα τελικά το μέγεθος της μάζας που μετρήθηκε είναι x =(100 4,56 ) gr με σχετικό σφάλμα % = (4,56/100)% =4,56% Σημαντικά ψηφία Όλα τα όργανα έχουν όριο στις μετρητικές τους δυνατότητες. Έχουν πάντα μια ελάχιστη ποσότητα μέχρι την οποία μπορούν να μετρήσουν. Σημαντικά ψηφία μιας μέτρησης θεωρούνται όλα τα ψηφία που μπορούμε να διαβάσουμε με απόλυτη βεβαιότητα συν ένα και μόνο ένα, το τελευταίο, που είναι από εκτίμηση και επομένως είναι αβέβαιο. Η αξιοπιστία μιας μέτρησης συνδέεται με τον αριθμό των σημαντικών ψηφίων που περιέχει. Μια μέτρηση ενός μεγέθους είναι περισσότερο αξιόπιστη από μια άλλη εάν είναι πιο λεπτομερής, δηλαδή αν περιέχει περισσότερα σημαντικά ψηφία. Για παράδειγμα έστω ότι μετρήθηκε το πάχος ενός γυαλιού με ένα όργανο και βρέθηκε να είναι 3.2 mm. Το ίδιο γυαλί μετρήθηκε με ένα άλλο όργανο, το οποίο έδωσε αποτέλεσμα mm. Στο παράδειγμά μας η μέτρηση με το δεύτερο όργανο έχει 4 σημαντικά ψηφία και είναι περισσότερο αξιόπιστη από τη μέτρηση με το πρώτο όργανο που έχει 2 σημαντικά ψηφία. Στο σχήμα 2 φαίνονται δύο χάρακες υποδιαιρεμένοι με διαφορετικό τρόπο. Το αποτέλεσμα με τον κάτω χάρακα είναι 2.5 δεδομένου ότι ο δείκτης είναι μεταξύ 2 και 3. Το 2 το γνωρίζουμε με απόλυτη βεβαιότητα ενώ το 5 προέρχεται από υποκειμενική εκτίμηση, άρα φέρει αβεβαιότητα. Δεν έχει νόημα επομένως να πούμε ότι η μέτρηση είναι 2,56 αφού ακόμα και το 5 είναι αβέβαιο. Με τον χάρακα αυτό μπορούμε να μετρήσουμε διαφοροποιήσεις του μεγέθους που βρίσκονται μεταξύ 2.0 και 3.0. Η μέτρηση αυτή έχει 2 σημαντικά ψηφία. Σχήμα 2 Το αποτέλεσμα με τον πάνω χάρακα είναι περισσότερο λεπτομερές γιατί έχει περισσότερες υποδιαιρέσεις. Δεδομένου ότι ο δείκτης είναι μεταξύ 2.5 και 2.6, το 4

5 αποτέλεσμα εκτιμάται ότι είναι Το 2.5 το γνωρίζουμε με απόλυτη βεβαιότητα ενώ το 5 προέρχεται από υποκειμενική εκτίμηση, άρα φέρει αβεβαιότητα. Με τον χάρακα αυτό μπορούμε να μετρήσουμε διαφοροποιήσεις του μεγέθους που βρίσκονται μεταξύ 2.50 και 2.60, κάτι που δεν μπορούμε να κάνουμε με τον κάτω χάρακα. Στην περίπτωση αυτή η μέτρηση έχει 3 σημαντικά ψηφία. Κανόνες καθορισμού σημαντικών ψηφίων Δεκαδικοί αριθμοί : Όταν στο αποτέλεσμα μιας μέτρησης υπάρχει υποδιαστολή, ως σημαντικά ψηφία (συντομογραφία σψ) μετράνε όλα τα ψηφία από το πρώτο μη μηδενικό και δεξιά πχ 3.2 (2 σψ), 3.20 (3 σψ), 0.3 (1 σψ), 0.03 (1 σψ), (2 σψ). Ακέραιοι: Όταν δεν υπάρχει υποδιαστολή ως σημαντικά μετράνε όλα τα ψηφία από το πρώτο αριστερά ψηφίο μέχρι το τελευταίο μη μηδενικό. π.χ 16 (2 σψ), (2 σψ), (4 σψ) Οι δυνάμεις του 10 δεν αξιολογούνται ως σημαντικά ψηφία. 4,1*10-4 (2 σψ), (2 σψ). Επειδή πολλές φορές ένα μέγεθος υπολογίζεται έμμεσα (για παράδειγμα η ταχύτητα ενός κινητού) χρησιμοποιώντας μετρήσεις άλλων μεγεθών (την απόσταση X που διάνυσε το κινητό και το χρόνο t) που λήφθηκαν με διαφορετική αξιοπιστία, πρέπει να έχουμε υπόψη μας ότι το αποτέλεσμα που προκύπτει από πρόσθεση αφαίρεση πολλαπλασιασμό ή διαίρεση αριθμών, περιορίζεται πάντα από τον αριθμό με τη μικρότερη αξιοπιστία. Όταν προσθέτουμε η αφαιρούμε δυο αριθμούς κρατάμε στο αποτέλεσμα όσα ΔΕΚΑΔΙΚΑ έχει ο αριθμός με τα λιγότερα δεκαδικά. Παράδειγμα: = ~ 90.4 Το 90.4 καθορίζεται από το γεγονός ότι το μικρότερο αριθμό δεκαδικών ψηφίων από τους δύο όρους έχει το 1.1. Όταν πολλαπλασιάζουμε η διαιρούμε δυο αριθμούς κρατάμε στο αποτέλεσμα όσα ΣΗΜΑΝΤΙΚΑ ψηφία έχει ο αριθμός με τα λιγότερα σημαντικά ψηφία. Παράδειγμα: (3.80) x (3.5037) = ~ To καθορίζεται από το γεγονός ότι το μικρότερο αριθμό σημαντικών ψηφίων από τους δύο όρους έχει το 3.80 Πολλές φορές πρέπει να κάνουμε στρογγυλοποίηση του αποτελέσματός μας. Ο κανόνας που ακολουθούμε είναι: 5

6 Εάν το τελευταίο ψηφίο που θα κρατήσουμε ακολουθείται από ψηφίο που είναι μικρότερο από 5, μένει ως έχει. Εάν το ψηφίο που ακολουθεί είναι μεγαλύτερο από 5 τότε το ψηφίο που θα κρατήσουμε αυξάνεται κατά μια μονάδα. Για την περίπτωση που το τελευταίο ψηφίο που θα κρατήσουμε ακολουθείται από το ψηφίο 5, στο εργαστήριο Φυσικής συμφωνούμε τα εξής: εάν το ψηφίο είναι άρτιο μένει ως έχει (π.χ το 7.45 γίνεται 7.4) ενώ αν είναι περιττό αυξάνεται κατά μια μονάδα (π.χ το 7.75 γίνεται 7.8). Στο τελικό αποτέλεσμα δηλαδή στη μέση τιμή και το σφάλμα της, χρησιμοποιούμε στρογγυλοποιημένες τιμές απορρίπτουμε δηλαδή τα ψηφία που δεν είναι σημαντικά ακολουθώντας τους παρακάτω κανόνες στρογγυλοποίησης.. Στην τελική απεικόνιση x οποία μετράμε 10 φορές της μέτρησης μιας φυσικής ποσότητας x, την Αρχίζουμε την στρογγυλοποίηση από το σφάλμα Κατά τη στρογγυλοποίηση του σφάλματος κρατάμε ένα σημαντικό ψηφίο. Στρογγυλοποιούμε τη μέση τιμή κρατώντας τόσα δεκαδικά ψηφία όσα είναι και του σφάλματος. Έτσι στο παράδειγμα που είχαμε στον πίνακα 1, έχουμε x =(100 4,56) gr ~ (100 5) gr Άλλα παραδείγματα 10 μετρήσεων: Πίνακας 2 Μέση τιμή Σφάλμα Τελική απεικόνιση 454,89 g 0,5 g (454,9 ± 0,5)g sec 29 sec (37550 ± 30)sec (37,55 ± 0,03) 10 3 sec 9,785 m/s 2 0,092 m/s 2 (9,78 ± 0,09)m/ s 2 ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Η χρήση γραφικών παραστάσεων για την απεικόνιση μετρήσεων ενός πειράματος είναι χρήσιμη, γιατί μας βοηθά να βγάλουμε εύκολα συμπεράσματα σχετικά με την εξέλιξη των μετρήσεών μας και γενικά του φαινομένου που εξετάζουμε. Επιπλέον οι γραφικές παραστάσεις μας βοηθούν στην κατανόηση των πληροφοριών που έχουμε συλλέξει, διότι μας επιτρέπουν να κάνουμε εύκολα συγκρίσεις και μας δείχνουν γρήγορα και καθαρά πόσο καλά οι μετρήσεις μας συμφωνούν με κάποια πρόβλεψη. Το σημαντικότερο αποτέλεσμα από μια γραφική παράσταση είναι το ότι μπορεί ανιχνεύει την ύπαρξη -και στη συνέχεια να διερευνά τη φύση- ενός συσχετισμού 6

7 ανάμεσα σε μετρούμενες ποσότητες. Και αυτό δε συμβαίνει μόνο στη Φυσική, αλλά και σε άλλα πεδία (π.χ. οικονομία, πολιτική). Για να χαράξουμε μια γραφική παράσταση που αφορά την αναπαράσταση ενός μετρουμένου μεγέθους y ως συνάρτηση ενός μεγέθους x, y=f (x), που είναι καταχωρημένα στον κατάλληλο πίνακα δεδομένων, ακολουθούμε τα παρακάτω βήματα: 1. Κάνουμε χρήση μιας σελίδας από ένα χιλιοστομετρικό χαρτί (χαρτί millimetré) 2. Στο πάνω μέρος του χιλιοστομετρικου χαρτιού γράφουμε τον τίτλο της γραφικής παράστασης. 2. Επιλέγουμε το μέγεθος που θα παρασταθεί στον κατακόρυφο και οριζόντιο άξονα αντίστοιχα. Για παράδειγμα εάν θέλουμε να παραστήσουμε γραφικά την απόσταση ως συνάρτηση του χρόνου, δλδ Απόσταση x = f(t), στον κατακόρυφο άξονα θα αντιστοιχηθούν οι τιμές της Απόστασης και στον οριζόντιο οι τιμές του χρόνου (Σχήμα 3). 3. Ονομάζουμε τους άξονες και γράφουμε τις μονάδες μέτρησης κάθε μεγέθους (Για παράδειγμα: Απόσταση x (m), Χρόνος t (sec)) 4. Επιλέγουμε την ελάχιστη και τη μέγιστη τιμή για τον κάθε άξονα ώστε ο κάθε άξονας, να καλύπτει το σύνολο των δεδομένων. 5. Επιλέγουμε το «βήμα», δηλαδή την αντιστοιχία του μεγέθους μας ανά cm του άξονα. (Για παράδειγμα: 2 m/cm για τον κατακόρυφο άξονα και 5 sec/cm στον οριζόντιο.) Αυτό γίνεται με βάση το εύρος των τιμών κάθε μεγέθους που βρίσκεται στον πίνακα δεδομένων. Γράφουμε τις υποδιαιρέσεις μας χωρίς να αναγράφουμε πάνω στους άξονες τις μετρήσεις μας. Βαθμονομούμε τους άξονες όπου χρησιμοποιούμε ισοκατανεμημένη βαθμονόμηση. Θυμηθείτε: ΔΕΝ αναγράφουμε πειραματικές τιμές στους άξονες. 6. Τοποθετούμε τα σημεία στο γράφημα χρησιμοποιώντας το σύμβολο. 7. Χαράζουμε την καμπύλη μας συμμετρικά μέσα από τα πειραματικά σημεία. Για τη σχεδίαση αρχικά χρησιμοποιούμε ένα καλοξυμένο μολύβι για να χαράξουμε βοηθητικές γραμμές, να εντοπίσουμε τη θέση των "πειραματικών" σημείων και να κάνουμε τυχόν διορθώσεις στο σχέδιο. Τη γραφική παράσταση την κόβουμε με ψαλίδι και την κολλάμε μόνιμα με σελλοτέιπ (όχι μόνο στις γωνίες, αλλά γύρω-γύρω) ή με κάποια κόλλα καλής ποιότητας στο κατάλληλο μέρος της εργασίας. Οι θέσεις των πειραματικών σημείων πρέπει να φαίνονται ξεκάθαρα στο διάγραμμα. Ποτέ δεν τα παριστάνουμε με μικρές κουκκίδες, που μπορεί να χαθούν κάτω από τις γραμμές και τις καμπύλες. Για τον σκοπό αυτό τα σημεία αυτά περικλείονται σε ένα μικρό κύκλο η με σχημα Χ. Αν στο ίδιο διάγραμμα υπάρχουν περισσότερες καμπύλες, χρησιμοποιούμε και άλλα σύμβολα περίκλεισης των πειραματικών δεδομένων (π.χ. μικρά τετράγωνα, τρίγωνα, ρόμβοι) έτσι, ώστε να ξεχωρίζουν μεταξύ τους οι διαφορετικές ομάδες πειραματικών δεδομένων. 7

8 x(m) ΕΡΓΑΣΤΗΡΙΟ-ΦΥΣΙΚΗ Ι, Παράδειγμα Πίνακας 3 x(m) t(sec) 1,5 2,5 2,2 3 3,4 5,5 4,5 7 6,2 9,8 x=f(t) y = 1,5991x - 0, t(sec) Κλίση ευθείας Όταν η ανεξάρτητη Χ και εξηρτημένη Υ μεταβλητή σε μια γραφική παράσταση συνδέονται με γραμμική σχέση, Υ= α Χ +β, χαράζουμε την καλύτερη ευθεία που περνά μέσα από τα πειραματικά σημεία, με στόχο να υπολογίσουμε τις «καλύτερες τιμές» για τις παραμέτρους α και β. (Όπου α η κλίση της ευθείας και β το σημείο τομής της με τον κατακόρυφο άξονα). Στα πλαίσια του παρόντος εργαστηρίου, χαράζουμε την καλύτερη ευθεία «με το μάτι», με τρόπο ώστε τα πειραματικά σημεία να απέχουν κατά μέσο όρο το ίδιο εκατέρωθεν της ευθείας. Η ευθεία δείχνει την μέση συμπεριφορά των μετρήσεων και δεν είναι απαραίτητο να διέρχεται οπωσδήποτε πάνω από όλα τα πειραματικά σημεία. Η χάραξη της ευθείας που προσαρμόζεται με τον καλύτερο δυνατό τρόπο στα πειραματικά δεδομένα μπορεί να γίνει με υπολογιστικό τρόπο με την μέθοδο ελαχίστων τετραγώνων ή τη μέθοδο Gauss. Ο ρυθμός μεταβολής των μεγεθών που συνδέονται γραμμικά είναι σταθερός και υπολογίζεται από την κλίση της ευθείας. Στο προηγούμενο παράδειγμα η σχέση που συνδέει την απόσταση με το χρόνο είναι x=u*t,δηλαδή έχει τη μορφή Y = α Χ+β. Η κλίση της ευθείας δίδεται από τον λόγο ΑΒ/ΒΓ =Δx/Δt =1,60 m/s, με βάση τη βαθμονόμηση που έχουν οι άξονες (Σχήμα 4). Δεδομένου ότι στους άξονες έχουμε αντιστοιχίσει φυσικά μεγέθη, η κλίση εκφράζει την αντίσταση, μία ποσότητα η οποία 8

9 έχει μονάδες. Οι μονάδες της κλίσης προκύπτουν από το λόγο των μονάδων του κατακόρυφου προς τον οριζόντιο άξονα (m/sec) που αντιστοιχούν στο παράδειγμά μας στη ταχύτητα. Ο σταθερός όρος β αναφέρεται σε αρχική απόσταση x 0 =- 0,13 m. Υποσημείωση!!! Πιθανώς θα θυμάστε από τα λυκειακά μαθηματικά σας ότι στην γραφική παράσταση μιας συνάρτησης της μορφής y=αx+β, η κλίση α (συντελεστής διεύθυνσης) της ευθείας ισούται με τον τριγωνομετρικό αριθμό «εφαπτομένη» της γωνίας που σχηματίζει η εν λόγω ευθεία με τη διεύθυνση του οριζόντιου άξονα. Χαρακτηριστικά, στοιχηματίζουμε μάλιστα ότι θα σας έχει εντυπωθεί μία ισότητα του τύπου: κλίση α = εφω. Αυτό είναι απολύτως λάθος να το ισχυριστούμε για ένα διάγραμμα μεταξύ φυσικών μεγεθών! Οι λόγοι είναι δύο: a. Η κλίση σε μια γραφική παράσταση μεταξύ δυο φυσικών μεγεθών έχει πάντα τις διαστάσεις κάποιου φυσικού μεγέθους. Για παράδειγμα, η κλίση της ευθείας του σχήματος 4 έχει διαστάσεις ταχύτητας. Ο τριγωνομετρικός αριθμός «εφαπτομένη» όμως -έτσι όπως έχει οριστεί ως ο λόγος της απέναντι κάθετης προς την προσκείμενη κάθετη πλευρά σ ένα ορθογώνιο τρίγωνο - είναι αδιάστατος («καθαρός» αριθμός). b. Επιπλέον, τα μεγέθη «κλίση» κι «εφαπτομένη της γωνίας» δε συμπίπτουν ούτε καν αριθμητικά, στη γενική περίπτωση! Γιατί; Μα πολύ απλά επειδή το σύστημα αναφοράς μας σε μια γραφική παράσταση μεταξύ φυσικών μεγεθών δεν είναι «ορθοκανονικό». Αυτό σημαίνει ότι οι μονάδες μέτρησης στον κατακόρυφο και στον οριζόντιο άξονα κατά κανόνα δεν είναι ίδιες μεταξύ τους. Ο χωρισμός κλίμακας στους δύο άξονες υπαγορεύεται από τις μετρήσεις μας κι αυτές με τη σειρά τους, στη συντριπτική πλειονότητα των περιπτώσεων, μπορεί να διαφέρουν αρκετές τάξεις μεγέθους μεταξύ τους. Αν κάποιος θέλει να υπολογίσει την εφαπτομένη της εν λόγω γωνίας, δεν έχει παρά να πάρει ένα χάρακα, να μετρήσει το μήκος των ευθυγράμμων τμημάτων Δx και Δt (βλέπε Σχημα 4) σε εκατοστά και όχι σε μονάδες των αξόνων και να βρει το λόγο τους. Όμως αυτό δεν έχει καμία απολύτως σχέση με το πείραμά μας! Μέθοδος ελάχιστων Τετραγώνων Υπάρχουν μερικές περιπτώσεις όμως, που για την χάραξη της καμπύλης δεν χρειάζεται να προσπαθήσουμε να το κάνουμε με το μάτι επιδιώκοντας να περάσουμε κοντά στα σημεία και μέσα από τα σφάλματα, αλλά μπορούμε να χαράξουμε την καλύτερη δυνατή καμπύλη χρησιμοποιώντας μαθηματικές μεθόδους*. Εάν είναι γνωστό ότι η μετρούμενη ποσότητα y (εξαρτημένη μεταβλητή) είναι γραμμική συνάρτηση του x (ανεξάρτητη μεταβλητή), είναι δηλαδή Υ= α x + β οι πιο πιθανές τιμές του α (κλίση) και του β (τομή με τον άξονα Υ) μπορούν να εκτιμηθούν από μια ομάδα n ζευγών πειραματικών δεδομένων (x 1, y 1 ), (x 2, y 2 )..., (x n, y n ), στα οποία οι τιμές y είναι επηρεασμένες με ένα τυχαίο σφάλμα κανονικής κατανομής (π.χ. θόρυβος, πειραματική αβεβαιότητα). Ο υπολογισμός αυτός είναι γνωστός ως "ευθεία ελαχίστων τετραγώνων". Με τη μέθοδο των ελαχίστων τετραγώνων μπορούμε εύκολα να προσαρμόσουμε μια ευθεία (ή γενικότερα ένα πολυώνυμο m βαθμού) στα πειραματικά δεδομένα (x 1, y 1 ), (x 2, y 2 )..., (x n, y n ), έτσι, ώστε να ελαχιστοποιηθεί το "άθροισμα των τετραγώνων των αποκλίσεων" (sum of squared residuals) S: 9

10 S = Σ[Υ(x i ) - y i ]² Λαμβάνοντας τις μερικές παραγώγους του S ως προς τα α, β και εξισώνοντας αυτές με το μηδέν, προκύπτει το ακόλουθο σύστημα δυο εξισώσεων με δυο αγνώστους, τους α και β: Σ(y i ) = α Σ(x i ) + Ν β Σ(x i y i ) = α Σ(x i ²) + β Σ(x i ) όπου Ν είναι το πληθος των μετρήσεων. Με την επίλυση του συστήματος προκύπτουν οι γνωστές εξισώσεις που χρησιμοποιούνται στη γραμμική προσαρμογή ελάχιστων τετραγώνων: α = { Ν Σ(x i y i ) - Σ(x i ) Σ(y i ) } / { N Σ(x i ²) - Σ(x i ) Σ(x i ) } β = { Σ(y i ) Σ(x i ²) - Σ(x i ) Σ(y i x) } / { N Σ(x i ²) - Σ(x i ) Σ(x i ) } με N πληθος μετρήσεων, δα και δβ σφάλματα δα =σ y [Σ(x i ²) /{ N Σ(x i ²) - Σ(x i ) Σ(x i ) }] δα =σ y [N /{ N Σ(x i ²) - Σ(x i ) Σ(x i ) }] σ y = [Σ(y i -α-βx i )^2]/(Ν-2) Βιβλιογραφία 1. «Σφάλματα Μετρήσεων» από το βιβλίο, Εργαστηριακές Ασκήσεις Φυσικής Ομάδα Φυσικών ΤΕΙ Πειραιά, (Μακεδονικές Εκδόσεις). 2. «Θεωρία Σφαλμάτων» από το βιβλίο Εργαστηριακές Ασκήσεις Φυσικής Ι Ομάδα Φυσικών ΤΕΙ Αθήνας, (Μακεδονικές Εκδόσεις). 3. «Γραφικές Παραστάσεις» από το βιβλίο, Εργαστηριακές Ασκήσεις Φυσικής ΙΙ Ομάδα Φυσικών ΤΕΙ ΠΕΙΡΑΙΑ, (Mακεδονικές Εκδόσεις). 4. «Οδηγίες Εργαστηριακών Ασκήσεων» από το βιβλίο, Εργαστηριακές Ασκήσεις Φυσικής Ι Ομάδα Φυσικών ΤΕΙ Αθήνας, (Mακεδονικές Εκδόσεις). 5. Young H., University Physics, Addison-Wesley (Εκδόσεις Παπαζήση 1990). 6. (Ι. Σιανούδης) 7. (Μ. Πηλακούτα) 8. (Μ. Πηλακούτα) (Χριστοπούλου) (Ε. Χατζηκρανιώτης, 2003) 10

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις 1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή

Διαβάστε περισσότερα

Μετρήσεις Αβεβαιότητες Μετρήσεων

Μετρήσεις Αβεβαιότητες Μετρήσεων Μετρήσεις Αβεβαιότητες Μετρήσεων 1. Σκοπός Σκοπός του μαθήματος είναι να εξοικειωθούν οι σπουδαστές με τις βασικές έννοιες που σχετίζονται με τη θεωρία Σφαλμάτων, όπως το σφάλμα, την αβεβαιότητα της μέτρησης

Διαβάστε περισσότερα

Η αβεβαιότητα στη μέτρηση.

Η αβεβαιότητα στη μέτρηση. Η αβεβαιότητα στη μέτρηση. 1. Εισαγωγή. Κάθε μέτρηση, όσο προσεκτικά και αν έχει γίνει, περικλείει κάποια αβεβαιότητα. Η ανάλυση των σφαλμάτων είναι η μελέτη και ο υπολογισμός αυτής της αβεβαιότητας στη

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων ΘΕ ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες που αφορούν την

Διαβάστε περισσότερα

Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ

Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ Παρουσίαση οργάνωσης των Εργαστηρίων Φυσικής Ι Ακαδ. Έτους 2013-14 http://www.physicslab.tuc.gr physicslab@isc.tuc.gr

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β Γυμνασίου ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Βασικές έννοιες: Θέση - μετατόπιση - χρόνος - χρονικό διάστημα - ταχύτητα

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς του ελατηρίου

Υπολογισμός της σταθεράς του ελατηρίου Άσκηση 5 Υπολογισμός της σταθεράς του ελατηρίου Σκοπός: Ο υπολογισμός της σταθεράς ενός ελατηρίου. Αυτό θα γίνει με δύο τρόπους: 1. Από την κλίση μιας πειραματικής καμπύλης 2. Από τον τύπο της περιόδου

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα.

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα. Σημαντικά ψηφία Η ταχύτητα διάδοσης του φωτός είναι 2.99792458 x 10 8 m/s. Η τιμή αυτή είναι δοσμένη σε 9 σημαντικά ψηφία. Τα 9 σημαντικά ψηφία είναι 299792458. Η τιμή αυτή μπορεί να δοθεί και με 5 σημαντικά

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

ΒΑΣΙΚΟΙ ΚΑΝΟΝΕΣ ΣΧΕ ΙΑΣΗΣ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ

ΒΑΣΙΚΟΙ ΚΑΝΟΝΕΣ ΣΧΕ ΙΑΣΗΣ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΒΑΣΙΚΟΙ ΚΑΝΟΝΕΣ ΣΧΕ ΙΑΣΗΣ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Σε πολλές από τις εργαστηριακές ασκήσεις θα ζητηθεί στην έκθεσή σας να περιλάβετε µια ή περισσότερες γραφικές παραστάσεις. Αυτές οι γραφικές παραστάσεις µπορεί

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε διαστάσεις στερεών σωμάτων χρησιμοποιώντας όργανα ακριβείας και θα υπολογίσουμε την πυκνότητα τους. Θα κάνουμε εφαρμογή της θεωρίας

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων ΘΕ1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες όπως : σφάλµατα, στατιστική

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ ΝΟΕΜΒΡΙΟΥ 5 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο A. Να δώσετε τον ορισμό της συνέχειας μιας συνάρτησης στο πεδίο ορισμού της. ( Μονάδες)

Διαβάστε περισσότερα

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου 1 ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙΟΤΗΤΑ ΠΡΑΞΕΩΝ 1.1 Προτεραιότητα Πράξεων Η προτεραιότητα των πράξεων είναι: (Από τις πράξεις που πρέπει να γίνονται πρώτες,

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm

ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm ΑΓΓΕΛΙΚΗ ΛΕΒΑΝΤΗ ΖΑΝΝΕΙΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΤΜΗΜΑ Α 2 10 ΙΑΝΟΥΑΡΙΟΥ 2010 ΣΕΝΑΡΙΟ : Πρόκειται να μετατρέψουμε τα εμπρός ελατήρια μιας μοτοσυκλέτας

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013

11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013 11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΙΚΗ ΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Σάββατο 8 ΕΚΕΜΒΡΙΟΥ 2012 ΕΚΦΕ ΑΧΑΪΑΣ (ΑΙΓΙΟΥ) (Διάρκεια εξέτασης 60 min) Μαθητές: Σχολική Μονάδα

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) 3 1 0 011 ΘΕΡΙΝΑ ΤΜΗΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) ΘΕΜΑ 1 Α. Έστω η συνάρτηση F()=f()+g(). Aν οι συναρτήσεις f, g είναι παραγωγίσιμες, να αποδείξετε ότι F

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)= ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΘΕΣΗ ΤΡΟΧΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΙ ΔΙΑΣΤΗΜΑ. Παρατηρώντας τις εικόνες προσπαθήστε να ορίσετε τις θέσεις των διαφόρων ηρώων των κινουμένων σχεδίων. Ερώτηση: Πότε ένα σώμα

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 04 Α Λυκείου 9 Μαρτίου 04 ΟΔΗΓΙΕΣ:. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε Τετράδιο το οποίο θα σας δοθεί και το οποίο θα παραδώσετε

Διαβάστε περισσότερα

!n k. Ιστογράμματα. n k. x = N = x k

!n k. Ιστογράμματα. n k. x = N = x k Ιστογράμματα Τα ιστογράμματα αποτελούν ένα εύχρηστο οπτικό τρόπο για να εξάγουμε την κατανομή που ακολουθούν μια σειρά μετρήσεων ενός μεγέθους αλλά και παράλληλα δίνουν τη δυνατότητα για εύκολη στατιστική

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε

Διαβάστε περισσότερα

ΔΙΔΑΣΚΟΝΤΕΣ Ε. Σπανάκης, Δ. Θεοδωρίδης, Δ. Στεφανάκης, Γ.Φανουργάκης & ΜΤΠΧ

ΔΙΔΑΣΚΟΝΤΕΣ Ε. Σπανάκης, Δ. Θεοδωρίδης, Δ. Στεφανάκης, Γ.Φανουργάκης & ΜΤΠΧ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΕΤΥ203 3 Ώρες εργαστηρίου την ημέρα Προαπαιτούμενo: Φυσική Ι (ΕΤΥ101) Βαθμός Μαθήματος: 0.1*(Μ.Ο. Βαθμών προφορικής εξέτασης) + 0.5*(Μ.Ο. Βαθμών Αναφορών) + 0.4*(Βαθμός Τελικής εξέτασης

Διαβάστε περισσότερα

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ ΟΜΑΔΑ ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ 1)... 2)... 3)... ΗΜΕΡΟΜΗΝΙΑ : Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ Με το πείραµα αυτό θα προσδιορίσουµε: Σκοπός

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Μέθοδοι επίλυσης γραμμικού συστήματος χ Γραφική επίλυση Σχεδιάζουμε τις ευθείες που αντιπροσωπεύουν οι εξισώσεις του συστήματος. Αν: - οι δύο ευθείες τέμνονται, τότε το σύστημα έχει

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

sin ϕ = cos ϕ = tan ϕ =

sin ϕ = cos ϕ = tan ϕ = Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ )

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η σύγκριση των πειραματικών

Διαβάστε περισσότερα

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εισαγωγή στην Κανονική Κατανομή Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Ένα πρόβλημα Πρόβλημα: Ένας μαθητής είχε επίδοση στο τεστ Μαθηματικών 18 και στο τεστ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 +

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 + Ερωτήσεις ανάπτυξης. ** Έστω η συνάρτηση f () = - 3 +. α) Να βρείτε τις τιμές f (), f (0), f (-3), f () β) Να βρείτε τα σημεία τομής της C f με τους άξονες γ) Να βρείτε τις τιμές f (t), f (t), f ( + h),,

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012 1 Τοπικός Μαθητικός Διαγωνισμός 11η Ευρωπαϊκή Ολυμπιάδα Επιστημών EUSO 2013 11Η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΕΚΦΕ Τρικάλων Πειραματική Δοκιμασία στη Φυσική Τοπικός Μαθητικός Διαγωνισμός Τρίκαλα,

Διαβάστε περισσότερα

Σφάλματα και στατιστική επεξεργασία πειραματικών μετρήσεων. Γραφικές παραστάσεις, κλίση καμπύλης, μέθοδος των ελαχίστων τετραγώνων.

Σφάλματα και στατιστική επεξεργασία πειραματικών μετρήσεων. Γραφικές παραστάσεις, κλίση καμπύλης, μέθοδος των ελαχίστων τετραγώνων. ΘΕ Σφάλματα και στατιστική επεξεργασία πειραματικών μετρήσεων. Γραφικές παραστάσεις, κλίση καμπύλης, μέθοδος των ελαχίστων τετραγώνων. ΑΝΤΙ ΠΡΟΛΟΓΟΥ ΟΙ ΠΕΙΡΑΜΑΤΙΚΕΣ ΜΕΤΡΗΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ Ή ΥΠΑΡΧΟΥΝ ΠΟΛΛΟΙ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ ΦΥΣ 114 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΜΗΧΑΝΙΚΗ Φθινόπωρο 2014 Διδάσκων/Υπεύθυνος: Φώτης Πτωχός e-mail: fotis@ucy.ac.cy Τηλ: 22.89.2837 Γραφείο: B235 web-page: http://www2.ucy.ac.cy/~fotis/phy114/phy114.htm ΦΥΣ

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 3 Νόμος του Ohm, Κυκλώματα σε Σειρά και Παράλληλα Λευκωσία, 2010 Εργαστήριο 3 Νόμος

Διαβάστε περισσότερα

Εισαγωγή. Αντικείμενο της Στατιστικής

Εισαγωγή. Αντικείμενο της Στατιστικής Εισαγωγή Οι κυνικοί λένε σαρκαστικά πως μπορείς να αποδείξεις οτιδήποτε με τη Στατιστική. Άλλοι πάλι υποστηρίζουν πως δεν μπορείς να κάνεις τίποτα με τη Στατιστική. Κάποιοι θυμίζουν ότι η Στατιστική είναι

Διαβάστε περισσότερα

A Λυκείου 9 Μαρτίου 2013

A Λυκείου 9 Μαρτίου 2013 Θεωρητικό Μέρος A Λυκείου 9 Μαρτίου 2013 Θέμα 1 ο Στις ερωτήσεις A1, A2, A3, A4 και Β μία μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ Οδηγός Συγγραφής Εργαστηριακών Αναφορών Εξώφυλλο Στην πρώτη σελίδα περιέχονται: το όνομα του εργαστηρίου, ο τίτλος της εργαστηριακής άσκησης, το ονοματεπώνυμο του σπουδαστή

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0 6 Ασύμπτωτες Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορίζουμε μια ευθεία ( ε ) ως ασύμπτωτη της γραφικής παράστασης της αν η απόσταση ενός μεταβλητού σημείου Ρ της γραφικής παράστασης από την ευθεία ( ε ) γίνεται

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α Πότε λέμε ότι η συνάρτηση είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της; Α Αν οι συναρτήσεις και g είναι παραγωγίσιμες στο

Διαβάστε περισσότερα

Εισαγωγή στις Ηλεκτρικές Μετρήσεις

Εισαγωγή στις Ηλεκτρικές Μετρήσεις Εισαγωγή στις Ηλεκτρικές Μετρήσεις Σφάλματα Μετρήσεων Συμβατικά όργανα μετρήσεων Χαρακτηριστικά μεγέθη οργάνων Παλμογράφος Λέκτορας Σοφία Τσεκερίδου 1 Σφάλματα μετρήσεων Επιτυχημένη μέτρηση Σωστή εκλογή

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ II ΕΤΥ20

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ II ΕΤΥ20 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ II ΕΤΥ20 204 3 Ώρες εργαστηρίου την εβδομάδα Προαπαιτούμενo: Φυσική ΙΙ (ΕΤΥ102) Βαθμός Μαθήματος: 0.1*( 1*(Μ.Ο. Βαθμών προφορικής εξέτασης) + 0.5*(Μ.Ο. Βαθμών Αναφορών) + Βαθμός Τελικής

Διαβάστε περισσότερα

Κεφάλαιο 1 Εισαγωγή, Μετρήσεις, Προσεγγίσεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 1 Εισαγωγή, Μετρήσεις, Προσεγγίσεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 1 Εισαγωγή, Μετρήσεις, Προσεγγίσεις Η Φύση της Επιστήµης Ενότητες Κεφαλαίου 1 Μοντέλα Θεωρίες και Νόµοι Μετρήσεις και αβεβαιότητα (σφάλµατα); Σηµαντικά ψηφία Μονάδες, Πρότυπα, και το Διεθνές Σύστηµα

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.1 Ευθύγραμμη κίνηση 1. Να αναφέρετε ποια από τα σώματα που φαίνονται στην εικόνα κινούνται. Α. Ως προς τη Γη B. Ως προς το αυτοκίνητο. Α. Ως προς τη Γη κινούνται το αυτοκίνητο, το αεροπλάνο και ο γλάρος.

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f()) =c f (), ΙR. B.α. Πότε δύο ενδεχόμενα

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές, αυτό το βιβλίο αποτελεί ένα σημαντικό βοήθημα για την Άλγεβρα της Β Λυκείου, που είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.

ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός. 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται

Διαβάστε περισσότερα