Τεχνική Έκθεση Μεθόδων επίλυσης προβλημάτων πολλαπλών φυσικών και χωρίων 3
|
|
- Αθανας Ευάριστος Σπυρόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1
2 Δ2.2/2 2.1 Μεθόδων επίλυσης προβλημάτων πολλαπλών φυσικών και χωρίων 3
3 Δ2.2/3 Το παρόν έργο θα ασχοληθεί με τη προσομοίωση πολύπλοκων φαινομένων που περιγράφονται από σύνθετα προβλήματα μερικών διαφορικών εξισώσεων με πολλαπλά χωρία και πολλαπλά μοντέλα φυσικής (multidomain multiphysics problems - MDMP) και με την επίλυσή τους σε περιβάλλοντα με σύγχρονες αρχιτεκτονικές. Η Δράση 2.2 ( ) ξεκινά την υλοποίησή της με μια επισκόπηση των μεθόδων που χρησιμοποιούνται για την προσομοίωση τέτοιων προβλημάτων. Μελετώντας τη σχέση ανάμεσα στα χαρακτηριστικά των προβλημάτων και στις μεθοδολογίες που χρησιμοποιούνται στην προσομοίωση τους, θα μπορέσουμε να επιλέξουμε τις πλέον κατάλληλες μεθόδους για τις εφαρμογές του MATENVMED, τα προβλήματα από την Ιατρική και την Περιβαλλοντική Μηχανική. Το υπόλοιπο της παρούσης Ετήσιας Τεχνικής Έκθεσης είναι οργανωμένο ως εξής. Στην παράγραφο 2 παρουσιάζουμε τα βασικά στοιχεία της μεθοδολογίας που ακολουθήσαμε. Η προσομοίωση φαινομένων που περιγράφονται με πολλαπλά φυσικά μοντέλα σε πολλαπλά χωρία, είναι μια ερευνητική περιοχή η οποία ελκύει το ενδιαφέρον των επιστημόνων από πολλές και διαφορετικές περιοχές τόσο στο παρελθόν [1] αλλά και σήμερα [2]. Η υπολογιστική ισχύς αυξάνεται και προσφέρεται σε όλα τα επίπεδα του υλικού του υπολογιστή, από πολυ-επεξεργαστές υψηλών επιδόσεων (high speed multi-processors) και συστοιχίες υπολογιστών (clusters) έως πολυπύρηνες κάρτες γραφικών (multi-core GPUs). Το γεγονός αυτό κάνει δυνατή την ακριβή προσομοίωση πραγματικών φαινομένων σε αποδεκτούς χρόνους εκτέλεσης, Επίσης η πληθώρα υπολογιστικών περιβαλλόντων [3] [8] επιτρέπει την καλύτερη δυνατή αξιοποίηση των διαθέσιμων δυνατοτήτων του υλικού (hardware) και του λογισμικού (software). Αυτό μας φέρνει ένα βήμα πιο κοντά στην προσομοίωση προβλημάτων του πραγματικού κόσμου με αποτελεσματικότητα και ακρίβεια. Ένα πρόβλημα πολλαπλών φυσικών μοντέλων και πολλαπλών χωρίων είναι πρόβλημα που αποτελείται από πολλαπλά επιμέρους προβλήματα, τα οποία συνήθως διέπονται από διαφορετικούς νόμους και αρχές. Για παράδειγμα νόμους
4 Δ2.2/4 διατήρησης ή καταστατικούς νόμους και αρχές ισορροπίας ή εξέλιξης. Οι συνιστώσες ενός τέτοιου προβλήματος πολλαπλών φυσικών/χωρίων, συχνά ονομάζονται υποπροβλήματα ή επιμέρους προβλήματα του αρχικού-συνολικού προβλήματος, και συνδέονται μεταξύ τους μέσα από συστήματα Μερικών Διαφορικών Εξισώσεων (ΜΔΕ) σε κοινά ή/και επικαλυπτόμενα χωρία ή μέσω συνοριακών συνθηκών πάνω στις διεπαφές (κοινά σύνορα) μεταξύ των γειτονικών επιμέρους χωρίων/πεδίων. Στην πρώτη κατηγορία θα μπορούσαμε να εντοπίσουμε προβλήματα που αφορούν την ηλεκτρική ενέργεια και το μαγνητισμό με υδροδυναμική, ενώ η δεύτερη κατηγορία περιλαμβάνει multiphysics προβλήματα όπως fluid-structure dynamics (aeroelasticity) ή δυναμική των ωκεανών-ατμόσφαιρας (γεωφυσική) [2] κλπ. Όλα τα προβλήματα πολλαπλών φυσικών και χωρίων ορίζονται μέσα από αλγεβρικές μορφές, πριν διακριτοποιηθούν για να επιλυθούν με οποιαδήποτε κατάλληλη μέθοδο. Οι δύο πιο συνήθεις [2] αλγεβρικές μορφές είναι: (i) το συζευγμένο πρόβλημα ισορροπίας (coupled equilibrium problem - (1)) ( ) F1 (u F (u) 1, u 2 ) = 0, (1) F 2 (u 1, u 2 ) και (ii) τo συζευγμένο πρόβλημα εξέλιξης (coupled evolution problem - (2)) t u 1 = f 1 (u 1, u 2 ) t u 2 = f 2 (u 1, u 2 ). (2) Θέτοντας J = (F 1,F 2 ) (u 1,u 2 ) και u = (u 1, u 2 ) T, οι αλγόριθμοι αντιμετώπισης προβλημάτων ισορροπίας (1) μπορούν να κατηγοριοποιηθούν σε 3 ομάδες όπως αυτές καταγράφονται στον Πίνακα 1. Συγκεκριμένα υπάρχουν οι μεθοδολογίες Jacobi, Gauss-Seidel και Newton. Υποθέτοντας ότι το αρχικό πρόβλημα αποτελείται από δύο επιμέρους προβλήματα τότε οι αλγόριθμοι σημειώνονται ως εξής: Jacobi Gauss-Seidel Newton Ορισμός αρχικής τιμής (u 0 1, u 0 2) Για k=1,2,... (έως ότου παρατηρηθεί σύγκλιση) Υπολόγισε τις (u k+1 1, u k+1 2 ) Υπολόγισε τις (u k+1 1, u k+1 F 1 (u k+1 1, u k 2) = 0 F 1 (u k+1 2 ) Υπολόγισε το δu 1, u k 2) = 0 J(u k )δu = F (u k ) 2 ) = 0 Υπολόγισε u k+1 = u k + δu Τέλος βήματος επαναληπτικής διαδικασίας F 2 (u k 1, u k+1 2 ) = 0 F 2 (u k+1 1, u k+1 Πίνακας 1: Κατηγορίες αλγορίθμων για προβλήματα ισορροπίας. Παρατηρούμε ότι στην αριστερή κλάση των αλγορίθμων η εκτέλεση ακολουθεί την μεθοδολογία Jacobi για την επίλυση συστήματος γραμμικών εξισώσεων.
5 Δ2.2/5 Για παράδειγμα στην k επανάληψη, η νέα λύση στο πρώτο χωρίο u k+1 1 υπολογίζεται με βάση την προηγούμενη λύση από το γειτονικό χωρίο u k 2, ενώ η νέα λύση στο δεύτερο χωρίο u k+1 2 υπολογίζεται με βάση την προηγούμενη λύση από το πρώτο χωρίο u k 1. Η διαδικασία αυτή μπορεί να επεκταθεί για περισσότερα από δύο υποχωρία, όπου κάθε φορά η νέα λύση u k+1 i στο i χωρίο υπολογίζεται χρησιμοποιώντας πληροφορία από τη λύση όλων των γειτονικών χωρίων στην προηγούμενη επανάληψη k. Το συγκεκριμένο σχήμα είναι πλήρως παραλληλίσιμο, αφού χρησιμοποιώντας τις λύσεις των επιμέρους προβλημάτων από την προηγούμενη επανάληψη, μπορούμε να υπολογίσουμε τις νέες λύσεις σε όλα τα χωρία ταυτόχρονα. Οι μέθοδοι τύπου Gauss-Seidel, ακολουθούν το πρότυπο της αντίστοιχης μεθόδου για την επίλυση συστημάτων γραμμικών εξισώσεων. Υποθέτοντας ότι έχουμε n επιμέρους συζευγμένα προβλήματα, η νέα λύση u k+1 i στο i χωρίο υπολογίζεται λαμβάνοντας υπόψιν όλες τις u k+1 1, u k+1 2,..., u k+1 i 1 από την τρέχουσα επανάληψη και τις u k i+1,..., u k n από την προηγούμενη επανάληψη. Η συγκεκριμένη μεθοδολογία δεν έχει χαρακτηριστικά παραλληλισμού, ωστόσο λόγω της άμεσης χρήσης των διορθωμένων τιμών των γειτόνων συγκλίνει ταχύτερα της Jacobi. Τέλος, οι αλγόριθμοι τύπου Newton, θεωρούνται αυστηρά συζευγμένα σχήματα καθώς εμπλέκουν τις F i, u j στον Ιακωβιανό πίνακα του συστήματος και χρησιμοποιούνται τόσο σε προβλήματα ισορροπίας όσο και σε προβλήματα εξέλιξης. Ορισμός αρχικής συνθήκης (u 1 (t 0 ), u 2 (t 0 )) Για n = 1,..., N t Προχωρούμε ένα βήμα στο χρόνο για την u 1 λύνοντας την t u 1 = f 1 (u 1, u 2 (t n 1 )) στο n χρονικό σημείο (δηλ., u 1 (t n )) Προχωρούμε ένα βήμα στο χρόνο για την u 2 λύνοντας την t u 2 = f 2 (u 1 (t n ), u 2 ) στο n χρονικό σημείο (δηλ., u 2 (t n )) Τέλος βήματος επαναληπτικής διαδικασίας Πίνακας 2: Αλγόριθμοι για προβλήματα εξέλιξης. Για τα προβλήματα εξέλιξης σε πολλαπλά χωρία και φυσικά μοντέλα, θεωρούμε σχήματα όπως αυτό του Πίνακα 2. Η μεθοδολογία αυτή είναι η απλούστερη δυνατή για την επίλυση παραβολικών προβλημάτων πολλαπλών χωρίων και πολλαπλών φυσικών μοντέλων. Κάθε επιμέρους πρόβλημα μπορεί να αντιμετωπιστεί με άμεσα ή έμμεσα σχήματα για τη διακριτοποίηση ως προς το χρόνο. Σε κάθε βήμα στο χρόνο χρησιμοποιούμε εμφωλευμένη επαναληπτική διαδικασία για βελτίωση της λύσης στο steady πρόβλημα της συγκεκριμένης χρονικής στιγμής. Οι μέθοδοι διαχωρισμού του χωρίου [9] [15] είναι μέθοδοι που χρησιμοποιήθηκαν αρχικά για να αντιμετωπίσουν τέτοιου είδους προβλήματα. Το κύριο χαρακτηριστικό τους είναι ότι διακριτοποιείται το αρχικό σύνθετο πρόβλημα (ακόμη
6 Δ2.2/6 και αν είναι ήδη χωρισμένο από τη φυσική του) και στη συνέχεια κόβεται σε επιμέρους προβλήματα σε επίπεδο γραμμικής άλγεβρας. Πλήθος μεθόδων, κυρίως επαναληπτικές χρησιμοποιούνται για να επιλύσουν τα επιμέρους γραμμικά συστήματα που προκύπτουν τα οποία είναι ισχυρά συζευγμένα. Οι Μέθοδοι Χαλάρωσης στη Διεπαφή (ΜΧΔ) [16] αποτελούν μια εναλλακτική μεθοδολογία για την αντιμετώπιση σύνθετων προβλημάτων. Ακολουθούν τη φυσική του προβλήματος προκειμένου να χωρίσουν το σύνθετο πρόβλημα σε επιμέρους προβλήματα απλούστερης γεωμετρίας και φυσικών μοντέλων. Τα υποπροβλήματα αυτά είναι συζευγμένα με κατάλληλες συνθήκες (που επιβάλλει το αρχικό πρόβλημα) πάνω στα κοινά σύνορα των υποχωρίων τους, που ονομάζονται διεπαφές. Παραδείγματα τέτοιων συνθηκών είναι η συνέχεια ή/και η ομαλότητα της λύσης του αρχικού προβλήματος. Τα παραδοτέα της Δράσης 2.2, για το 2012, σύμφωνα με το Τεχνικό Δελτίο του Έργου είναι: : το παρόν κείμενο. Στα πλαίσια της Δράσης 2.2, συνεργάστηκαν μέλη από όλες τις ερευνητικές ομάδες με κύρια ομάδα δράσης την ΚΕΟ 2 (Πανεπιστήμιο Θεσσαλίας). Η συνεργασία είχε σκοπό την κατανόηση των ιδιοτήτων των προβλημάτων πολλαπλών χωρίων και πολλαπλών φυσικών μοντέλων (MDMP). Μελέτη προβλημάτων από την Ιατρική και τη περιβαλλοντική μηχανική προκειμένου να βρεθούν κατάλληλες μαθηματικές μέθοδοι για προσομοίωσής τους. KEO 1 KEO 2 KEO 3 Μελέτη ιδιοτήτων προβλημάτων MDMP Χ X X Μελέτη προβλημάτων Ιατρικής X X Μελέτη προβλημάτων Περιβαλλοντικής Φυσικής X X Πίνακας 3: Συνεργασίες των τριών ερευνητικών ομάδων στα πλαίσια της Δράσης 2.2.
7 Δ2.2/7 Κατά τη διάρκεια του 2012 πραγματοποιήσαμε μια επισκόπηση των μεθοδολογιών προσομοίωσης MDMP προβλημάτων. Επίσης μελετήσαμε τα χαρακτηριστικά των εφαρμογών του έργου προκειμένου να βρεθούν κατάλληλες μέθοδοι για την αντιμετώπιση τους. Ξεκινήσαμε να μελετάμε τις ΜΧΔ και σε αυτές θα επικεντρωθούμε στη Δράση 2.2 στα επόμενα βήματα για να αντιμετωπίσουμε απλά προβλήματα MDMP αλλά και πιο πολύπλοκα που προκύπτουν από τις εφαρμογές του έργου. Συγκεκριμένα, θα μελετήσουμε περαιτέρω μεθοδολογίες για τη λύση ελλειπτικών και παραβολικών κατάλληλες για τα προβλήματα της Ιατρικής και της Περιβαλλοντικής Φυσικής. [1] M. Mu and J. R. Rice, Modeling with collaborating pde solvers: Theory and practice,, vol. 180, pp , [2] D. E. Keyes, L. C. McInnes, C. Woodward, W. D. Gropp, E. Myra, and M. Pernice, Multiphysics simulations: Challenges and opportunities, Oct [Online]. Available: full.pdf+html. [3] T. T. Drashansky, An agent-based approach to building multidisciplinary problem solving environments, PhD thesis, Citeseer, [4] J. R. Rice, P. Tsompanopoulou, and E. Vavalis, Sciagents tool: User s guide, [5] L. Boeloeni, D. C. Marinescu, J. R. Rice, P. Tsompanopoulou, and E. Vavalis, Agent based scientific simulation and modeling,, vol. 12, no. 9, pp , [6] S. Markus, E. N. Houstis, A. C. Catlin, J. R. Rice, P. Tsompanopoulou, E. Vavalis, D. Gottfried, K. Su, and G. Balakrishnan, An agent-based netcentric framework for multidisciplinary problem solving environments (mpse),, vol. 1, no. 01, pp , 2000.
8 Δ2.2/8 [7] E. Houstis, A. Catlin, P. Tsompanopoulou, D. Gottfried, G. Balakrishnan, K. Su, and J. Rice, Gasturbnlab: A multidisciplinary problem solving environment for gas turbine engine design on a network of nonhomogeneous machines,, vol. 149, no. 1, pp , [8] J. Michopoulos, P. Tsompanopoulou, E. Houstis, C. Farhat, M. Lesoinne, J. Rice, and A. Joshi, On a data-driven environment for multiphysics applications,, vol. 21, no. 6, pp , [9] D. E. Keyes and W. D. Gropp, A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation,, vol. 8, no. 2, s166 s202, [10] P. Le Tallec, Y. H. De Roeck, and M. Vidrascu, Domain decomposition methods for large linearly elliptic three-dimensional problems,, vol. 34, no. 1, pp , [11] P.-L. Lions, On the schwarz alternating method. iii: A variant for nonoverlapping subdomains, in, SIAM Philadelphia, PA, vol. 6, 1990, pp [12] T. F. Chan and T. P. Mathew, Domain decomposition algorithms,, vol. 3, pp , [13] R. Natarajan, Domain decomposition using spectral expansions of steklovpoincaré operators,, vol. 16, no. 2, pp , [14] J. R. Rice, E. Vavalis, and D. Yang, Convergence analysis of a nonoverlapping domain decomposition method for elliptic pdes, [15] W. Heinrichs, Domain decomposition for fourth-order problems,, vol. 30, no. 2, pp , [16] J. Rice, P. Tsompanopoulou, and E. Vavalis, Interface relaxation methods for elliptic differential equations,, vol. 32, no. 2, pp , 2000.
Τεχνική Έκθεση Μέθοδοι χαλάρωσης στη διεπαφή για σύνθετα προβλήματα πολλαπλών φυσικών μοντέλων και πολλαπλών χωρίων... 7
Δ2.2/2 2.1 Μεθόδων επίλυσης προβλημάτων πολλαπλών φυσικών και χωρίων 3 2.2 Μέθοδοι χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα............................. 5 3.1 Μέθοδοι χαλάρωσης στη
Τεχνική Έκθεση Μέθοδοι χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα Παράλληλοι Αλγόριθμοι ΜΧΔ...
Δ2.2/2 2.1 Μέθοδοι χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα............................. 3 2.2 Παράλληλοι Αλγόριθμοι ΜΧΔ.................... 6 3.1 Μέθοδοι χαλάρωσης στη διεπαφή για
Τελική Τεχνική Έκθεση
Δ2.2/2 2.1 Μεθόδων επίλυσης προβλημάτων πολλαπλών φυσικών και χωρίων 3 2.2 Μεθόδοι χαλάρωσης στη διεπαφή για ελλειπτικά και παραβολικά προβλήματα............................. 6 2.3 Έλεγχος και επαλύθευση
Τεχνική Έκθεση Συνοπτική παρουσίαση... 3
Δ2.3/2 1.1 Συνοπτική παρουσίαση....................... 3 Δ2.3/3 Σύμφωνα με το τεχνικό δελτίο του έργου η δράση της παρούσας έκθεσης συνοψίζεται ως εξής. Δράση 2.3: ΣΤΟΧΑΣΤΙΚΕΣ/ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΕΣ ΥΒΡΙΔΙΚΕΣ
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Υποέργο 2 - Δράση 2.2 Μέθοδοι Χαλάρωσης στις Διεπαφές (ΜΧΔ)
MATENVMED - MIS 379416 Πλατφόρμα Προηγμένων Μαθηματικών Μεθόδων και Λογισμικού για την Επίλυση Προβλημάτων Πολλαπλών Πεδίων (Mult-Physcs Mult-Doman Problems) σε Σύγχρονες Υπολογιστικές Αρχιτεκτονικές:
Τεχνική Έκθεση Συνοπτική παρουσίαση... 3
Δ2.3/2 1.1 Συνοπτική παρουσίαση....................... 3 Δ2.3/3 Σύμφωνα με το τεχνικό δελτίο του έργου η δράση της παρούσας έκθεσης συνοψίζεται ως εξής. Δράση 2.3: ΣΤΟΧΑΣΤΙΚΕΣ/ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΕΣ ΥΒΡΙΔΙΚΕΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε την εξίσωση
Μέθοδοι πολυδιάστατης ελαχιστοποίησης
Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo
Παρουσίαση 3ης Άσκησης
Παρουσίαση 3ης Άσκησης Παράλληλος προγραμματισμός για αρχιτεκτονικές κατανεμημένης μνήμης με MPI Συστήματα Παράλληλης Επεξεργασίας 9ο Εξάμηνο, ΣΗΜΜΥ Εργ. Υπολογιστικών Συστημάτων Σχολή ΗΜΜΥ, Ε.Μ.Π. Νοέμβριος
Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί
Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί Χαρμανδάρης Βαγγέλης, Τμήμα Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης, Εαρινό Εξάμηνο 2013/14 Κεφάλαιο 3: Θεωρία Παράλληλου Προγραμματισμού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε
Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί
Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί Χαρμανδάρης Βαγγέλης, Τμήμα Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης, Εαρινό Εξάμηνο 2013/14 Κεφάλαιο 6: Εφαρμογές ΙΙ Παράλληλοι Υπολογισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 15: O αλγόριθμος SIMPLE Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε τις θέσεις που
chatzipa@math.uoc.gr http://www.math.uoc.gr/ chatzipa
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Ονοµατεπώνυµο : ιεύθυνση : Email: Web: ΠΑΝΑΓΙΩΤΗΣ ΧΑΤΖΗΠΑΝΤΕΛΙ ΗΣ Τµήµα Μαθηµατικών, Λεωφ. Κνωσσού, Ηράκλειο, 71409. chatzipa@math.uoc.gr http://www.math.uoc.gr/ chatzipa Προσωπικά
Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.
i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση
Non Linear Equations (2)
Non Linear Equations () Τρίτη, 17 Φεβρουαρίου 015 5:14 μμ 15.0.19 Page 1 15.0.19 Page 15.0.19 Page 3 15.0.19 Page 4 15.0.19 Page 5 15.0.19 Page 6 15.0.19 Page 7 15.0.19 Page 8 15.0.19 Page 9 15.0.19 Page
ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία
ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία N. Μισυρλής (e-mail: nmis@di.uoa.gr) Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Parallel Scientific Computing Laboratory (PSCL)
Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές
Κεφ 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 71 Εισαγωγή πρότυπες εξισώσεις 7 Εξισώσεις πεπερασμένων διαφορών πέντε και εννέα σημείων 73 Οριακές συνθήκες μικτού τύπου και ακανόνιστα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 7: Εξίσωση μη-μόνιμης διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Είδαμε
HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ
HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ. & ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ Βασικά σημεία Μη γραμμικές εξισώσεις με πραγματικές ρίζες. Μέθοδος
ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία
ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία N. Μισυρλής (e-mail: nmis@di.uoa.gr) Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Parallel Scientific Computing Laboratory (PSCL)
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Αριθμητικές τεχνικές - Επισκόπηση αλγορίθμων - Optimization in MATLAB ΑΡΙΘΜΗΤΙΚΕΣ ΤΕΧΝΙΚΕΣ Εφαρμόζονται κυρίως σε προβλήματα
Τεχνική Έκθεση Ανάπτυξη και υποστήριξη ιστοσελίδας Πρακτικά ημερίδας σε ηλεκτρονική μορφή... 25
Δ2.4/2 1.1 Ανάπτυξη και υποστήριξη ιστοσελίδας............... 3 1.2 Ημερίδα παρουσίασης αποτελεσμάτων.............. 3 1.3 Επιστημονικές Ημερίδες....................... 4 1.4 Διεθνή Συνέδρια...........................
προβλήµατα ανάλυσης ροής
προβλήµατα ανάλυσης ροής ΕΚ ΟΣΗ Νοέµβριος 2006 Σελίδα 1 ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ ΑΝΑΛΥΣΗ ΣΥΝ ΥΑΣΜΕΝΑ ΠΡΟΒΛΗΜΑΤΑ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΑΝΑΛΥΣΗΣ ΑΝΑΛΥΣΗΣ ΑΝΤΟΧΗΣ Ενσωµατώνεται το εξελιγµένο πρόγραµµα ανάλυσης προβληµάτων
Σχεδιασμός και υλοποίηση προηγμένων μαθηματικών μεθόδων για την επίλυση προβλημάτων πολλαπλών πεδίων σε σύγχρονες υπολογιστικές αρχιτεκτονικές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Διπλωματική εργασία στο πλαίσιο του μεταπτυχιακού προγράμματος Επιστήμη και Τεχνολογία Υπολογιστών Σχεδιασμός και υλοποίηση προηγμένων
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου
Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] Συγγραφείς ΝΤΑΟΥΤΙΔΗΣ ΠΡΟΔΡΟΜΟΣ Πανεπιστήμιο Minnesota, USA ΜΑΣΤΡΟΓΕΩΡΓΟΠΟΥΛΟΣ ΣΠΥΡΟΣ Αριστοτέλειο
ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος
10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ)
10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) Χειμερινό εξάμηνο 2018 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Διατύπωση εξισώσεων ΜΠΣ βάσει μετακινήσεων
Πίνακας Περιεχομένων
Πίνακας Περιεχομένων Πρόλογος... 13 Πρώτο Μέρος: Γενικές Έννοιες Κεφάλαιο 1 ο : Αλγοριθμική... 19 1.1 Περιγραφή Αλγορίθμου... 19 1.2. Παράσταση Αλγορίθμων... 21 1.2.1 Διαγράμματα Ροής... 22 1.2.2 Ψευδογλώσσα
ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΓΙΑ ΥΠΟΒΟΛΗ ΠΡΟΤΑΣΗΣ ΓΙΑ ΣΥΝΑΨΗ ΕΩΣ ΤΡΙΩΝ (3) ΣΥΜΒΑΣΕΩΝ ΜΙΣΘΩΣΗΣ ΕΡΓΟΥ ΙΔΙΩΤΙΚΟΥ ΔΙΚΑΙΟΥ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ * * * ΕΠΙΤΡΟΠΗ ΕΡΕΥΝΩΝ ΕΙΔΙΚΟΣ ΛΟΓΑΡΙΑΣΜΟΣ ΚΟΝΔΥΛΙΩΝ ΕΡΕΥΝΑΣ Κτίριο Ε4, Πολυτεχνειούπολη, Κουνουπιδιανά ΤΚ 731 00 Χανιά Τηλ.: (28210) 37033-37073 / Fax (28210) 37081-82
Παναγιώτα Ε. Τσομπανοπούλου Βιογραφικό σημείωμα
Παναγιώτα Ε. Τσομπανοπούλου Βιογραφικό σημείωμα Ημερομηνία γέννησης: Τόπος γέννησης: Οικογενειακή κατάσταση: Διεύθυνση: Τηλ: e-mail: URL: 13 Φεβρουαρίου, 1969. Ηράκλειο, Κρήτη. Παντρεμένη με ένα παιδί.
Ειδικά θέματα στην επίλυση
Ενότητα 5: Εισαγωγή Βασικές Έννοιες Ειδικά Θέματα Αριθμητικής Παραγώγισης Επίλυση Γραμμικών Συστημάτων Αλγεβρικών Εξισώσεων Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ειδικά θέματα
ΜΑΘΗΜΑ: Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ. 1 η ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ
ΜΑΘΗΜΑ: Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ 1 η ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στόχος Θεματικής Ενότητας Οι μαθητές να περιγράφουν τους βασικούς τομείς της Επιστήμης των Υπολογιστών και να μπορούν
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Χατζηλιάδη Παναγιώτα Ευανθία
ΜΠΣ «ΜΕΘΟΔΟΛΟΓΙΑ ΒΪΟΙΑΤΡΙΚΗΣ ΕΡΕΥΝΑΣ, ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΚΛΙΝΙΚΗ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Ανάπτυξη λογισμικού σε γλώσσα προγραματισμού python για ομαδοποίηση
ΑΔΑ: Β4Λ59-0ΓΓ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ
ΑΔΑ: Β4Λ59-0ΓΓ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΕΥΡΩΠΑΪΚΩΝ ΠΟΡΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ Ε.Π. "ΕΚΠΑΙΔΕΥΣΗ & ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ" Ταχ.
Εφαρμογές μεθοδολογιών μηχανικής εκμάθησης στο χώρο της παραγωγής υδρογονανθράκων. Βασίλης Γαγάνης
Εφαρμογές μεθοδολογιών μηχανικής εκμάθησης στο χώρο της παραγωγής υδρογονανθράκων Μέθοδοι μηχανικής εκμάθησης Εύρεση μαθηματικής έκφρασης μοντέλου (κανόνα) ο κανόνας διέπει το υπό μελέτη πρόβλημα ανάπτυξη
ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ
ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη
5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων
5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων http://ecourseschemengntuagr/courses/computational_methods_for_engineers/ Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων Γενικά:
5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων
5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων http://ecourseschemengntuagr/courses/computational_methods_for_engineers/ Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων Γενικά:
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή
Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων
Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης
ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά.
ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά Γενικές πληροφορίες μαθήματος: Τίτλος Αλληλεπίδραση μαθήματος: εδάφουςκατασκευών
ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών
44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.
ΜΕΘΟΔΟΛΟΓΙΕΣ ΑΝΑΠΤΥΞΗΣ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΜΕΘΟΔΟΛΟΓΙΕΣ ΑΝΑΠΤΥΞΗΣ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Μεθοδολογίες Ανάπτυξης Συστημάτων Πληροφορικής Απαντούν στα εξής ερωτήματα Ποιά βήματα θα ακολουθηθούν? Με ποιά σειρά? Ποιά τα παραδοτέα και πότε? Επομένως,
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3
Εισαγωγή Στις Αρχές Της Επιστήμης Των Η/Υ. Η έννοια του Προβλήματος - ΚΕΦΑΛΑΙΟ 2
Εισαγωγή Στις Αρχές Της Επιστήμης Των Η/Υ Η έννοια του Προβλήματος - ΚΕΦΑΛΑΙΟ 2 2. Η έννοια του προβλήματος 2 2. Η έννοια του προβλήματος 2.1 Το πρόβλημα στην επιστήμη των Η/Υ 2.2 Κατηγορίες προβλημάτων
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 2 ο Μάθημα 2 ο Αριθμητική επίλυση εξισώσεων (μη γραμμικές) Μέθοδοι με διαδοχικές δοκιμές σε διάστημα (Διχοτόμησης, Regula-Falsi) Μέθοδοι με επαναληπτικούς
Πίνακας Περιεχομένων 7
Πίνακας Περιεχομένων Πρόλογος...5 Πίνακας Περιεχομένων 7 1 Εξισώσεις Ροής- Υπολογιστική Μηχανική Ρευστών...15 1.1 ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ.....15 1.1.1 Γενικά θέματα. 15 1.1.2 Υπολογιστικά δίκτυα...16
Μέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε λύσεις
Υπολογιστικής Σκέψης
Απόκτηση και καλλιέργεια Υπολογιστικής Σκέψης Διακριτά Μαθηματικά Εισαγωγή στους Αλγόριθμους Αλγοριθμικά Θέματα Ασύρματων Δικτύων Υπολογιστική Επιστήμη και Πολιτισμός Τι είναι η υπολογιστική σκέψη; Οι
A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου
A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι
Μέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν
ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ (7 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ)
Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε
Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΔΙΑΔΙΚΤΥΟ. Αθήνα, 06/05/2015 Α.Π. : 7043 Προς: ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΠΟΛΥΤΕΧΝΕΙΟΥΠΟΛΗ - ΚΟΥΝΟΥΠΙΔΙΑΝΑ T.
ΑΔΑ: 7ΘΘ3465ΦΘΘ-ΚΔΨ INFORMATICS DEVELOPMEN T AGENCY Digitally signed by INFORMATICS DEVELOPMENT AGENCY Date: 2015.05.07 15:23:59 EEST Reason: Location: Athens ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΑΣ,
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ Κ Υ Κ Λ Ο Υ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Κ Α Ι Υ Π Η Ρ Ε Σ Ι Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η
Μάθημα Επιλογής 8 ου εξαμήνου
EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Δίαλεξη 1: Βασικές Έννοιες Μάθημα Επιλογής 8 ου εξαμήνου Διδάσκων: Α. Κοκόσης Συνεργάτες:
v(t) = Ri(t). (1) website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση και Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 10 Μαρτίου 2017 1 Βασικά μεγέθη ηλεκτρικών
ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ
Συναρτήσεις Προεπισκόπηση Κεφαλαίου Τα μαθηματικά είναι μια γλώσσα με ένα συγκεκριμένο λεξιλόγιο και πολλούς κανόνες. Πριν ξεκινήσετε το ταξίδι σας στον Απειροστικό Λογισμό, θα πρέπει να έχετε εξοικειωθεί
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ - Επίλυση ασκήσεων - Αλγόριθμοι αναζήτησης - Επαναληπτική κάθοδος ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΠΡΑΞΗΣ Θα επιλυθούν
ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ
ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Βασίζεται στην εφαρμογή των παρακάτω βημάτων:. Το φυσικό πεδίο αναπαριστάται με ένα σύνολο απλών γεωμετρικών σχημάτων που ονομάζονται Πεπερασμένα Στοιχεία.. Σε κάθε στοιχείο
Τεχνική Έκθεση 2014. 3.1 Επέκταση του ΠΕΠ για την Υποστήριξη της Κλάσης Προβλημάτων Ενδιαφέροντος του Έργου... 8
Δ4.1/2 2.1 Επέκταση του ΠΕΠ για την Υποστήριξη της Κλάσης Προβλημάτων Ενδιαφέροντος του Έργου................... 3 2.1.1 Μέθοδος Schwarz για Προβλήματα με Επικαλυπτώμενα Υποχωρία...........................
ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ
Tel.: +30 2310998051, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Ιστοσελίδα: http://users.auth.gr/theodoru ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος B http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις
Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου
Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr
Chapter 6. Problem Solving and Algorithm Design. Στόχοι Ενότητας. Επίλυση προβληµάτων. Εισαγωγή. Nell Dale John Lewis
Στόχοι Ενότητας Chapter 6 Problem Solving and Algorithm Design Nell Dale John Lewis Αναγνώριση αν ένα πρόβληµα µπορεί να επιλυθεί µε τη χρήση υπολογιστή Περιγραφή της διαδικασίας επίλυσης προβληµάτων και
Μάθημα Επιλογής 8 ου εξαμήνου
EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Διάλεξη 3: Βασικές τεχνικές επίλυσης γραμμικών συστημάτων Μάθημα Επιλογής 8 ου εξαμήνου
Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις 2- διαστάσεις
Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις - διαστάσεις Στις -διαστάσεις, η περιγραφή της εκδοχής hp της ΜΠΣ είναι αρκετά πολύπλοκη. Στο παρόν κεφάλαιο θα δούμε κάποια στοιχεία της, ξεκινώντας με
Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας
Κεφάλαιο 6 Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας Σε αυτό το κεφάλαιο θεωρούμε την εξίσωση της θερμότητας στη μια διάσταση ως προς τον χώρο και θα κατασκευάσουμε μεθόδους πεπερασμένων
Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών
Διαχείριση ενεργειακών πόρων & συστημάτων Πρακτικά συνεδρίου(isbn: )
23 ο Εθνικό Συνέδριο Ελληνικής Εταιρείας Επιχειρησιακών Ερευνών Διαχείριση ενεργειακών πόρων & συστημάτων Πρακτικά συνεδρίου(isbn: 978-960-87277-8-6) Αθήνα, 12-14 Σεπτεμβρίου 2012 Αίθουσα Πολυμέσων Κεντρικής
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α. Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1. Σφάλματα
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1 Σφάλματα 1.1 Εισαγωγή...17 1.2 Αρχικά Σφάλματα (σφάλματα μετρήσεων)...18 1.2.1 Απλές μετρήσεις...18 1.2.2 Σύνθετες μετρήσεις...19 1.2.3 Σημαντικά ψηφία και
Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις
Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις Όπως είδαμε μέχρι τώρα η ομαλότητα της ακριβούς λύσης επηρεάζει τις εκτιμήσεις σφάλματος με τέτοιο τρόπο ώστε ολα όσα αποδείξαμε ισχύουν
(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017
34 4 17 1 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY Vol. 34 No. 4 Dec. 17 : 11-4543(174-83-8 DOI: 1.1957/j.cnki.jsspu.17.4.6 (, 19 :,,,,,, : ; ; ; ; ; : O 41.8 : A, [1],,,,, Jung [] Legendre, [3] Chebyshev
Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές
Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ Δημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο
ΑΝΑΠΤΥΞΗ ΠΡΟΗΓΜΕΝΩΝ ΛΟΓΙΣΜΙΚΩΝ ΕΡΓΑΛΕΙΩΝ ΓΙΑ ΤΟ ΣΧΕ ΙΑΣΜΟ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΑΙ ΡΥΘΜΙΣΗ ΙΕΡΓΑΣΙΩΝ ΠΟΛΥΜΕΡΙΣΜΟΥ
ΑΝΑΠΤΥΞΗ ΠΡΟΗΓΜΕΝΩΝ ΛΟΓΙΣΜΙΚΩΝ ΕΡΓΑΛΕΙΩΝ ΓΙΑ ΤΟ ΣΧΕ ΙΑΣΜΟ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΑΙ ΡΥΘΜΙΣΗ ΙΕΡΓΑΣΙΩΝ ΠΟΛΥΜΕΡΙΣΜΟΥ Μ. Βασιλειάδου, Α. Κράλλης, Κ. Κωτούλας, Α. Μπάλτσας, Ε. Παπαδόπουλος, Π. Πλαδής, Χ. Χατζηδούκας
Το πρόβλημα. 15m. ταμιευτήρας. κανάλι
Το πρόβλημα Μετά από ατύχημα, ρύπος (τριχλωροαιθένιο διαλυμένο στο νερό) διαρρέει στον ταμιευτήρα στο πιο κάτω σχήμα. Υπάρχει ανησυχία για το πόσο γρήγορα θα επηρεαστεί κανάλι στα κατάντη αν δεν ληφθούν
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 3 ο ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ Μάθημα 3 ο Αριθμητική επίλυση εξισώσεων (μη
Πεπερασμένες διαφορές
Κεφάλαιο 2 Πεπερασμένες διαφορές Αυτό το κεφάλαιο αποτελεί μια εισαγωγή στο αντικείμενο των πεπερασμένων διαφορών για την επίλυση διαφορικών εξισώσεων. Θα εισαγάγουμε ποσότητες που προκύπτουν από διαφορές
Κεφάλαιο 0: Εισαγωγή
Κεφάλαιο : Εισαγωγή Διαφορικές εξισώσεις Οι Μερικές Διαφορικές Εξισώσεις (ΜΔΕ) αλλά και οι Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ) εμφανίζονται παντού στις επιστήμες από τη μηχανική μέχρι τη βιολογία Τις περισσότερες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 4: Εξίσωση διάχυσης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 4: Εξίσωση διάχυσης Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... 1. Εξετάσαμε τις μεθόδους των
ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος
Μεθοδική Ανάπτυξη Δικτυακής Υποδομής. Παρουσίαση στην ημερίδα για Σύγχρονες τάσεις στις Τηλεπικοινωνίες και Τεχνολογίες Αιχμής
Μεθοδική Ανάπτυξη Δικτυακής Υποδομής Παρουσίαση στην ημερίδα για Σύγχρονες τάσεις στις Τηλεπικοινωνίες και Τεχνολογίες Αιχμής 14-01-2006 1 Περιεχόμενα Η ανάγκη για μεθοδικό σχεδιασμό δικτύων Μία δομημένη
Περιπτώσεις συνοριακών συνθηκών σε προβλήματα γεωτεχνικής μηχανικής
Κεφάλαιο 5 Περιπτώσεις συνοριακών συνθηκών σε προβλήματα γεωτεχνικής μηχανικής Στο παρόν κεφάλαιο παρουσιάζονται οι περιπτώσεις συνοριακών συνθηκών οι οποίες συναντώνται σε προβλήματα γεωτεχνικής μηχανικής.
ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ 1. ΓΕΝΙΚΑ
ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ 1. ΓΕΝΙΚΑ ΣΧΟΛΗ ΠΟΛΥΤΕΧΝΙΚΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ CEID_ΝΥ343 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ ΕΑΡΙΝΟ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ
Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών
Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
2.1 Αριθμητική επίλυση εξισώσεων
. Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων
ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).
ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr Διπλωματικές