a (x)y a (x)y a (x)y' a (x)y 0
|
|
- ἸωσαΦάτ Λιάπης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Γραμμικές Διαφορικές εξισώσεις Ανώτερης Τάξης Έστω ότι έχουμε μια γραμμική διαφορική εξίσωση τάξης n a (x) a (x) a (x)' a (x) f (x) () (n) (n) n n 0 όπου a i(x),i 0,...,n και f(x) είναι συνεχείς συναρτήσεις του x σε ένα διάστημα του. Αν f(x)=0 τότε η () ονάζεται ογενής γραμμική διαφορική εξίσωση ανώτερης τάξης. Ένα σημείο x 0 ονάζεται αλό όταν a n(x 0) 0 αλλιώς το σημείο αυτό ονάζεται ανώμαλο. Η εξίσωση () υποβιβάζει την τάξη της όταν a n(x 0) 0 αφού ο ανώτερος όρος πια θα είναι τάξης (n-). Τον επόμενο ορισμό θα τον δανειστούμε από την γραμμική άλγεβρα Ορισμός Έστω ότι έχουμε τις ακόλουθες συναρτήσεις (x), (x),..., n(x) και ci πραγματικοί αριθμοί. Οι συναρτήσεις αυτές ονάζονται γραμμικά ανεξάρτητες αν και μόνο αν c (x) c (x) c3 3(x) cn n(x) 0 () συνεπάγεται ότι c c... cn 0. Ενώ ονάζονται γραμμικά εξαρτημένες αν ισχύει η () και έστω και ένας συντελεστής να είναι διάφορος του μηδενός, δηλαδή για κάποιο ci να ισχύει ci 0. Έστω οι αρχικές συνθήκες (x ), '(x ), ''(x ),..., (x ) της () τότε (n) n 0 μπορεί να αποδείξει κανείς ότι η διαφορική εξίσωση () έχει μια και μοναδική λύση. Πρόταση Έστω ότι έχουμε τις ακόλουθες συναρτήσεις (x), (x),..., k(x) όπου k nπου αποτελούν ικές λύσεις της Τότε ο γραμμικός συνδυασμός τους a (x) a (x) a (x)' a (x) 0 (3) (n) (n) n n 0 (x) c (x) c (x) c3 3(x) ck k(x) θα είναι επίσης μια ική λύση. Αν επίσης αυτές είναι γραμμικά ανεξάρτητες και k=n τότε η γενική λύση της (3) είναι η ακόλουθη (x) c (x) c (x) c3 3(x) cn n(x). Παρατήρηση Μπορεί να αποδείξει κανείς ότι η (3) έχει πάντα n γραμμικά ανεξάρτητες συναρτήσεις. Ορισμός Έστω ότι έχουμε τις ακόλουθες συναρτήσεις (x), (x),..., n(x) με παράγωγους μέχρι (n-) τάξης τότε ορίζουμε ως ορίζουσα ronskii την
2 ... n ' '... ' n.... (n ) (n ) (n ) n Παρατήρηση Από τον παραπάνω ορισμό αρκεί να αποδείξουμε ότι η ορίζουσα ronsii των (x), (x),..., n(x) λύσεων της (3) είναι διάφορη του μηδενός για να βρούμε την γενική λύση της (3), καθώς θυμίζουμε ότι όταν μια ορίζουσα είναι διάφορη του μηδενός τότε τα διανύσματα της είναι γραμμικά ανεξάρτητα. Επιστρέφουμε τώρα πίσω στην (). Η γενική λύση της έρχεται στην ακόλουθη μορφή (x) (x) (x) όπου (x) είναι η γενική λύση της αντίστοιχης ογενούς διαφορικής και μια ική της λύση. Παράδειγμα Να εξετάσετε αν οι συναρτήσεις είναι γραμμικά ανεξάρτητες: Λύση Για να είναι οι συναρτήσεις αυτές γραμμικά ανεξάρτητες πρέπει (x) είναι x,x,. c (x) c (x) c (x) c x c x c να συνεπάγεται ότι c c c3 0 που ισχύει.( από την ισότητα των πολυωνύμων) Ένας δεύτερος τρόπος είναι ο υπολογισμός της ορίζουσας, επένως έχουμε x x x x Παράδειγμα Να εξετάσετε αν η (x) c (x) c (x) c3 3(x) c4 4(x) αποτελεί γενική λύση της '''' ''' 3'' 5' 0 όπου είναι ικές λύσεις της διαφορικής. (x), (x) x, (x) x, (x) x x x x 3 4 Λύση Για να είναι η (x) c (x) c (x) c3 3(x) c4 4(x) γενική λύση της διαφορικής πρέπει να είναι γραμμικά ανεξάρτητες οι συναρτήσεις αυτές, επένως υπολογίζουμε την ορίζουσα x x x x x x x x x x x x x x x x 54 0 x x x x x x x x x 4x 4 3 x x 6x 6 8 x x x x x x x.
3 Γραμμικές ογενής διαφορικές εξισώσεις ανώτερης τάξης με σταθερούς συντελεστές Στο κεφάλαιο αυτό θα μελετήσουμε τρόπους λύσεις της () όπου οι a i(x),i 0,...,n να είναι πραγματικές σταθερές, δηλαδή a i(x) a i,i 0,...,n.Έστω ότι έχουμε μια γραμμική διαφορική εξίσωση τάξης n a a a ' a 0 (4) (n) (n) n n 0 όπου a i,i 0,...,n σταθεροί πραγματικοί αριθμοί με an 0. Πρόταση Αν λx και αντίστροφα. είναι λύση της (4) τότε το λ ικανοποιεί την παρακάτω εξίσωση a λ a λ a λ a λ a 0 (5) n n n n n n 0 Η εξίσωση (5) ονάζεται χαρακτηριστική εξίσωση της (4). Πρόταση Αν λ,λ,...,λ n είναι ρίζες της (5) διάφορες μεταξύ τους τότε οι συναρτήσεις (x), (x),..., (x) αποτελούν ικές λύσεις της (4) και ο γραμμικός λx λx λnx n συνδυασμός τους αποτελεί την γενική λύση της διαφορικής, δηλαδή (x) c (x) c (x) c3 3(x) cn n(x). Η διαδικασία που ακολουθεί η επίλυση των διαφορικών αυτών εξισώσεων είναι η ακόλουθη: Έστω λ,λ,...,λ n ρίζες της χαρακτηριστικής εξίσωσης (5) τότε. Αν οι ρίζες είναι διαφορετικές μεταξύ τους, δηλαδή λi λ j,i, j 0,,...,n τότε η γενική λύση γράφεται ως (x) c (x) c (x) c (x) c (x) c c c c λx λx λx 3 λnx 3 3 n n 3 n Αν κάποιες από τις ρίζες προκύψουν μιγαδικοί αριθμοί τότε συνήθως χρησιμοποιούμε τον τύπο Eulr, δηλαδή λx abix ax ibx ax (cos bx isin bx ) Παρατήρηση Αν μια ρίζα είναι μιγαδική τότε και ο συζυγείς της θα αποτελεί ρίζα της χαρακτηριστικής εξίσωσης και άρα λύση της διαφορικής εξίσωσης. Επένως η διαφορική εξίσωση έχει ικές λύσεις της μορφής c ax cos bx,c sin bx, όπου θυμίζουμε εδώ ότι αποτελεί πλεονασμό να ax γράφαμε ότι οι λύσεις ήταν της μορφής c c (cos bx isin bx ), c c (cos bx isin bx ) (a ib)x ax (a ib)x ax Γιατί τότε θα είχαμε ax c c c (cos bx isin bx ) c (cos bx isin bx ) ax (c c ) cos bx i(c c ) sin bx C cos bx C sin bx ax ax ax ax 3
4 . Αν υπάρχει πολλαπλότητα σε μια ρίζα. Έστω ότι μια ρίζα λ i εμφανίζει πολλαπλότητα m, τότε οι ικές λύσεις που αντιστοιχούν στην ρίζα και που είναι λix λix λix m λix γραμμικά ανεξάρτητες είναι,x,x,...,x. Οι λύσεις αυτές σε συνδυασμό με τις λοιπές ικές λύσεις μας δίνουν την γενική λύση της διαφορικής εξίσωσης. Το ίδιο ισχύει και αν η ρίζα με την πολλαπλότητα ήταν μιγαδική. Παράδειγμα Να λυθεί η διαφορική εξίσωση '' ' 6 0 Λύση Για να βρούμε τις λύσεις αρχικά γράφουμε την χαρακτηριστική εξίσωση λ λ 6 0 λ,λ 3 Βλέπουμε ότι οι ρίζες είναι διαφορετικές και άρα είμαστε στην πρώτη περίπτωση, δηλαδή η γενική λύση είναι Παράδειγμα Να λυθεί η διαφορική εξίσωση c c x 3x. '' 4' 4 0 Λύση Για να βρούμε τις λύσεις αρχικά γράφουμε την χαρακτηριστική εξίσωση λ 4λ 4 0 λ λ Εδώ βλέπουμε ότι είμαστε στην δεύτερη περίπτωση αφού έχουμε πολλαπλότητα. Επένως οι λύσεις μας θα είναι της μορφής της διαφορικής εξίσωσης θα είναι Παράδειγμα Να λυθεί η διαφορική εξίσωση c, c x c c x (c xc ) x x x '' ' 0 0 x x. Άρα η γενική λύση Λύση Για να βρούμε τις λύσεις αρχικά γράφουμε την χαρακτηριστική εξίσωση λ λ 0 0 λ 3i, λ 3i Επένως η γενική λύση της διαφορικής εξίσωσης θα είναι c c (C cos3x C sin3x) Παράδειγμα Να λυθεί η διαφορική εξίσωση ( 3i)x (3i)x x 4
5 ''' 6'' ' 36 0 Λύση Για να βρούμε τις λύσεις αρχικά γράφουμε την χαρακτηριστική εξίσωση 3 λ 6λ λ 36 0 (λ 8λ 8)(λ ) 0 λ, λ 4 i, λ 4 i 3 Επένως η γενική λύση της διαφορικής εξίσωσης θα είναι c (c cos x c sin x). x 4x 3 Προχωράμε. Έστω ότι έχουμε την ακόλουθη διαφορική εξίσωση a a a a f (x) (6) (n) (n) n n 0 Για να υπολογίσουμε την γενική της λύση υπολογίζουμε αρχικά την γενική λύση της αντίστοιχης ογενούς και στην συνέχεια μια ική λύση της (6). Τότε όπως έχουμε πει το άθροισμα τους θα μας δώσει το επιθυμητό αποτέλεσμα, δηλαδή (x) (x) (x) Α. Υπολογισμός ικής λύσης της (6) (Lagrang) Όπως έχουμε δει έστω ότι οι (x), (x),..., n(x) είναι ικές λύσεις της αντίστοιχης ογενούς της (6) και έστω ότι η γενική λύση της είναι (x) c (x) c (x) c3 3(x) cn n(x) Θα κατασκευάσουμε την ική λύση της (6) χρησιμοποιώντας τις παραπάνω συναρτήσεις. Δηλαδή η βασική ιδέα της μεθόδου αυτής είναι να αντικατασταθούν οι παράμετροι c,c,,c n, της γενικής λύσης της αντίστοιχης ογενούς με μεταβλητές συναρτήσεις, με την ελπίδα να βρεθεί ειδική λύση της (6). Για να αποφύγουμε τις πολλές πράξεις η διαδικασία θα περιγραφεί για διαφορικές εξισώσεις δεύτερης τάξης, δηλαδή για τις ακόλουθες a '' a ' a f (x) (*) 0 Επένως υποθέτουμε ότι Παραγωγίζοντας την (7) έχουμε (x) u (x) (x) u (x) (x) (7) 5
6 ' (x) u' (x) (x) u (x)' (x) u' (x) (x) u (x)' (x) (u' (x) (x) u' (x) (x)) u (x)' (x) u (x)' (x) και '' (x) (u' (x) (x) u' (x) (x))' u (x)'' (x) u (x)'' (x) u' (x)' (x) u' (x)' (x) Αντικαθιστώντας τις τιμές αυτές στην (*) παίρνουμε a (u' (x) (x) u' (x) (x))' u (x)'' (x) u (x)'' (x) u' (x)' (x) u' (x)' (x) a (u' (x) (x) u' (x) (x)) u (x)' (x) u (x)' (x) a u (x) (x) u (x) (x) f (x) 0 Λαμβάνοντας υπόψη ότι οι (x), (x) αποτελούν λύσεις της αντίστοιχης ογενούς της (*) και άρα ισχύει a '' a ' a 0 0 a '' a ' a 0 0 Τελικά έχουμε a (u' (x) (x) u' (x) (x))' a (u' (x) (x) u' (x) (x)) a u' (x)' (x) u' (x)' (x) f (x) Η τελευταία εξίσωση ισχύει αν οι u (x),u (x) ικανοποιούν το σύστημα u' (x) (x) u' (x) (x) 0 (**) u' (x)' (x) u' (x)' (x) f (x) Το σύστημα αυτό είναι ένα γραμμικό σύστημα για την επίλυση του οποίου θα χρησιμοποιήσουμε τη μέθοδο Cramr. Συνεπώς έχουμε (x) 0 ' (x) (x) ' (x) Αφού οι (x), (x) είναι γραμμικά ανεξάρτητες και επίσης 0 (x) (x) 0, f(x) ' (x) ' (x) f (x) Άρα u ' (x),u ' (x) Ολοκληρώνοντας τις παραπάνω σχέσεις τελικά έχουμε τις 6
7 u (x) dx c,u (x) dx c Όπου μπορούμε να θεωρήσουμε ότι c c 0. Η διαδικασία αυτή γενικεύεται και για n τάξης διαφορικές εξισώσεις. Αρχικά κατασκευάζουμε την ική λύση ως (x) u (x) (x) u (x) (x) u 3(x) 3(x) u n(x) n(x) (7) Και αφού παραγωγίζουμε την (7) n φορές παίρνουμε ότι το σύστημα που ικανοποιούν οι u (x),u (x),...,u n(x) είναι u ' (x) (x) u ' (x) (x) u ' (x) (x) 0 n n u ' (x)' (x) u ' (x)' (x) u ' (x)' (x) 0 n n u ' (x)'' (x) u ' (x)'' (x) u ' (x)'' (x) 0 n n u ' (x) (x) u ' (x) (x) u ' (x) (x) f (x) (n ) (n ) (n ) n n Συνεπώς καταλήγουμε σε ένα σύστημα n εξισώσεων με n αγνώστους τους u',u',...,u' n όπου η ορίζουσα των συντελεστών τους είναι η 0 και επένως μπορούμε να κάνουμε χρήση της μεθόδου του Cramr και να βρούμε την λύση του συστήματος ως n u',u',...,u' n, και άρα u c,u c,...,u c. n n n Χωρίς βλάβη της γενικότητας μπορούμε να θεωρήσουμε τις σταθερές ολοκληρώσεως ίσες με το μηδέν. Παράδειγμα Να λυθεί η μη ογενής διαφορική εξίσωση '' 3'. x Λύση Η γενική λύση της αντίστοιχης ογενούς είναι ως ική λύση την x x χρήση του συστήματος (**) παίρνουμε c c. Επένως θέτουμε x x 0 u u την οποία και παραγωγίζουμε φορές και κάνοντας x x u ' u ' 0 u ' Τώρα από την μέθοδο Cramr έχουμε u ' x x x 7
8 x x x 0 x x Αφού οι x x, είναι γραμμικά ανεξάρτητες και επίσης x x 0 x 0, x x x x x x x Άρα x u' (x),u' x (x) x x Ολοκληρώνοντας τις παραπάνω σχέσεις τελικά έχουμε τις Συνεπώς η ική λύση είναι u (x) ln( ),u (x) ln( ) x x x x x x x x (x) ln( ) ( ln( )). Παράδειγμα Να λυθεί η μη ογενής διαφορική εξίσωση π π '' tan x, - x. Λύση Η γενική λύση της αντίστοιχης ογενούς είναι 0 c cosx c sin x. Επένως θέτουμε ως ική λύση την u cosx u sin x την οποία και παραγωγίζουμε φορές και κάνοντας χρήση του συστήματος (**) παίρνουμε u ' cos x u ' sin x 0 u ' sin x u ' cos x tan x Τώρα από την μέθοδο Cramr έχουμε cos x sin x sin x cos x αφού οι cosx,sinx είναι γραμμικά ανεξάρτητες και επίσης 0 sin x cosx 0 sin x, sin x tan x cosx cosx sin x tan x Άρα 8
9 sin x u' (x),u' (x) sin x cos x Ολοκληρώνοντας τις παραπάνω σχέσεις τελικά έχουμε τις Συνεπώς η ική λύση είναι u (x) sin x arcsin x,u (x) cosx (x) cosx(sin x arcsin x) sin xcosx. 9
10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
SECTION 0 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 0. Ορισµοί Συνήθης διαφορική εξίσωση (Σ Ε) καλείται µια εξίσωση της µορφής f [y (n), y (n ),..., y'', y', y, x] 0 όπου y', y'',..., y (n ), y (n) είναι οι παράγωγοι
Μέθοδος προσδιορισμού συντελεστών Euler
Μέθοδος προσδιορισμού συντελεστών Euler Η προηγούμενη μέθοδος αν και δεν έχει κανένα περιορισμό για το είδος συνάρτησης του μη ογενούς όρου, μπορεί να οδηγήσει σε πολύπλοκες ολοκληρώσεις, πολλές φορές
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS Γραμμικές μη ομογενείς διαφορικές εξισώσεις δευτέρας τάξης λέγονται οι εξισώσεις τύπου y + p(x)y + g(x)y = f(x) (1.1) Οταν f(x) = 0 η εξίσωση y + p(x)y +
y 1 (x) f(x) W (y 1, y 2 )(x) dx,
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x
Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής
D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί
ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.
ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει
Γραμμική Διαφορική Εξίσωση 2 ου βαθμού
//04 Γραμμική Διαφορική Εξίσωση ου βαθμού, με τη βοήθεια του αορίστου ολοκληρώματος, της χρήσιμης γραμμικής διαφορικής εξίσωσης πρώτου βαθμού af ( ) f ( ) cf ( ) g( ), ac,, σταθεροί πραγματικοί αριθμοί
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017 Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες Η πρώτης τάξης διαφορική εξίσωση M(x, y) + (x, y)y = 0 ή ισοδύναμα, γραμμένη στην μορφή M(x,
Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 5/9/07 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να δειχθεί ότι το πεδίο F( x, y) = y cos x + y,sin x
Διαφορικές εξισώσεις
Διαφορικές εξισώσεις Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικές εξισώσεις τεχνικές 73 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglys.gr 1 1 / 1 / 0 1 8 εκδόσεις Καλό
Γραμμικές διαφορικές εξισώσεις ανώτερης τάξης
Κεφάλαιο 5 Γραμμικές διαφορικές εξισώσεις ανώτερης τάξης Στο κεφάλαιο περιέχεται μία συνοπτική επισκόπηση των γραμμικών Δ.Ε. ανώτερης τάξης, όπου επεκτείνονται με φυσικό και αναμενόμενο τρόπο οι μεθοδολογίες
Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy
4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των
ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)
ΜΑΣ00: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Να κατατάξετε τις διαφορικές εξισώσεις, δηλ να δώσετε την τάξη της, να πείτε αν είναι γραμμική ή όχι, να δώσετε την ανεξάρτητη μεταβλητή
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/017 Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης dx y + x y. x Παρατηρούμε ότι η δ.ε. είναι ομογενής. Πράγματι, dx y x + 1 x y x y x + 1 (
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά
Εύρεση της n-οστής δύναμης ενός πίνακα εϕαρμόζοντας το θεώρημα των Cayley-Hamilton
Εύρεση της n-οστής δύναμης ενός πίνακα εϕαρμόζοντας το θεώρημα των Cayley-Hamilton Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου
Διαφορικές εξισώσεις
Διαφορικές εξισώσεις Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διαφορικές εξισώσεις τεχνικές 73 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglyos.gr 3 / 0 / 0 6 εκδόσεις Καλό πήξιμο
Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς
Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων
Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι
Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Ενότητα: Βασικά θεωρήματα για τις γραμμικές Σ.Δ.Ε. Όνομα Καθηγητή: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Εργασία Παραγωγίζοντας και ολοκληρώνοντας
Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Παραγωγίζοντας και ολοκληρώνοντας 1 1 Ακρότατα συνάρτησης Οι εντολές και Plot[x Cos[x],{x,0,20}] O ut[2 ]= FindMinimum[x Cos[x],{x,2}] {-3.28837,{x 3.42562}}
Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος
6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου
Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville
Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του τρίτου φυλλαδίου ασκήσεων. 1. Λύστε τις παρακάτω διαφορικές εξισώσεις. Αν προκύψει αλγεβρική σχέση ανάμεσα στις μεταβλητές x, y η οποία δεν λύνεται
όπου είναι γνήσια. ρητή συνάρτηση (δηλαδή ο βαθµός του πολυωνύµου υ ( x)
ΟΛΟΚΛΗΡΩΣΗ ΡΗΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στην παράγραφο αυτή θα εξετάσουµε την ολοκλήρωση ρητών συναρτήσεων, δηλαδή συναρτήσεων της µορφής p f ( ( q(, όπου p( και q ( είναι πολυώνυµα µιας µεταβλητής του µε συντελεστές
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι
ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)
ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,
2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ
ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,
> ln 1 + ln ln n = ln(1 2 3 n) = ln(n!).
η Διάλεξη: Άρρητοι αριθμοί Το σύνολο Q των ρητών αριθμών είναι το Q = { m n : m Z, n N}. αριθμός που δεν είναι ρητός λέγεται άρρητος. Ενας πραγματικός Ασκηση: Αποδείξτε ότι το άθροισμα και το γινόμενο
Β Λυκείου - Ασκήσεις Συστήματα. x = 38 3y x = 38 3y x = x = = 11
Να λυθεί το σύστημα: Β Λυκείου - Ασκήσεις Συστήματα x+ 3y= 38 3x y = 2 Θα λύσουμε το σύστημα με τη μέθοδο της αντικατάστασης: x+ 3y= 38 x = 38 3y x = 38 3y x = 38 3y 3x y = 2 338 ( 3y) y= 2 3 38 9y y =
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-9) ΜΕΡΟΣ 7: ΙΔΙΟΤΙΜΕΣ & ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ ΔΙΑΓΩΝΙΟΠΟΙΗΣΗ ΠΙΝΑΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ
Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο
Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Ακρότατα συνάρτησης FindMinimum[f,{x, x 0 }] :βρίσκει ένα τοπικό ελάχιστο της f, ξεκινώντας από το σημείο x=x 0. FindMinimum[f,{x, x0}, {y, y 0 }], ] : τοπικό
Κεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1
Κεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1 Εξίσωση πρώτου βαθμού ή πρωτοβάθμια εξίσωση με άγνωστο x ονομάζεται κάθε εξίσωση της μορφής
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 014 ΘΕΜΑ 1 Δίνεται ο πίνακας: 1) Να
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα
ΣΥΣΤΗΜΑΤΑ. Για την επίλυση ενός γραμμικού συστήματος με την χρήση των οριζουσών βασική είναι η παρακάτω επισήμανση:
ΣΥΣΤΗΜΑΤΑ Η επίλυση συστήματος εμφανίστηκε για πρώτη φορά σε αρχαία κινέζικη συλλογή προβλημάτων και αργότερα στο έργο «Αριθμητικά» του Έλληνα μαθηματικού της Αλεξανδρινής περιόδου Διόφαντου όπου για πρώτη
ΑΚΡΙΒΗ ΔΙΑΦΟΡΙΚΑ. u,υ / A ονομάζεται ακριβές διαφορικό όταν υπάρχει. df u x,y dx υ x,y dy. f u και. f y. 3 f. και
Το άθροισμα u,d διαφορίσιμη συνάρτηση f / A Παράδειγμα υ, d, με με Το άθροισμα ΑΚΡΙΒΗ ΔΙΑΦΟΡΙΚΑ u,υ / A ονομάζεται ακριβές διαφορικό όταν υπάρχει df u,d υ,d f u f υ 6 d 9 d είναι ακριβές διαφορικό, διότι
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 26/10/2017. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς
Συνθεις Διαφορικές Εξισώσεις Ι Ασκσεις - 26/0/207 Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων πρώτης τάξης της
Διανύσµατα στο επίπεδο
Διανύσµατα στο επίπεδο Ένα διάνυσµα v έχει αρχικό και τελικό σηµείο. Χαρακτηρίζεται από: διεύθυνση (ευθεία επί της οποίας κείται φορά (προς ποια κατεύθυνση της ευθείας δείχνει µέτρο (το µήκος του, v ή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ-ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26
ΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 10, 12 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Παρεμβολή 2. Παράσταση και υπολογισμός του πολυωνύμου παρεμβολής
ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
ΤΜΗΜΑ ΔΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΑ: ) ΠΙΝΑΚΕΣ ) ΟΡΙΖΟΥΣΕΣ ) ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4) ΠΑΡΑΓΩΓΟΙ ΜΑΡΙΑ ΡΟΥΣΟΥΛΗ ΚΕΦΑΛΑΙΟ ΠΙΝΑΚEΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Πίνακας
ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου].
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ..3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να βρείτε το μέτρο των μιγαδικών
Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.
Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή
Εύρεση της n-οστής δύναμης ενός πίνακα εφαρμόζοντας το θεώρημα των Cayley-Hamilton
Εύρεση της n-οστής δύναμης ενός πίνακα εφαρμόζοντας το θεώρημα των Cayley-Hamilton Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης
1.1 Βασικές Έννοιες των Διαφορικών Εξισώσεων
Κεφάλαιο 1 Εισαγωγικά Στο κεφάλαιο αυτό θα παρουσιάσουμε τις βασικές έννοιες και ορισμούς των Διαφορικών Εξισώσεων. Στο εδάφιο 1.1 παρουσιάζονται οι βασικές έννοιες και ορισμοί των διαφορικών εξισώσεων
(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0
Τρόποι Κατασκευής Εάν οι ιδιοσυναρτήσεις του διαφορικού τελεστή L αποτελούν ένα ορθοκανονικό L ( ) ( ) (7) και πλήρες σύστημα συναρτήσεων ( ) m( ), m (8) και εάν τότε η εξίσωση Gree ( ) ( ) ( ) (9) z ()
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! ookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα
20-Φεβ-2009 ΗΜΥ Διακριτός Μετασχηματισμός Fourier
ΗΜΥ 429 8. Διακριτός Μετασχηματισμός Fourier 1 Μετασχηματισμός Fourier 4 κατηγορίες: Μετασχηματισμός Fourier: σήματα απεριοδικά και συνεχούς χρόνου Σειρά Fourier: σήματα περιοδικά και συνεχούς χρόνου Μετασχηματισμός
πυθαγόρειες τριάδες, τριγωνομετρία και υπολογισμός ολοκληρωμάτων.
πυθαγόρειες τριάδες, τριγωνομετρία και υπολογισμός ολοκληρωμάτων. Αριστείδης Κοντογεώργης -Τμήμα Μαθηματικών ΕΚΠΑ Πρότυπο Λύκειο Ευαγγελικής Σχολής Σμύρνης 21 Οκτωβρίου 2015 1 το τελευταίο θεώρημα του
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος 3. Αν A 5 4, B 4, C να υπολογίσετε τις ακόλουθες πράξεις 4 3 8 3 7 3 (αν έχουν νόημα): α) AB, b) BA, c) CB, d) C B,
Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα
Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.
Κεφάλαιο 4: Διαφορικός Λογισμός
ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...
(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x
ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως
2.1 Πολυώνυμα. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα; 3 2 ii. x iii. 3 iv. vi.
.1 Πολυώνυμα 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα; i. 1 x + x ii. x + 7 x iii. 5 x + 7x x iv. 1 x + x v. 1 4 4 x + x + 4x vi. 1 x + 5x. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 014 ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ & ΘΕΜΑΤΑ: ΓΕΝΙΚΑ
website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις πρώτου φυλλαδίου ασκήσεων.. Για κάθε μία από τις παρακάτω διαφορικές εξισώσεις πείτε αν είναι γραμμική ή όχι και προσδιορίστε την τάξη της. α. y + y +
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν
Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι
Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,
Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες
Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ
Βασικά μαθηματικά εργαλεία
Παράρτημα Αʹ Βασικά μαθηματικά εργαλεία Σύνοψη Παρατίθενται μια επανάληψη σε βασικές γνώσεις που αφορούν βασικά μαθηματικά εργαλεία, για την αντιμετώπιση προβλημάτων που παρουσιάζονται στο σύγγραμμα, και
Μερικές Διαφορικές Εξισώσεις
Πανεπιστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 24-25, Διδάσκων: Α.Τόγκας ο φύλλο προβλημάτων Ονοματεπώνυμο - ΑΜ: ΜΔΕ ο φύλλο προβλημάτων Α. Τόγκας
Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες
Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Ανέπτυξα την παρακάτω μεθοδολογία που με βοήθησε να ανταπεξέλθω στο
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα
4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-
Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει
1 x x x x 1 x x x x 1 x x x x 1 (10) B 2, B 1. (10)
Γραμμική Άλγεβρα, Τμήμα Β (Τζουβάρας/Χαραλάμπους) Φεβρουάριος 07 (I) Εστω n n πίνακας A τέτοιος ώστε A = 6A, έστω δ.χ. V με dim(v ) = n και f : V V η γραμμική απεικόνιση με πίνακα A ως πρός κάποια βάση
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
1 Σύντομη επανάληψη βασικών εννοιών
Σύντομη επανάληψη βασικών εννοιών Μερικές χρήσιμες ταυτότητες + r + r 2 + + r n = rn r r + 2 + 3 + + n = 2 n(n + ) 2 + 2 2 + 3 2 + n 2 = n(n + )(2n + ) 6 Ανισότητα Cauchy Schwarz ( n ) 2 ( n x i y i i=
Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις
Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου
O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n
Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές
(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx.
Ανάλυση Fourier και Ολοκλήρωμα Lebesgue (11 1) 3ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω f, g : T C ολοκληρώσιμες συναρτήσεις. Δείξτε ότι, για κάθε n N, (s n (f)) g = s n (f g) = f (s n (g)). Υπόδειξη. Θυμηθείτε
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 8 Νοεμβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 6 Ιανουαρίου 0 Οι ασκήσεις
3.1 Εξισώσεις 1 ου Βαθμού
1 3.1 Εξισώσεις 1 ου Βαθμού 1. Να διερευνήσετε την εξίσωση. Ισχύει: Διακρίνουμε τώρα τις περιπτώσεις: Αν τότε: ΘΕΩΡΙΑ Απάντηση Επομένως, αν η εξίσωση έχει ακριβώς μία λύση, την. Αν, τότε η εξίσωση γίνεται,
ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ
Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές
0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)
f (x) dx = f (x) + c a f (x) f (x) cos 2 (f (x)) f (x) dx = tan(f (x)) + c 1 sin 2 (f (x)) f (x) dx = cot(f (x)) + c e f (x) f (x) dx = e f (x) + c
Ασκήσεις στα Μαθηματικά Ι Τμήμα Χημ. Μηχανικών ΑΠΘ Μουτάφη Ευαγγελία Θεσσαλονίκη 208-209 Ορισμοί ΤΟ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Αντιπαράγωγος συνάρτησης Εστω συνάρτηση f : R, R διάστημα. Αν για τη συνάρτηση F :
ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 01-013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Έστω a ένας πραγματικός αριθμός. Να δώσετε τον ορισμό της απόλυτης
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΤΡΙΤΟ - Διαφορικός λογισμός (3D) - Πολυωνυμικό ανάπτυγμα - Τοπικά ακρότατα ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ
ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α
ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση
ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ
6 KΕΦΑΛΑΙΟ 3 ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Η θεωρία μεγίστων και ελαχίστων μιας πραγματικής συνάρτησης με μια μεταβλητή είναι γνωστή Στο κεφάλαιο αυτό θα δούμε τη θεωρία μεγίστων και ελαχίστων
1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό
1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1.1 Όρια ακολουθιών Λέμε ότι η ακολουθία { n } συγκλίνει με όριο R αν για κάθε ϵ > 0 υπάρχει ακέραιος N = N(ϵ) τέτοιος ώστε (1.1) n < ϵ για κάθε n > N, και
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
a n + 6a n a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8
Διακριτά Μαθηματικά Σχέσεις Αναδρομής Ι 1 / 17 a n + 6a n 1 + 12a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 2 / 17 a n + 6a n 1 + 12a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 1ος τρόπος: Εχουμε τη
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα
Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων
1. Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων Είναι ομάδα από δύο ή περισσότερες εξισώσεις των οποίων ζητάμε
Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ
Κεφάλαιο 3 ΣΤΟΙΧΕΙΑ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Στο πρώτο μέρος αυτού του κεφαλαίου συνοψίζουμε όσα είναι απαραίτητα για την εύρεση ιδιοτιμών και ιδιοδιανυσμάτων ενός τετραγωνικού πίνακα Στο δεύτερο μέρος αναπτύσσονται
Εργαστήριο 9 Συναρτήσεις στη PASCAL. Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός
Εργαστήριο 9 Συναρτήσεις στη PASCAL Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός 7.1 ΕΠΙΔΙΩΞΗ ΤΗΣ ΕΡΓΑΣΙΑΣ Η έννοια της συνάρτησης ως υποπρογράμματος είναι τόσο βασική σε όλες τις γλώσσες προγραμματισμού,
2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι
ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.
ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ
ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Έστω μια συνάρτηση f ορισμένη σε ένα σύνολο Α. Ένα από τα βασικότερα προβλήματα της Μαθηματικής Ανάλυσης είναι ο προσδιορισμός μιας συνάρτησης F/ A με F = f για κάθε
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου
Μαθηματικά ΜΕΡΟΣ 5 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΜΕ ΠΙΝΑΚΕΣ
Μαθηματικά ΜΕΡΟΣ 5 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΜΕ ΠΙΝΑΚΕΣ Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΣΥΣΤΗΜΑ 2Χ2 ΜΕ ΠΙΝΑΚΕΣ Έστω το σύστημα εξισώσεων 2Χ2 (2 εξισώσεις
(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac
Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας
Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι
Παραδείγματα ( ο σετ) Διανυσματικοί Χώροι Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με y, V και του πολλαπλασιασμού:
u x = 2uu y u y = 0 ϕ x = x t h (t), ϕ xx = x2 t 3 h (t) και ϕ y = y t h (t), ϕ yy = y2 t 3 h (t). t 2 h (t) + x2
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μιγαδική Ανάλυση ΟΜΑΔΑ: Β 9 Ιουνίου, 07 Θ. αʹ) Αν το G είναι ένας τόπος, δηλαδή ένα ανοικτό και συνεκτικό σύνολο στο
d k 10 k + d k 1 10 k d d = k i=0 d i 10 i.
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο