Výpočet. grafický návrh

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Výpočet. grafický návrh"

Transcript

1 Výočet aaetov a afcký návh ostuu vtýčena odobných bodov echodníc a kužncových obúkov

2 Píoha. Výočet aaetov a afcký návh ostuu vtýčena... Vtýčene kajnej echodnce č. Vstuné údaje: = 00 ; = 8 ; o = 8 S ohľado na dĺžku echodnce < 0 a na veľkosť ooeu obúka > 00 bude echodnca ozdeená na án očet úsekov (u) s dĺžka o katší ako. očet úsekov 8 u 87 úsek 8 dĺžka úseku o dotčnc d 4 u Budú vtýčené bod ZP (bod č. ) SP () a KP = ZO () etódou otoonánch súadníc vtýčených z bodu ZP (ob...). Ob... Schéa vtýčena kajnej echodnce č. je ová súadnca vtčovaného bodu (= vzdaenosť avouhého eetu bodu od ZP ) je ová súadnca vtčovaného bodu... o je vzdaenosť vtčovaného bodu od ZP v os koľaje. o 8 kde bod : o Zadane : Zožený kužncový obúk...

3 Píoha. Výočet aaetov a afcký návh ostuu vtýčena... bod : o bod : o Tab. č... Paaete vtýčena kajnej echodnce č. bod vtčovace vk číso označene [] [] ZP SP KP = ZO Vtýčene obúka č. Vstuné údaje: = 00 ; d o = 84 o Ob... Schéa vtýčena obúka č. S ohľado na dĺžku obúka d o = 84 a na veľkosť jeho ooeu > 00 bude obúk ozdeený na án očet úsekov (u) s dĺžka Δd o cca 0. Zadane : Zožený kužncový obúk...

4 Píoha. Výočet aaetov a afcký návh ostuu vtýčena... očet úsekov do 84 u o úsek Budú vtýčené bod KP = ZO (bod č. ) 4 SO () a KO = ZP (7) etódou seoánch súadníc vtýčených z bodu KP = ZO (ob...). δ je oán uho edz dvo susedný vtčovaný bod obúka č. ' u o Δd o je dĺžka čast obúka edz dvo susedný vtčovaný bod obúka č. d o. ac s je dĺžka tetv edz dvo susedný vtčovaný bod obúka č. s. sn 00.sn φ je oán uho e vtýčene bodu obúka č. z KP = ZO (bod č. ) bod : 00 bod 4: bod : bod : bod 7: Tab. č... Paaete vtýčena obúka č. bod vtčovace vk číso označene s [] φ [ ] Δd o KP = ZO SO KO = ZP Zadane : Zožený kužncový obúk...

5 Píoha. Výočet aaetov a afcký návh ostuu vtýčena... Vtýčene edzľahej echodnce Vstuné údaje: = 00 ; = 0 ; = 00 ; = 77 ; o = 77 ; γ = S ohľado na dĺžku echodnce > 0 a na veľkosť ooeov obúkov > 00 a < 00 bude echodnca ozdeená na án očet úsekov (u) s dĺžka o katší ako. očet úsekov 77 u úsekov dĺžka úseku o dotčnc 77 d 8 u Budú vtýčené bod KO = ZP (bod č. 7) 8 9 SP (0) a KP = ZO () etódou otoonánch súadníc vtýčených od edzľahej dotčnce T (ob...). Ob... Schéa vtýčena edzľahej echodnce je ová súadnca vtčovaného bodu (= vzdaenosť avouhého eetu bodu od KO = ZP ) c je ová súadnca kužncového obúka s väčší ooeo ( ) c je ová súadnca vtčovaného bodu c... 4 Zadane : Zožený kužncový obúk...

6 Píoha. Výočet aaetov a afcký návh ostuu vtýčena... bod 7: 7 0 c7 7 7 c bod 8: c c bod 9: 7 9 c c bod 0: c c bod : Zadane : Zožený kužncový obúk...

7 Píoha. Výočet aaetov a afcký návh ostuu vtýčena... c c bod : 47 c c bod : 77 c c Tab. č... Paaete vtýčena edzľahej echodnce bod vtčovace vk číso označene [] [] c []... [] 7 KO = ZP SO KP = ZO k k k Zadane : Zožený kužncový obúk...

8 Píoha. Výočet aaetov a afcký návh ostuu vtýčena... Vtýčene obúka č. Vstuné údaje: = 0 ; d o = 87 S ohľado na dĺžku obúka d o = 87 a na veľkosť jeho ooeu < 00 bude obúk ozdeený na án očet úsekov (u) s dĺžka Δd o cca 0. očet úsekov d 87 u o 94 úsek 0 0 Budú vtýčené bod KP = ZO (bod č. ) SO (4) a KO = ZP () etódou seoánch súadníc vtýčených z bodu KO = ZP (ob...4). Ob...4 Schéa vtýčena obúka č. δ je oán uho edz dvo susedný vtčovaný bod obúka č. ' u o Δd o je dĺžka čast obúka edz dvo susedný vtčovaný bod obúka č. d o. ac s je dĺžka tetv edz dvo susedný vtčovaný bod obúka č. s sn 0.sn φ je oán uho e vtýčene bodu obúka č. z KO = ZP (bod č. ) bod : 00 Zadane : Zožený kužncový obúk... 7

9 Píoha. Výočet aaetov a afcký návh ostuu vtýčena... bod 4: bod : Tab. č...4 Paaete vtýčena obúka č. bod vtčovace vk číso označene s [] φ [ ] Δd o KP = ZO SO KO = ZP Vtýčene kajnej echodnce č. Vstuné údaje: = 0 ; = ; o = 44 S ohľado na dĺžku echodnce > 0 a na veľkosť ooeu obúka < 00 bude echodnca ozdeená na án očet úsekov (u) s dĺžka o katší ako. očet úsekov u 7 dĺžka úseku o dotčnc 8 úsekov d 70 u 8 Budú vtýčené bod KO = ZP (bod č. ) 7 8 SP (9) 0 a KP () etódou otoonách súadníc vtýčených z bodu KP (ob...). je ová súadnca vtčovaného bodu (= vzdaenost avouhého eetu bodu od KP ) je ová súadnca vtčovaného bodu... o je vzdaenosť vtčovaného bodu od KP v os koľaje. o kde Zadane : Zožený kužncový obúk...

10 Píoha. Výočet aaetov a afcký návh ostuu vtýčena... bod : o bod : 70 Ob... Schéa vtýčena kajnej echodnce č o Zadane : Zožený kužncový obúk... 9

11 Píoha. Výočet aaetov a afcký návh ostuu vtýčena... bod : o bod 0: o bod 9: o bod 8: o bod 7: o Zadane : Zožený kužncový obúk...

12 Píoha. Výočet aaetov a afcký návh ostuu vtýčena... bod : o bod : o Tab. č... Paaete vtýčena kajnej echodnce č. bod vtčovace vk číso označene [] [] KO = ZP SP KP o Zadane : Zožený kužncový obúk...

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Ι. ΑΡΒΑΝΙΤΙ ΗΣ jarvan@physcs.auth.gr 2310 99 8213 ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ ΠΟΛΩΣΗ ΣΥΜΒΟΛΗ ΠΕΡΙΘΛΑΣΗ

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

C. Kontaktný fasádny zatepľovací systém

C. Kontaktný fasádny zatepľovací systém C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový

Διαβάστε περισσότερα

επικινδυνότητας του ρυπαντικού φορτίου των

επικινδυνότητας του ρυπαντικού φορτίου των ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΣΠΑ 2007-2013 2013 - ΑΡΧΙΜΗ ΗΣ ΙΙΙ Υποέργο 15 Μοντέλο πολυπαραμετρικής εκτίμησης

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

Výpočet. sledu skrátenia koľajníc v zloženom oblúku s krajnými prechodnicami a s medziľahlou prechodnicou a. porovnanie

Výpočet. sledu skrátenia koľajníc v zloženom oblúku s krajnými prechodnicami a s medziľahlou prechodnicou a. porovnanie Výpočet sledu skrátenia koľajníc v zloženo oblúku s krajnýi prechodnicai a s edziľahlou prechodnicou a porovnanie výsledkov výpočtového riešenia a grafického riešenia Príloha.4 Výpočet sledu skrátenia

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B

1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B . písoá pác z tetik Skpi A. Zjedodšte výz : ) z 8 ) c). Doplňte, pltil ovosť : ) ). Vpočítjte : ) ) c). Vpočítjte : ) ( ) ) v v v c). Upvte výz ovete spávosť výsledk pe : 6. Zostojte tojholík ABC, k c

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

pismeni br.4 4.2: Izračunati yds, gdje je K luk parabole y 2 = 2 px od ishodišta to točke

pismeni br.4 4.2: Izračunati yds, gdje je K luk parabole y 2 = 2 px od ishodišta to točke Prakkm Maemaka III Prredo DJočć smen br : Raz Forero red nkc eroda dan ormom za < za < : Izračna ds gde e k araboe od shodša o očke M : Izračna koordnae ežsa homogenog ka ckode a sn a ; : Izračna I e [

Διαβάστε περισσότερα

Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0.

Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0. Bc. Martin Vozár Návrh výstuže do pilót Diplomová práca 8x24.00 kr. 50.0 Pilota600mmrez1 Typ prvku: nosník Prostředí: X0 Beton:C20/25 f ck = 20.0 MPa; f ct = 2.2 MPa; E cm = 30000.0 MPa Ocelpodélná:B500

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ. 6.1. Γενικά

6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ. 6.1. Γενικά 6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ 6.1. Γενικά Είναι γεγονός ότι ανέκαθεν ο τελικός αποδέκτης των υπολειµµάτων της κατανάλωσης και των καταλοίπων της παραγωγικής διαδικασίας υπήρξε το περιβάλλον. Στις παλιότερες κοινωνίες

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

Im{z} 3π 4 π 4. Re{z}

Im{z} 3π 4 π 4. Re{z} ! #"!$%& '(!*),+- /. '( 0 213. $ 1546!.17! & 8 + 8 9:17!; < = >+ 8?A@CBEDF HG

Διαβάστε περισσότερα

2?nom. Bacc. 2 nom. acc. S nom. 7acc. acc >nom < <

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < < K+P K+P PK+ K+P - _+ l Š N K - - a\ Q4 Q + hz - I 4 - _+.P k - G H... /.4 h i j j - 4 _Q &\\ \\ ` J K aa\ `- c -+ _Q K J K -. P.. F H H - H - _+ 4 K4 \\ F &&. P H.4 Q+ 4 G H J + I K/4 &&& && F : ( -+..

Διαβάστε περισσότερα

Συμβολή δυο κυμάτων στην επιφάνεια υ- γρού. Μελέτη με την τεχνική των περιστρεφόμενων

Συμβολή δυο κυμάτων στην επιφάνεια υ- γρού. Μελέτη με την τεχνική των περιστρεφόμενων ο Γενικό Λύκειο Πεύκης Συμβολ δυο κυμάτων στην επιφάνεια υ- γρού. Μελέτη με την τεχνικ των περιστρεφόμενων διανυσμάτων Ας θεωρσουμε στην επιφάνεια υγρού δυο σημειακές πηγές Π και Π που απέχουν μεταξύ τους

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.587 Π Ρ Α Ξ Η Κ Α Τ Α Θ Ε Σ Η Σ Ο Ρ Ω Ν Δ Ι Α Γ Ω Ν Ι Σ Μ Ο Υ

Α Ρ Ι Θ Μ Ο Σ : 6.587 Π Ρ Α Ξ Η Κ Α Τ Α Θ Ε Σ Η Σ Ο Ρ Ω Ν Δ Ι Α Γ Ω Ν Ι Σ Μ Ο Υ Α Ρ Ι Θ Μ Ο Σ : 6.587 Π Ρ Α Ξ Η Κ Α Τ Α Θ Ε Σ Η Σ Ο Ρ Ω Ν Δ Ι Α Γ Ω Ν Ι Σ Μ Ο Υ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς έ ν τ ε κ α ( 1 1 ) τ ο υ μ ή ν α Α π ρ ι λ ί ο υ η μ έ ρ α Π α ρ α σ κ ε υ ή, τ ο

Διαβάστε περισσότερα

0,8A. 1,2a. 1,4a. 1,6a F 2 5 2A. 1,6a 1,2A

0,8A. 1,2a. 1,4a. 1,6a F 2 5 2A. 1,6a 1,2A Sttik určité konštrukie Znie č. : JEDNODUCHÝ ŤH TLK rík : Učte prieeh normáovýh sí, normáovýh npätí posunutí priereov. rieeh uveenýh veičín náornite grfik. Shém poľ. čís kóu 0,8 0,8, 0,5,,6, 0,8, 0,6,8

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

1 Υλικά Εσωτερικών Εγκαταστάσεων. 2. Οθόνες Αφής και Θυροτηλέφωνα. 3 Πίνακες Διανομής και Ερμάρια. 4 Βιομηχανικά Υλικά Χαμηλής Τάσης

1 Υλικά Εσωτερικών Εγκαταστάσεων. 2. Οθόνες Αφής και Θυροτηλέφωνα. 3 Πίνακες Διανομής και Ερμάρια. 4 Βιομηχανικά Υλικά Χαμηλής Τάσης Ηλεκτρολογικό Υλικό Τιμοκατάλογος 2013 1 Υλικά Εσωτερικών Εγκαταστάσεων 2. Οθόνες Αφής και Θυροτηλέφωνα 3 Πίνακες Διανομής και Ερμάρια 4 Βιομηχανικά Υλικά Χαμηλής Τάσης 5 Ηλεκτρονικά Προϊόντα Αυτοματισμού

Διαβάστε περισσότερα

S ohadom na popis vektorov a matíc napr. v kap. 5.1, majú normálne rovnice tvar

S ohadom na popis vektorov a matíc napr. v kap. 5.1, majú normálne rovnice tvar 6. STREDNÁ ELIPSA CHÝ Na rozdiel od kaitoly 4.4 uebnice itterer L.: Vyrovnávací oet kde ú araetre eliy trednej chyby odvodené alikáciou zákona hroadenia tredných chýb v tejto kaitole odvodíe araetre trednej

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΜΑΘΗΜΑ ΚΟΡΜΟΥ «ΥΔΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΥΔΑΤΙΚΑ ΟΙΚΟΣΥΣΤΗΜΑΤΑ Σημειώσεις

Διαβάστε περισσότερα

( )( ) ( )( ) 2. Chapter 3 Exercise Solutions EX3.1. Transistor biased in the saturation region

( )( ) ( )( ) 2. Chapter 3 Exercise Solutions EX3.1. Transistor biased in the saturation region Chapter 3 Exercise Solutios EX3. TN, 3, S 4.5 S 4.5 > S ( sat TN 3 Trasistor biased i the saturatio regio TN 0.8 3 0. / K K K ma (a, S 4.5 Saturatio regio: 0. 0. ma (b 3, S Nosaturatio regio: ( 0. ( 3

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory

Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory www.eurofluid.sk 20-1 Membránové akumulátory... -3 Vakové akumulátory... -4 Piestové akumulátory... -5 Bezpečnostné a uzatváracie bloky, príslušenstvo... -7 Hydromotory 20 www.eurofluid.sk -2 www.eurofluid.sk

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2005

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2005 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 Για τις ερωτήσεις 11-1 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση 11 Ο µέγιστος αριθµός

Διαβάστε περισσότερα

Αναλογικά Συστήματα Ενδοεπικοινωνίας. Τιμή σε ΕΥΡΩ τύπος περιγραφή χωρίς ΦΠΑ με ΦΠΑ 23% Μεγαφωνικά συστήματα μικρής ισχύος Σειρές LEM & LEF

Αναλογικά Συστήματα Ενδοεπικοινωνίας. Τιμή σε ΕΥΡΩ τύπος περιγραφή χωρίς ΦΠΑ με ΦΠΑ 23% Μεγαφωνικά συστήματα μικρής ισχύος Σειρές LEM & LEF Μεγαφωνικά συστήματα μικρής ισχύος Σειρές LEM & LEF Συσκευές επιτραπέζιες ή επίτοιχες LEM-1 Κέντρο 1 γραμμής. 73,00 89,79 LEM-1DL Το ίδιο αλλά με button για αυτόματο άνοιγμα πόρτας. 100,00 123,00 LEM-3

Διαβάστε περισσότερα

Sférický pohyb. Aplikovaná mechanika, 6. přednáška. Při sférickém pohybu si jeden bod tělesa zachovává svou polohu.

Sférický pohyb. Aplikovaná mechanika, 6. přednáška. Při sférickém pohybu si jeden bod tělesa zachovává svou polohu. Sfécý pohb Aploná mechn, 6. přednáš Př sfécém pohbu s eden bod ěles choáá sou polohu. Teno bod se nýá sřed sfécého pohbu nebo é cenum sfécého pohbu. ons sřed sfécého pohbu o o 3 ám sfécý pohb se 3 supn

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

difúzne otvorené drevovláknité izolačné dosky - ochrana nie len pred chladom...

difúzne otvorené drevovláknité izolačné dosky - ochrana nie len pred chladom... (TYP M) izolačná doska určená na vonkajšiu fasádu (spoj P+D) ρ = 230 kg/m3 λ d = 0,046 W/kg.K 590 1300 40 56 42,95 10,09 590 1300 60 38 29,15 15,14 590 1300 80 28 21,48 20,18 590 1300 100 22 16,87 25,23

Διαβάστε περισσότερα

bab.la Φράσεις: Ταξίδι Τρώγοντας έξω ελληνικά-ελληνικά

bab.la Φράσεις: Ταξίδι Τρώγοντας έξω ελληνικά-ελληνικά Τρώγοντας έξω : Στην είσοδο Θα ήθελα να κρατήσω ένα τραπέζι για _[αριθμός ατόμων]_ στις _[ώρα]_. (Tha íthela na kratíso éna trapézi ya _[arithmós atómon]_ στις _[óra]_.) Θα ήθελα να κρατήσω ένα τραπέζι

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

Magneti opis i namena Opis: Napon: Snaga: Cena:

Magneti opis i namena Opis: Napon: Snaga: Cena: Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΑΙ ΤΡΟΠΟΙ ΕΠΕΞΕΡΓΑΣΙΑΣ ΤΩΝ ΑΠΟΒΛΗΤΩΝ ΑΠΟ ΒΙΟΜΗΧΑΝΙΕΣ ΤΡΟΦIΜΩΝ (FEATURES AND HANDLING OF WASTE FROM FOOD INDUSTRIES)

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΑΙ ΤΡΟΠΟΙ ΕΠΕΞΕΡΓΑΣΙΑΣ ΤΩΝ ΑΠΟΒΛΗΤΩΝ ΑΠΟ ΒΙΟΜΗΧΑΝΙΕΣ ΤΡΟΦIΜΩΝ (FEATURES AND HANDLING OF WASTE FROM FOOD INDUSTRIES) ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ: ΣΤΕΦ ΤΜΗΜΑ: ΤΕΧΝΟΛΟΓΙΑ ΠΕΤΡΕΛΑΙΟΥ Κ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΑΙ ΤΡΟΠΟΙ ΕΠΕΞΕΡΓΑΣΙΑΣ ΤΩΝ ΑΠΟΒΛΗΤΩΝ ΑΠΟ ΒΙΟΜΗΧΑΝΙΕΣ ΤΡΟΦIΜΩΝ (FEATURES AND HANDLING OF WASTE FROM

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ 1

ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ 1 ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Ειδική αντίσταση κοπής Assistnt Pro. John Kehgis Mehnil Engineer, Ph.D. Περίγραμμα Στο κεφάλαιο αυτό γίνεται εκτενής αναφορά στο μηχανισμό της ορθογωνικής κοπής. Εισαγωγή - Κατεργασίες

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

16. Základne rovinné útvary kružnica a kruh

16. Základne rovinné útvary kružnica a kruh 16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΓΕΩΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΓΕΩΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΓΕΩΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ του ΠΑΠΑΧΡΙΣΤΟΔΟΥΛΟΥ ΧΡΗΣΤΟΥ ΕΠΙΒΛΕΠΩΝ: Δρ.ΙΟΡΔΑΝΙΔΗΣ ΑΝΔΡΕΑΣ

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

Dinamika krutog tijela. 14. dio

Dinamika krutog tijela. 14. dio Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Κωδικός: ΑΠΟΒΛ4 Αρ. Έκδοσης: 1 Ημ/νία: 01-12-2014 Σελ. 1 από 13

Κωδικός: ΑΠΟΒΛ4 Αρ. Έκδοσης: 1 Ημ/νία: 01-12-2014 Σελ. 1 από 13 Κωδικός: ΑΠΟΒΛ4 Αρ. Έκδοσης: 1 Ημ/νία: 01-12-2014 Σελ. 1 από 13 1. ΣΚΟΠΟΣ Σκοπός της παρούσας οδηγίας είναι η περιγραφή του τρόπου με τον οποίο λαμβάνονται, μεταφέρονται και συντηρούνται τα δείγματα υγρών

Διαβάστε περισσότερα

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

Επιτραπέζια μίξερ C LINE 10 C LINE 20

Επιτραπέζια μίξερ C LINE 10 C LINE 20 Επιτραπέζια μίξερ C LINE 10 Χωρητικότητα κάδου : 10 lt Ναί Βάρος: 100 Kg Ισχύς: 0,5 Kw C LINE 20 Χωρητικότητα κάδου : 20 lt Βάρος: 105 Kg Ισχύς: 0,7 Kw Ναί Επιδαπέδια μίξερ σειρά C LINE C LINE 10 Χωρητικότητα

Διαβάστε περισσότερα

Modelovanie dynamickej podmienenej korelácie kurzov V4

Modelovanie dynamickej podmienenej korelácie kurzov V4 Modelovanie dynamickej podmienenej korelácie menových kurzov V4 Podnikovohospodárska fakulta so sídlom v Košiciach Ekonomická univerzita v Bratislave Cieľ a motivácia Východiská Cieľ a motivácia Cieľ Kvantifikovať

Διαβάστε περισσότερα

ΜΕΡΟΣ Α' (Διάρκεια εξέτασης: 15 min)

ΜΕΡΟΣ Α' (Διάρκεια εξέτασης: 15 min) ΣΕΜΦΕ ΕΜΠ Γενική Χημεία Διαγώνισμα 11/02/20 1 ΜΕΡΟΣ Α' (Διάρκεια εξέτασης: 15 min) 1.Σημειώστε τη σωστή ηλεκτρονική διαμόρφωση του 28 Ni +2, [ 18 Ar]=1s 2 2s 2 2p 6 3s 2 3p 6 a. [Ar] 4s 2 3d 6 b. [Ar]

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

ΠΕ ΙΑΤΡΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΓΕΝΙΚΗΣ ΙΑΤΡΙΚΗΣ Αριθμός Πρωτοκόλου Ηλεκτρονικής Α/Α Αίτησης

ΠΕ ΙΑΤΡΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΓΕΝΙΚΗΣ ΙΑΤΡΙΚΗΣ Αριθμός Πρωτοκόλου Ηλεκτρονικής Α/Α Αίτησης ΚΩΔ. ΘΕΣΗΣ: 251 ΠΕ ΙΑΤΡΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΓΕΝΙΚΗΣ ΙΑΤΡΙΚΗΣ ΠΕ ΙΑΤΡΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΓΕΝΙΚΗΣ ΙΑΤΡΙΚΗΣ 1 21/29449 ΕΛΛΙΠΗ Ή ΕΣΦΑΛΜΕΝΑ ΔΙΚΑΙΟΛΟΓΗΤΙΚΑ 2 21/24230 X373738 ΕΛΛΙΠΗ Ή ΕΣΦΑΛΜΕΝΑ ΔΙΚΑΙΟΛΟΓΗΤΙΚΑ 3 21/3495

Διαβάστε περισσότερα

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση. (, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R

Διαβάστε περισσότερα

Τ.Ε.Ι.Θ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 1. Ονοματεπώνυμο : Αναγνωστάκης Γιάννης Τμήμα : Οχημάτων Ημερομηνία : 25/5/00 Άσκηση : Ν 4

Τ.Ε.Ι.Θ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 1. Ονοματεπώνυμο : Αναγνωστάκης Γιάννης Τμήμα : Οχημάτων Ημερομηνία : 25/5/00 Άσκηση : Ν 4 Τ.Ε.Ι.Θ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 1 Ονοματεπώνυμο : Αναγνωστάκης Γιάννης Τμήμα : Οχημάτων Ημερομηνία : 25/5/00 Άσκηση : Ν 4 1 Δεδομένα : 1 3000 2 2000 3 12000 4 15000 d 1 12 d 2 15 Ζητούμενα : Να γίνει ο έλεγχος

Διαβάστε περισσότερα

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju.

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. zastori zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. (mm) (mm) za PROZOR im (mm) tv25 40360 360 400 330x330 tv25 50450 450 500 410x410

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke Kioco gibje meijle oke Kiemik meijle oke. dio ) Zje kiocog gibj b) Bi i ubje Položj meijle oke u skom euku eme možemo defiii slijedee ie:. Vekoski i defiij gibj (). Piodi i defiij gibj s s (). Vekoski

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Γενικές εξετάσεις Χημεία Γ λυκείου θετικής κατεύθυνσης

Γενικές εξετάσεις Χημεία Γ λυκείου θετικής κατεύθυνσης Γενικές εξετάσεις 009 Χημεία Γ λυκείου θετικής κατεύθυνσης Θέμα ο Για τις ερωτήσεις. -. να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση... Από

Διαβάστε περισσότερα

Li % % % % % % % % % % 3d 4s V V V V d V V V n O V V V O V n O V n O % % X X % % % 10 10 cm Li Li Li LiMO 2 Li 1 x MO 2 + xl + 1 + xe C + xl + 1 + xe Li x C LiMO 2 +C Li x C + Li 1 x MO 2

Διαβάστε περισσότερα

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2.

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2. Vele u ehc Rd, g eegj D. do. Sl. Veo 3. Tezo II. ed 4. Tezo IV. ed. Sl: 3 0 pod je jedc (ezo ulog ed). Veo: 3 3 pod je jedc (ezo pog ed) 3. Tezo dugog ed 3 9 pod je jedc 4. Tezoeog ed 3 4 8 pod je jedc

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

H mèjodoc Sturm. Mˆjhma AkoloujÐec Sturm

H mèjodoc Sturm. Mˆjhma AkoloujÐec Sturm Mˆjhma 2 H mèjodoc Sturm Το θεώρημα του Sturm μας δίνει έναν τρόπο καταμέτρησης των πραγματικών ριζών ενός πολυωνύμου σε δοσμένο διάστημα που τηρεί κάποιες συνθήκες. Εισάγουμε την έννοια της ακολουθίας

Διαβάστε περισσότερα

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školsk 0./04. godin TEST MATEMATIKA UPUTE ZA RAD Test koji trebš riješiti im 0 zdtk. Z rd je predviđeno 0 minut. Zdtke ne morš rditi prem redoslijedu

Διαβάστε περισσότερα

1.1 Η συγκέντρωση ιόντων ΟΗ - σε ένα υδατικό διάλυµα ΚΟΗ 10-7 Μ στους 25 ο C είναι α. 10-6 Μ β. 1,62.10-7 Μ γ. 10-7 Μ δ. 10-8 Μ Μονάδες 4 Ï.Å.Ö.Å.

1.1 Η συγκέντρωση ιόντων ΟΗ - σε ένα υδατικό διάλυµα ΚΟΗ 10-7 Μ στους 25 ο C είναι α. 10-6 Μ β. 1,62.10-7 Μ γ. 10-7 Μ δ. 10-8 Μ Μονάδες 4 Ï.Å.Ö.Å. 1 Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ- ΒΙΟΧΗΜΕΙΑ 1.1 Η συγκέντρωση ιόντων ΟΗ - σε ένα υδατικό διάλυµα ΚΟΗ 10-7 Μ στους 25 ο C είναι α. 10-6 Μ β. 1,62.10-7 Μ γ. 10-7 Μ δ. 10-8 Μ 1.2 Τι από τα παρακάτω

Διαβάστε περισσότερα

Ασκήσεις κοπής σε τόρνο

Ασκήσεις κοπής σε τόρνο Ασκήσεις κοπής σε τόρνο. Σε τόρνο γίνεται κατεργασία άξονα από χάλυβα St 60. µε δύο παράλληλα εργαλειοφορεία ταυτόχρονα, όπως φαίνεται στο Σχ.. ίνονται: ιάµετροι κατεργασίας: d = 300 mm, d = 00 mm. Κοινή

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο Για τις ερωτήσεις 1.1-1.4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Řečtina I průvodce prosincem a začátkem ledna prezenční studium

Řečtina I průvodce prosincem a začátkem ledna prezenční studium Řečtina I průvodce prosincem a začátkem ledna prezenční studium Dobson číst si Dobsona 9. až 12. lekci od 13. lekce už nečíst (minulý čas probírán na stažených slovesech velmi matoucí) Bartoň pořídit si

Διαβάστε περισσότερα

ΑΡΙΘΜΟΣ (Ή ΚΑΤΑΣΤΑΣΗ) ΟΞΕΙ ΩΣΗΣ 1

ΑΡΙΘΜΟΣ (Ή ΚΑΤΑΣΤΑΣΗ) ΟΞΕΙ ΩΣΗΣ 1 ΑΡΙΘΜΟΣ (Ή ΚΑΤΑΣΤΑΣΗ) ΟΞΕΙ ΩΣΗΣ 1 1. Για να εκφράσουν την ικανότητα ενός στοιχείου να ενώνεται με άλλα στοιχεία και να σχηματίζει χημικές ενώσεις, οι χημικοί δημιούργησαν αρχικά την έννοια του σθένους

Διαβάστε περισσότερα

Technická univerzita v Košiciach. ROČNÍKOVÁ PRÁCA č. 3 PRIBLIŽNÝ VÝPOČET TEPELNÉHO OBEHU LTKM

Technická univerzita v Košiciach. ROČNÍKOVÁ PRÁCA č. 3 PRIBLIŽNÝ VÝPOČET TEPELNÉHO OBEHU LTKM Technická univerzita Letecká fakulta Katedra leteckého inžinierstva ROČNÍKOVÁ PRÁCA č. 3 PRIBLIŽNÝ VÝPOČET TEPELNÉHO OBEHU LTKM Študent: Cvičiaci učiteľ: Peter Majoroš Ing. Marián HOCKO, PhD. Košice 6

Διαβάστε περισσότερα

cunctis laudibus honoranda omni calamitate cunctos cunctis laudibus honoranda omni calamitate cunctos

cunctis laudibus honoranda omni calamitate cunctos cunctis laudibus honoranda omni calamitate cunctos 168 ω (omega) solo solo 1 O ab cunctis laudibus honoranda omni calamitate cunctos l M ter bera solo O ab cunctis laudibus honoranda omni calamitate cunctos l M ter bera solo solo 2 O ab cunctis laudibus

Διαβάστε περισσότερα

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.

Διαβάστε περισσότερα

ΗΛΟΣΥΝΔΕΣΕΙΣ. Ελάχιστη επιτρεπόμενη διάμετρος ήλου d που καταπονείται σε διάτμηση. (cm) Έλεγχος αντοχής ελάσματος σε εφελκυσμό. Συντελεστής Ασφαλείας

ΗΛΟΣΥΝΔΕΣΕΙΣ. Ελάχιστη επιτρεπόμενη διάμετρος ήλου d που καταπονείται σε διάτμηση. (cm) Έλεγχος αντοχής ελάσματος σε εφελκυσμό. Συντελεστής Ασφαλείας ΗΛΟΣΥΝΔΕΣΕΙΣ Ελάχιστη ιτρόμενη διάμετρος ήλου ου καταονείται σε διάτμηση τ = Q A τ Α = 4 zx = + mm = 4Q zxτ (cm) : διάμετρος ήλου σε (cm) : διάμετρος τρύας (cm) Q : Μέγιστη διατμητική δύναμη σε (an) Α:

Διαβάστε περισσότερα