Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων
|
|
- Ἡρωδιάς Βαρνακιώτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 1. Θα ξέρεις τι λέγεται γραμμική εξίσωση με δύο αγνώστους. Λέγεται κάθε εξίσωση της μορφής αχ +βψ =γ. Θα ξέρεις τι είναι το σύστημα εξισώσεων Είναι ομάδα από δύο ή περισσότερες εξισώσεις των οποίων ζητάμε την κοινή λύση. 3. Θα ξέρεις ποια λέγονται ισοδύναμα συστήματα Λέγονται τα συστήματα που έχουν ακριβώς τις ίδιες λύσεις. 4. Θα ξέρεις να λύνεις σύστημα με την μέθοδο της αντικατάστασης όπως σου εξηγώ στο παρακάτω παράδειγμα. Να λυθεί το σύστημα: x +5y = 11 3x y = -1 Πρώτα θα λύσουμε τη μία εξίσωση ως προς τον έναν άγνωστο θεωρώντας τον άλλο γνωστό (εδώ μας συμφέρει να λύσουμε την πρώτη ως προς χ. Έτσι έχουμε : x = 11 5y 3x y = -1 88
2 Τώρα θα αντικαταστήσουμε την τιμή του χ στην δεύτερη και θα έχουμε: x = 11 5y 3(11 5y y = -1 Βλέπουμε ότι η δεύτερη εξίσωση έχει τώρα μοναδικό άγνωστο το y, τη λύνουμε λοιπόν και έχουμε: χ = 11 5y χ 11 5y χ 11 5y χ 11 5y = = = χ = 11 5y 17y y y = 1 15y y = y = 34 = y= Τώρα θα αντικαταστήσουμε την τιμή του y που βρήκαμε στην 1 η και θα έχουμε: x = x =1 y = y = Π Ρ Ο Σ Ο Χ Η! Αν κατά τη λύση προκύψει αδύνατη εξίσωση τότε το σύστημα είναι αδύνατο ενώ αν προκύψει ταυτότητα το σύστημα έχει άπειρες λύσεις. 5. Θα ξέρεις να λύνεις σύστημα με την μέθοδο των αντιθέτων συντελεστών όπως σου εξηγώ παρακάτω: Να λυθεί το σύστημα: x +5y =11 3x y = -1 Θα πολλαπλασιάσω την πρώτη εξίσωση με το 3 ( συντελεστή του χ στη η εξίσωση Και την δεύτερη εξίσωση με το 1 (αντίθετο του συντελεστή του χ της 1 ης εξίσωσης Δηλαδή x +5y = χ-y =-1. (-1 3χ +15y = 33 (1-3χ +y = 1 ( 89
3 Έτσι πέτυχα οι συντελεστές του χ στις δύο εξισώσεις να είναι αντίθετοι. (Μπορούσα να χρησιμοποιήσω τους συντελεστές του y πολλαπλασιάζοντας την πρώτη εξίσωση με + και την δεύτερη με +5. Αν τώρα προσθέσω τις εξισώσεις (1 και ( βρίσκω αμέσως το y αφού θα έχω: 17y =34! y = Αντικαθιστώντας δε την τιμή y = σε μια από τις δύο αρχικές εξισώσεις βρίσκω και το χ. Έτσι έχω: x+5" =11! x = 11-10! x = 1 6. Θα ξέρεις να λύνεις σύστημα με την μέθοδο των οριζουσών όπως σου εξηγώ παρακάτω: Να λυθεί το σύστημα: χ +5 =11 3χ y = Πρώτα βρίσκω την ορίζουσα D= #$ $ 15 #$ Που είναι η ορίζουσα των συντελεστών των αγνώστων. Μετά την D x που προκύπτει αν στην D αντικαταστήσουμε την στήλη του χ δηλαδή την πρώτη με τους αριθμούς που είναι μετά το = δηλ. είναι 11 5 Dx # #$ % 5#$ Τέλος όμοια την D y αντικαθιστώντας την η στήλη με τους 1 11 σταθερούς όρους δηλαδή: Dy # #$ 1$ 33#$ Οι άγνωστοι χ, y προκύπτουν από τις σχέσεις D D x $ 17 y $ 34 x = # # 1, y = # # D $ 17 D $ 17 90
4 7. Θα ξέρεις τη διερεύνηση του συστήματος αx+βy = γ α x + β y = γ ότι δηλαδή: 1. Αν D 0 το (Σ έχει μοναδική λύση την D x D x =,y # y D D. Αν D 0 και (D x 0 ή D y 0 το (Σ είναι αδύνατο. 3. Αν D=0, D x =0, D y =0 το (Σ έχει άπειρες λύσεις εκτός αν α=β=α =β =0 και γ 0 ή γ 0 που είναι τότε αδύνατο 8. Θα ξέρεις να λύνεις συστήματα 3 εξισώσεων με 3 αγνώστους όπως σου δείχνω παρακάτω: Να λυθεί το σύστημα: x +3y ω =5-3x + y +ω =5 x 5y+ω =-3 Απαλείφω το χ μεταξύ των δύο πρώτων εξισώσεων και έχω: 3 x+3y-ω = 5-3x+y+ω = 5 6x + 9y -3ω =15-6x +y+4ω = 10 11y +ω =5 1 &' (+ Απαλείφω τώρα πάλι το χ μεταξύ 1 ης και 3 ης εξίσωσης (μπορούσα και μεταξύ ης και 3 ης 1 x+3y-ω = 5 x-5y+ω=-3 x+ 3y - ω = 5 - -x+10y-4ω = 6 & + ' 13y 5ω = 11 ( Θα πάρω τώρα το σύστημα των (1, ( δηλ το και θα το λύσω με όποιο τρόπο θέλω, π.χ με ορίζουσες. 11y + ω =5 13y 5ω = 11 91
5 Έτσι έχω: 11 1 D= #$ 55 $ 13 #$ Dy # #$ 15 $ 11#$ Dω # # 11$ 35 #$ Τότε D $ 136 D $ 04 D $ 68 D $ 68 y ω y = # #, ω = # # 3 Τις τιμές τώρα των y, ω που βρήκα τις αντικαθιστώ σε μία από τις 3 αρχικές εξισώσεις π.χ στην τρίτη και έχω: χ $ 5" % " 3# $ 3! x$ 10+6= $ 3! x=10$ 6$ 3! x=1 Άρα λύση του συστήματος είναι χ = 1, y =, ω = 3 Π Ρ Ο Σ Ο Χ Η Εάν στο σύστημα οι σταθεροί όροι δηλαδή οι αριθμοί μετά το = είναι όλοι 0 τότε το σύστημα λέγεται ομογενές, έχει πάντα λύση την (0,0,0 και λύνοντας το με το προηγούμενο τρόπο βλέπουμε αν έχει μόνο λύση τη μηδενική ή έχει και άλλες άπειρες.( Αυτό θα συμβεί όταν οι (1, ( βγουν 9. Θα ξέρεις να λύσεις συστήματα με τεχνάσματα: Στην κατηγορία αυτή ανήκουν αρκετά συστήματα ένα από αυτά σου λύνω παρακάτω, στις λυμένες ασκήσεις δε θα δεις και άλλα. Να λυθεί το σύστημα : x $ 1 y $ 6 3z $ # # x % y $ 4z # 5 9
6 Αφού τα τρία κλάσματα είναι ίσα ονομάζω το καθένα με λ και λύνω ως προς τους αγνώστους χ, y, z. Έχω δηλαδή: x-1 ( # λ x = 3λ +1 3 x-1=3λ ( x = 3λ+1 ( y-6 4λ+6 # λ y-6 =4λ y = 4λ+6 y = 4 3z- 3z- = 5λ 3z =5λ+ 5λ+ # λ z = 5 x+y-4z =5 x+y -4z = x + y-4z =5 x+y - 4z = 5 ( * * * * + + Αν αντικαταστήσουμε τώρα τις τιμές των χ,y, z στην τελευταία εξίσωση θα βρούμε το λ. Έτσι έχουμε: 4λ+6 5λ+ 3λ+1 % " $ 4" # 5, & ' 3 & ' & ' & ' 33λ+1 % 34λ+6 $ 4 5λ+ # 15, 9λ+3+1λ+18-0λ-8 = 15, 9λ+1λ-0λ = , λ= Τότε: x = 3" +1 =7 4+ " 6 y = # 7 5 " + z = #
7 1. Να λυθεί το σύστημα: 1 & ' 15 $ x+y $ 4y # x+y # 3 % y Λύση 1 & x+y ' y =0 3 8 x+y = 3 + y Πρώτα κάνω απαλοιφή παρανομαστών και έχω y x+y - 4 = 0 8 x+y y = * x+y x+y = & 3+y' = & 3+y' 4 & ' ( + & ' & ' Τώρα κάνω πράξεις και έχω: 16x% 8y$ 45 % 1y# 0 x% y# 6% 4y Το φέρνω στην τελική του μορφή χωρίζοντας γνωστούς από αγνώστους. 16x + 8y+1y = 45( 16x + 0y = 45 x+y - 4y = 6 x - 3y = 6 * + Το λύνω με ορίζουσες: 16 0 D= #$ 48$ 0 #$ Dx # #$ 135 $ 10 #$ 55 Dy # # 96 $ 45 # Άρα : D D x $ y x= # #, y = # # $ D $ D $
8 . Να λυθεί το σύστημα: & ' & % # x % λ -1 ψ# $ 1 λ 1 x-3λψ λ Λύση αx +βy = γ Πρώτα εξετάζω αν είναι στη μορφή α-x+β-y =γ- ή θέλει φτιάξιμο. Εδώ είναι έτοιμο γι αυτό προχωρώ στην εύρεση των D, D x,d y. Έτσι έχω λ+1-3λ & '& ' 1 λ-1 # % $ % # $ D = λ+1 λ-1 3λ =λ 1 3λ 4λ 1 λ -3λ $ 1 λ-1 = D x # λ. λ-1 $ 3λ = λ -λ-3λ = $ λ $ λ D y = & ' & ' λ+1 λ #$ λ % 1 $ λ#$ λ$ 1$ λ #$ λ $ τώρα ξεκινώ διερεύνηση με την βοήθεια του πίνακα διερεύνησης που είδαμε και έχω 1. Αν & '& ' D 0 4λ 1 0 λ-1 λ+1 0 1! $ 1! 1 το σύστημα έχει μία λύση την & '& ' ' D λ λ+1 x $ λ $ λ $ x = # # D 4λ $ 1 λ-1 λ+1 Dy $ λ $ 1 y = # #$ D 4λ $ 1 & & & λ+1' $ '& ' λ 1 λ+1 '. / / / / 0 $ λ # και λ $ 1 1 #$ λ $ 1 1 λ-110, λ 11, λ 1 1 λ+110, λ 1$ 1, λ 1$ 95
9 Βρήκα λοιπόν τι συμβαίνει για όλες τις τιμές του λ εκτός από 1 1 τις τιμές λ # και λ # $. Γι αυτές θα εξετάσω ξεχωριστά ως εξής.. Αν λ= 1 D = 0 τοτε x D #$ $ $ #$ $ #$ : ( *! & Σ ' αδυνατο + 3. Αν λ= $ 1 τότε ( D = Dx #$ $ $ $ #$ % #$ % # 0* Dy #$ 6$ $ # $ # : 9 + άρα το σύστημα έχει άπειρες λύσεις τις οποίες πρέπει να βρούμε, αντικαθιστούμε λοιπόν την τιμή λ= $ 1 στο αρχικό σύστημα το οποίο γίνεται: ( 1 x-3 - ψ = ( 1 3 1( 6$ % x - ψ = - 4 x-4 ψ = ! * *! * x + - 1ψ = -1 x- ψ 1 χ $ ψ # $ 6 $ #$ χ - 3ψ= -! χ - 3ψ= - Παρατηρώ ότι οι δύο εξισώσεις είναι ίδιες, αφήνω λοιπόν τη μια και την άλλη χ-3ψ = - τη λύνω ή ως προς χ ή ως προς ψ. $ +3ψ Έτσι έχω x = $ +3ψ! x = άρα οι άπειρες λύσεις είναι 4$ +3κ 5 οι 6,κ με κ R 8 7 ;. 9 96
10 3. Να βρεθούν οι τιμές των λ,μ ώστε το σύστημα : x-λψ # 5 3x % ψ# μ% 1 1 Να έχει άπειρες λύσεις Καμία λύση Βρίσκω τις : Λύση D= 1 -λ # % 3λ 3 D x 5 -λ # # 10 % λ& μ+1 ' =10+λμ+λ μ D y # # μ = μ -14 και τοτε 3 μ+1 1. Για να έχει το σύστημα άπειρες λύσεις πρέπει Και ( D=0 ( + 3λ = 0 ( λ= - 3 ( λ= - D=0 x *! 10 + λμ + λ = 0 *! 10 + λμ + λ= 0*! 3 * D=0 μ = 14 y μ - 14= 0 μ = γιατί για το ζεύγος αυτό ισχύει και η 10+ λμ + λ = 0 αφού 30 8 είναι τότε : 10 % $ 37 9 % 6 8 $ 37 9 # 3 $ 3 $ 3 # Άρα ζητούμενες τιμές είναι λ= $ και μ = Για να είναι το σύστημα αδύνατο πρέπει: 3λ #$ D = 0 ( + 3λ = 0 ( 3 3 Dx 10 η Dy 10 + μ η 10+λμ+λ 10 + μ 114 η 10+ $ μ+ $ ( * * *
11 λ=- λ= και μ 114 η 30 - μ- 10 μ 114 η μ 114 ( ( * * + + Άρα πρέπει λ #$ και μ Αν η εξίσωση χ 3 +αχ +βχ+γ = 0 έχει ρίζες τις 1,,3 να βρεθούν οι τιμές των α,β,γ. Λύση Αφού το 1 είναι ρίζα της εξίσωσης 1 3 +α. 1 +β. 1+γ=0 α+β+γ = -1 Αφού το είναι ρίζα της εξίσωσης 3 +α. +β. +γ=0 4α+β+γ = -8 Αφού το 3 είναι ρίζα της εξίσωσης 3 3 +α. 3 +β. 3+γ=0 9α+3β+γ = -7 α +β +γ = -1 Άρα έχω να λύσω το σύστημα 4α +β +γ = -8 9α +3β +γ = -7 εξισώσεων με τρεις αγνώστους. τριών Παίρνω τις πρώτες και απαλείφω το γ έτσι έχω: $ 1 α+β+γ = α+β+γ = -8 $ α$ β$ γ = 1 (! 4α+β+γ = -8! 3α + β = α+β = -7 ( * * + + &' 98
12 Παίρνω τώρα την 1 η και την 3 η απαλείφω πάλι το γ. Έτσι έχω: $ 1 α+β+γ = α+3β+γ = -7 -α-β-γ = 1 (! 9α+3β+γ = -7! 8α+β = - 6 ( * * + + 8α + β= - 6 και αν απλοποιήσω με το! 4α+β #$ 13 & ' Λύνω τώρα το (Σ των (1 και ( με ορίζουσες, έτσι: 3 1 D = # 3 $ 4 # $ $ 7 1 Dα # # $ 7% 13# 6 $ Dβ # # $ 39% 8# $ άρα D 6 D 11 = = = = D 1 D 1 α β α = 6, β = 11 Τώρα αντικαθιστώντας σε μια από τις αρχικές π.χ στην α+β+γ = 1 έχω: γ = -1! γ = ! γ = -6 Βρήκαμε λοιπόν ότι α = -6, β = 11, γ =
13 5. Να λυθεί το σύστημα 3x + y +z = 0 x +3y +z = x +y +3z = -1 Λύση & α' & β' & γ' Το σύστημα αυτό εκτός από τον κανονικό τρόπο μπορεί να λυθεί με τέχνασμα γιατί αν προσθέσουμε όλες τις εξισώσεις ο αριθμός των χ, y,z είναι ίδιος. Πράγματι α + β + γ 5x+ 5ψ +5z = - 10, x+ ψ + z = - (1 & ' & ' &' & ' & ' &' & ' Τοτε (α - (1! 3x + ψ +z -x - ψ - z = 0 - -! x =! x = 1 β $ 1! x+ 3ψ+ z -x -ψ - z = - -! ψ = 4! ψ = γ $ 1! x+ ψ +3z -x -ψ -z = $ 1 $ $! z = $ 10! z = $ 5 6. Να λυθεί το σύστημα % % # $ 1 x y z 4 1 % % # $ 8 x y z % % # $ 7 x y z Λύση % % #$ 1 x y z % % #$ 8 x y z Το σύστημα το γράφουμε : % 3 % #$ 7 x y z Αν τώρα ονομάσουμε το 1 # α, 1 # β, 1 # γ το σύστημά μας x y z γίνεται: 100
14 α + β + γ = -1 4α +β =γ = -8 9α +3β +γ = -7 Η λύση του συστήματος αυτού όπως είδαμε στη 4 η άσκηση είναι: α =-6, β = 11, γ = -6 άρα: #$ 6! x = $ # 11! ψ = #$ 6! z = $ x 6 ψ 11 z 6 7. Σ ένα αγρόκτημα υπάρχουν κότες και κουνέλια που έχουν 5 κεφάλια και 80 πόδια. Πόσα είναι τα κουνέλια και πόσες είναι οι κότες; Λύση Για να λύσουμε αυτό το πρόβλημα θα φτιάξω σύστημα με αγνώστους τα ζητούμενα. Έστω λοιπόν ότι έχουμε χ κουνέλια και ψ κότες επειδή το κάθε ζωντανό έχει ένα κεφάλι θα είναι x +ψ = 5 Τα χ κουνέλια έχουν 4χ πόδια Οι y κότες έχουν y πόδια και αφού όλα τα πόδια είναι 80 έχουμε 4χ+ψ=80 x +ψ = 5 ( x +ψ = 5 &' 1 Το σύστημά μας λοιπόν είναι *, 4x + ψ = 80 x + ψ =40 + & ' 1 - χ =15 τότε από ( ψ = 5! ψ =10 Άρα τα κουνέλια είναι 15 και οι κότες
15 1. Να λυθεί το σύστημα x -1 % 3y + 1 # 8 3x -1 + y + 1 # 7. Να προσδιορίσετε τις τιμές α και β ώστε να έχουν την ίδια λύση τα δύο συστήματα : 5x +3y = 11 αx +βy = 1 Σ : -x +5y = 8 Σ : 3αx - βy =17 Α Β 10
16 3. Να λυθεί το σύστημα 3 : x -ψ # x-3ψ = 5 x+ψ & ' 4. α Να αποδείξετε ότι το σύστημα 3 & κ-1 x+y = κ x- κ-1 ' y = 10 : έχει μοναδική λύση. β Να βρείτε το κ ώστε η μοναδική λύση να επαληθεύει και την εξίσωση x + y = 103
17 5. Να λυθεί για τις διάφορες τιμές του λ το σύστημα: 3 : λx -ψ = λ x - λψ = λ 4 6. Να βρεθεί διψήφιος αριθμός του οποίου η διαφορά του ψηφίου των μονάδων από το ψηφίο των δεκάδων είναι 4 και το άθροισμα του αριθμού και αυτού που προκύπτει, αν αλλάξουμε αμοιβαία τα ψηφία του (οι δεκάδες να γίνουν μονάδες και αντίστροφα είναι
18 7. Να λυθεί το σύστημα x + y + 3z = 0 3x +y - z = 0 x +5y +8z = 0 8. Να λυθεί το σύστημα % % # 9 x y+5 z-1 3 $ % # x y+5 z-1 $ % $ # 0 x y+5 z-1 105
19 9. Δίνεται η συνάρτηση fx & ' Να βρεθούν α, β, γ αν x % αx = β αν χ<0 # 3x+ γ % αx +β αν χ < 0 : x+1 & ' & ' & ' f -1 # 0 f 0 = 5 f = 7 106
ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)
6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Η εξίσωση α + βy = γ 1. Υπάρχουν προβλήματα που η επίλυση τους οδηγεί σε μια γραμμική εξίσωση με δύο αγνώστους, y και η οποία είναι της μορφής
Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.
Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει
ΚΕΦΑΛΑΙΟ 3 ο. - Συστήµατα γραµµικών εξισώσεων της µορφής: α
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ - - ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ ο - Συστήµατα ραµµικών εξισώσεων της µορφής: α x+ β y= α x+ β y= Λύση του (Σ) καλείται η διαδικασία εύρεσης των τιµών του x και του y που επαληθεύουν και τις δύο
ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΣΥΣΤΗΜΑΤΑ....................................................
3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ
ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ
3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; αx + βy = γ
ΣΥΣΤΗΜΑΤΑ Γραμμικη εξισωση με δυο αγνωστους λεγεται καθε εξισωση της μορφης: 3. Να δειχτει οτι α + α. Ποτε ισχυει το ισον; α + β = γ Λυση της πιο. Aν πανω α, β εξισωσης θετικοι, να ειναι συγκρινεται καθε
5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ
5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ Για να επιλύσουμε μία παραμετρική εξίσωση ακολουθούμε τα παρακάτω βήματα: i) Βγάζω παρενθέσεις ii) Κάνω απαλοιφή παρανομαστών iii) Χωρίζω γνωστούς από αγνώστους (άγνωστος είναι
ΣΥΣΤΗΜΑΤΑ. Για την επίλυση ενός γραμμικού συστήματος με την χρήση των οριζουσών βασική είναι η παρακάτω επισήμανση:
ΣΥΣΤΗΜΑΤΑ Η επίλυση συστήματος εμφανίστηκε για πρώτη φορά σε αρχαία κινέζικη συλλογή προβλημάτων και αργότερα στο έργο «Αριθμητικά» του Έλληνα μαθηματικού της Αλεξανδρινής περιόδου Διόφαντου όπου για πρώτη
Β Λυκείου - Ασκήσεις Συστήματα. x = 38 3y x = 38 3y x = x = = 11
Να λυθεί το σύστημα: Β Λυκείου - Ασκήσεις Συστήματα x+ 3y= 38 3x y = 2 Θα λύσουμε το σύστημα με τη μέθοδο της αντικατάστασης: x+ 3y= 38 x = 38 3y x = 38 3y x = 38 3y 3x y = 2 338 ( 3y) y= 2 3 38 9y y =
ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι
ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.
Ε ΝΟΤΗΤΑ 6 ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ
Ε ΝΟΤΗΤΑ 6 ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Μαθηματικές Προτάσεις Πλοηγηθείτε: http://www.youtube.com/watch?v MtmJ3BArAgA Διαβάστε: Λ. Κάρολ, Η Αλίκη στη Χώρα των Θαυμάτων, Εκδόσεις Πατάκη Δείτε: Alice in
Εξισώσεις πρώτου βαθμού
Εξίσωση ου βαθμού με ένα άγνωστο 0ρισμός Εξισώσεις πρώτου βαθμού Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή αχ=β λέγεται εξίσωση ου βαθμού με ένα άγνωστο. Σε μια εξίσωση η μεταβλητή λέγεται άγνωστος.οι
1.2 Εξισώσεις 1 ου Βαθμού
1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση
Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής
D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί
Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων
ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 69. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Ορισμός Ονομάζουμε εξίσωση ου βαθμού με έναν άγνωστο κάθε ισότητα που έχει την μορφή α +β+ γ = 0 με α 0 (ο είναι ο άγνωστος της εξίσωσης,
ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ
ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1) Γραμμική εξίσωση με δύο αγνώστους λέγεται κάθε εξίσωση της μορφής αχ+βψ=γ, όπου α,β,γr. α) Λύση της γραμμικής αυτής εξίσωσης λέγεται κάθε ζεύγος (χ,ψ)=(χ 0,ψ 0 ) που την
Η Έννοια της εξίσωσης:
Η Έννοια της εξίσωσης: Θεωρία και λυμένα παραδείγματα Εξίσωση με έναν άγνωστο λέμε μια ισότητα η οποία περιέχει αριθμούς και έναν άγνωστο γράμμα ( μεταβλητή). Εξισώσεις είναι οι: χ+=8, χ-21=4,χ+1, 8χ=26.
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε
1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Μέθοδοι επίλυσης γραμμικού συστήματος χ Γραφική επίλυση Σχεδιάζουμε τις ευθείες που αντιπροσωπεύουν οι εξισώσεις του συστήματος. Αν: - οι δύο ευθείες τέμνονται, τότε το σύστημα έχει
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
3ο κεφάλαιο: Εξισώσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα 1
ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού
ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
ΤΜΗΜΑ ΔΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΑ: ) ΠΙΝΑΚΕΣ ) ΟΡΙΖΟΥΣΕΣ ) ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4) ΠΑΡΑΓΩΓΟΙ ΜΑΡΙΑ ΡΟΥΣΟΥΛΗ ΚΕΦΑΛΑΙΟ ΠΙΝΑΚEΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Πίνακας
ΑΛΓΕΒΡΙΚΗ ΕΠΙΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΑΛΓΕΒΡΙΚΗ ΕΠΙΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Επίλυση συστήματος εξισώσεων Υποθέστε ότι: Το άθροισμα δύο αριθμών είναι 20. Ποιοι είναι οι αριθμοί;
Φίλη μαθήτρια, φίλε μαθητή,
Φίλη μαθήτρια φίλε μαθητή Η εργασία αυτή έγινε με σκοπό να συμβάλει στην κατανόηση στην εμπέδωση και στην εμβάθυνση των μαθηματικών εννοιών που αναπτύσσονται στην Άλγεβρα της Β Λυκείου. Η ύλη είναι γραμμένη
4. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί
1 ΑΣΚΗΣΕΙΣ 1. Να εκτελέσετε τις προσθέσεις, όπου αυτό είναι δυνατόν α) χ 3 +5ψ 3 β) χ 3 +6χ 3 γ) 4χ 5 ω-7ωχ 5 δ) 3χ 5 +4χ ε) χ 4 +3χ 4 ζ) χ -χ η) χ +χ θ) χ +χ ι) χ+χ 3 κ) χ -χ λ) 3χ 4-4χ 4 μ) 3χ-3χ 3.
ΑΛΓΕΒΡΑ Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η
Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η ΑΛΓΕΒΡΑ Τα ςημαντικότερα ςημεία τησ θεωρίασ Ερωτήςεισ εμπζδωςησ- απαντήςεισ Μεθοδολογία αςκήςεων Προτεινόμενεσ αςκήςεισ του βιβλίου - διεξοδική ανάλυςη των λφςεων (ςκζψη-βήματα-επεξήγηςη
ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α': ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο: Αλγεβρικές παραστάσεις Παράγραφος A..: Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Β: Πράξεις με μονώνυμα Τα σημαντικότερα σημεία
ΠΟΛΥΧΡΟΝΙΑΔΗΣ ΝΙΚΟΣ ΤΑΥΤΟΤΗΤΕΣ
ΘΕΩΡΙΑ Α ΛΥΚΕΙΟΥ ΤΑΥΤΟΤΗΤΕΣ ). (α + β) = α +αβ + β ). (α β) = α αβ + β. 3). (α + β) 3 = α 3 + 3α β +3αβ + β 3 ). (α β) 3 = α 3 3α β +3αβ β 3. 5). α β = (α β)(α + β) 6). α + β = (α + β) αβ. 6). α 3 β 3
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ www.pitetragono.gr Σελίδα. ΔΥΝΑΜΕΙΣ : Ισχύουν οι
3.3 ΑΛΓΕΒΡΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ
. ΑΛΓΕΒΡΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΘΕΩΡΙΑ. Μέθοδοι επίλυσης : Οι βασικές µέθοδοι αλγεβρικής επίλυσης ενός γραµµικού συστήµατος δύο εξισώσεων µε δύο αγνώστους είναι δύο η µέθοδος της αντικατάστασης
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από
3. Να δειχτει οτι α α. Ποτε ισχυει το ισον;
EΞΙΣΩΣΕΙΣ Ε ξ ι σ ω σ η ο υ β α θ μ ο υ 3. Να δειχτει οτι α + 0 0α. Ποτε ισχυει το ισον; Εστω η εξισωση: α+β=0 () Λυση η ριζα. της Aν εξισωσης α, β θετικοι λεγεται, να συγκρινεται κάθε τιμη τους του πραγματικου
ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ
ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ Κάθε εξίσωση της µορφής α + β = γ όπου α + β 0 ( α, β όχι συγχρόνως 0) παριστάνει ευθεία. (Η εξίσωση λέγεται : ΓΡΑΜΜΙΚΗ) ΕΙ ΙΚΑ γ Αν α = 0 και β 0έχουµε =. ηλαδή µορφή = c.
1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ Η εξίσωση με και 0 ή 0 λέγεται γραμμική εξίσωση. Οι μεταβλητές είναι οι άγνωστοι της εξίσωσης αυτής. Οι αριθμοί λέγονται συντελεστές των αγνώστων
ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής
ΣΥΣΤΗΜΑΤΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. x-1 x+3. ή D 0 τότε x= =1 και y= 2. 2x 3y ή D=D D 0 άρα το σύστημα είναι αόριστο ή
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1.Να λύσετε την εξίσωση: 3 4-1 +3 0 Λύση: 3 4-1 +3 0 3 3 4 1 0 4 5 0 1 ή =5.Να λυθεί το σύστημα : 3 1 5 Λύση: Βρίσκουμε τις ορίζουσες 3-1 3 11 6 1 7 1 1-1 1 51 5 7 5 3 1 35 11 15 1 14
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ Να δείξετε ότι (x 2) 3 + (3x 4) 3 + (6 4x) 3 = 3(x 2)(3x 4)(6 4x). Λύση Στο 1 0 μέλος βλέπουμε άθροισμα κύβων 3 αριθμών, εξετάζουμε αν έχουν άθροισμα 0, (x 2) + (3x 4) + (6
Κεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1
Κεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1 Εξίσωση πρώτου βαθμού ή πρωτοβάθμια εξίσωση με άγνωστο x ονομάζεται κάθε εξίσωση της μορφής
ΚΕΦΑΛΑΙΟ 1 Ο ΣΥΣΤΗΜΑΤΑ. Λέξεις-Κλειδιά: Γραμμικά συστήματα, εξισώσεις, ορίζουσα, άγνωστοι, επίλυση, διερεύνηση
ΚΕΦΑΛΑΙΟ 1 Ο ΣΥΣΤΗΜΑΤΑ Λέξεις-Κλειδιά: Γραμμικά συστήματα, εξισώσεις, ορίζουσα, άνωστοι, επίλυση, διερεύνηση 0 1 ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Α. ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Όπως νωρίζουμε από το υμνάσιο κάθε εξίσωση
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...
ΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ»
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Α ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Πεδίο
2.1 Η ΕΞΙΣΩΣΗ αx + β = 0
1 2.1 Η ΕΞΙΣΩΣΗ αx + β = 0 ΘΕΩΡΙΑ 1. Εξίσωση 1 ου βαθµού µε άγνωστο x Κάθε εξίσωση που έχει ή µπορεί να πάρει τη µορφή αx + β = 0. Tο x είναι ο άγνωστος, το α ο συντελεστής του αγνώστου και το β ο σταθερός
Εξίσωση 1 η 1 ο μέλος 2 ο μέλος
1 Παραδείγματα (επανάληψη) Συντελεστής του αγνώστου x. Εξίσωση 1 η 1 ο μέλος 2 ο μέλος Ε ξ ι σ ώ σ εις 1 ο υ β α θ μ ο ύ 2x + 2 = x - 1 Άγνωστος x Γνωστός Eπίλυση 1 ος τρόπος Μπορούμε να γράψουμε την εξίσωση
4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ
4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ 1 : ΑΠΛΗ ΜΟΡΦΗ Για να λύσω μια ανίσωση της μορφής : 0 ή 0 1 ος τρόπος : Λειτουργώ όπως και στις εξισώσεις πρώτου βαθμού, δηλαδή χωρίζω γνωστούς από αγνώστους, και
εξίσωση πρώτου βαθμού
κεφάλαιο 2 Α1 εξίσωση πρώτου βαθμού επίλυση της εξίσωσης πρώτου βαθμού Εξίσωση, είναι κάθε ισότητα που περιέχει κάποιον άγνωστο, την τιμή του οποίου καλούμαστε να προσδιορίσουμε. Ο βαθμός μιας εξίσωσης
12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ
Α λ γ ε β ρ α Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α Γ Γ υ μ ν α σ ι ο υ Με πολυ μερακι Για τους μικρους φιλους μου Τακης Τσακαλακος Κερκυρα
2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση
ΠΟΛΥΩΝΥΜΑ. Λυμένα Παραδείγματα
ΠΟΛΥΩΝΥΜΑ Λυμένα Παραδείγματα. Να βρεθούν οι τιμές του λ R για τις οποίες το πολυώνυμο Ρ () = (4λ -9) +(λ -λ-) +λ- είναι το μηδενικό. Το Ρ () θα είναι το μηδενικό πολυώνυμο, για εκείνες τις τιμές του λ
1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή
2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ
ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,
ΣΥΣΤΗΜΑΤΑ ΣΩΣΤΟ ΛΑΘΟΣ
ΥΤΗΜΑΤΑ ΩΤΟ ΑΘΟ. Aν όταν α = β τότε το σύστημα, έχει μοναδική λύση.. Το σύστημα, έχει μοναδική λύση για κάθε α, β με α β 3. Το σύστημα, είναι αδύνατο όταν α = β και γ β 4. Το σύστημα, έχει απειρία λύσεων
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ
Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(
ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 ΚΕΦΑΛΑΙΟ 1ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Οι Πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι είναι οι πραγματικοί αριθμοί ; Ποιοι είναι οι
1. Η ευθεία y = 5 είναι κάθετη στον άξονα y y. Σ Λ. 2. Η ευθεία x = - 2 είναι παράλληλη προς τον άξονα x x. Σ Λ
ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις του τύπου «σωστό-λάθος» 1. Η ευθεία y = 5 είναι κάθετη στον άξονα y y. Σ Λ 2. Η ευθεία x = - 2 είναι παράλληλη προς τον άξονα x x. Σ Λ 3. Οι ευθείες x = κ και y
O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n
Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές
Η έννοια της γραμμικής εξίσωσης
Η έννοια της γραμμικής εξίσωσης Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ Η εξίσωση αx+βy = γ Λύση της εξίσωσης α x + β y = γ ονομάζεται
Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων
Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων 1. Μια παράσταση που περιέχει πράξεις µόνο µε αριθµούς, λέγεται αριθµητική παράσταση. Παράδειγµα: + + 1 =. είναι µια αριθµητική παράσταση, το αποτέλεσµα των
3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = βα + β, Β = α β + αβ
ΑΝΙΣΩΣΕΙΣ 1 Α ν ι σ ω σ η 1 ο υ β α θ μ ο υ 3. Να δειχτει οτι α + 110 0α. Ποτε ισχυει το ισον; Μορφη: αx + β > 0 με α,β. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = βα + β, Β = α β + αβ Αν α > 0
Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.
Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη
ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 5 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς
Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς Να χαρακτηρίσετε µε Σ (Σωστό) ή Λ (Λάθος) τους παρακάτω ισχυρισµούς:. Για κάθε α R ισχύει ότι : α =α.. Για κάθε α R ισχύει ότι : α = α.. Για κάθε α R ισχύει ότι
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ
ΜΕΡΟΣ Α.5 ΑΝΙΣΟΤΗΤΕΣ-ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ 9. 5 ΑΝΙΣΟΤΗΤΕΣ- ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΙ Εάν έχουμε δύο πραγματικούς αριθμούς α και β τότε λέμε ότι ο α είναι μεγαλύτερος
Μαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Α ΛΥΚΕΙΟΥ. Άσκηση 3. Να λυθεί η εξίσωση: 2(x 1) x 2. 4 x (1). Λύση. Έχουμε, για κάθε x D : x 5 12x. 2x 1 6 (1) x 4. . Συνεπώς: D.
Α ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΗΣ Β 77 τ/8 Αλγεβρα Α Λυκείου ΕΞΙΣΩΣΕΙΣ ΑΝΙΣΩΣΕΙΣ Αντώνης Κυριακόπουλος - Θανάσης Μαλαφέκας Επιμέλεια: Χρήστος Λαζαρίδης, Χρήστος Τσιφάκης Στα επόμενα, με D θα συμβολίζουμε το σύνολο ορισμού
Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...
3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν-1 +...+α
Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:
Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις
ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΗ η Αν α +β +γ = αβγ και α + β + γ, να δείξετε ότι το πολυώνυμο P()=(α β) +(β γ) + γ α είναι το μηδενικό πολυώνυμο. Από την ταυτότητα του Euler α +β +γ -αβγ = (α + β + γ)[(α-β)
Ανισώσεις Α Βαθμού -Εφαρμογές στις Ανισώσεις
1 Ανισώσεις Α Βαθμού -Εφαρμογές στις Ανισώσεις Ανίσωση με έναν άγνωστο ονομάζουμε κάθε ανισότητα που περιέχει μια μεταβλητή και η οποία αληθεύει για ορισμένες τιμές της μεταβλητής. Πχ: Οι x + > 7, 2(y
ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ
ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΕΙΣΑΓΩΓΗ Σε κάθε τετραγωνικό πίνακα ) τάξης n θα αντιστοιχίσουμε έναν πραγματικό ( ij αριθμό, τον οποίο θα ονομάσουμε ορίζουσα του πίνακα. Η ορίζουσα θα συμβολίζεται det ή Α ή n n
Ορισμένες σελίδες του βιβλίου
Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή
5. Λύση γραμμικών συστημάτων με τη μέθοδο GAUSS-JORDAN
5. Λύση γραμμικών συστημάτων με τη μέθοδο GAUSS-JORDAN 5.1. Ορισμός: Γραμμική Εξίσωση με n αγνώστους, x 1, x 2,.. x n λέγεται μια εξίσωση της μορφής: α 1 x 1 + α 2 x 2 + + α n x n = β 1, όπου τόσο οι συντελεστές
Κεφάλαιο 1 ο. Αλγεβρικές παραστάσεις.
Μαθηματικά Γ Γυμνασίου Κεφάλαιο 1 ο. Αλγεβρικές παραστάσεις. Μέρος Α Θεωρία. 1. Πως προσθέτουμε δύο πραγματικούς αριθμούς; 2. Πως πολλαπλασιάζουμε δύο πραγματικούς αριθμούς; 3. Ποιες είναι οι ιδιότητες
3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ
TΡΙΓΩΝΟΜΕΤΡΙΑ Τ ρ ι γ ω ν ο μ ε τ ρ ι κ ο ι Α ρ ι θ μ ο ι Ο ρ ι σ μ ο ι. Να δειχτει οτι α + α. Ποτε ισχυει το ισον; Ονομαζουμε ημx την τεταγμενη π/ του Μ (εντονο. Aν μπλε) α, β θετικοι, να συγκρινεται
ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :
2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.
2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι
1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,
. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Τηλ 0676-7 /0600 Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Να συμπληρωθούν τα κενά ώστε στην κατακόρυφη στήλη να προκύψει το έτος γέννησης σας : +....= 9.. = ( -
Κεφάλαιο 1 Συστήματα γραμμικών εξισώσεων
Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Γραμμική Άλγεβρα Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων
Είμαστε τυχεροί που είμαστε δάσκαλοι ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου Ον/μο:. ΕΠΑ.Λ. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων 05-10-1 Θέμα 1 ο : Α.i. Τι ονομάζουμε γραμμική εξίσωση; ( μον.) ii. Πότε
ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( )
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 4: ΕΝΝΟΙΑ ΟΡΙΟΥ ΣΤΟ R - ΠΛΕΥΡΙΚΑ ΟΡΙΑ ΣΤΟ R - ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΟΡΙΣΜΟΥ ΟΡΙΟΥ ΣΤΟ R - ΟΡΙΟ ΚΑΙ ΔΙΑΤΑΞΗ - ΟΡΙΑ ΚΑΙ ΠΡΑΞΕΙΣ [Κεφ 4: Όριο Συνάρτησης
ΠΛΗ 12- Σχέση ισοδυναμίας, γραμμικά συστήματα και απαλοιφή Gauss
.4 Σχέση ισοδυναμίας, γραμμικά συστήματα και απαλοιφή Gauss Σχέση ισοδυναμίας. Έστω το σύνολο των ρητών αριθμών Q και η σχέση της ισότητας σε αυτό που ορίζεται ως εξής: Δύο στοιχεία α, γ Q είναι ίσα αν
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν
ΑΛΓΕΒΡΑ= = = = = = Α =ΛΥΚΕΙΟΥ
ΑΓΕΒΡΑ Α ΥΚΕΙΟΥ ΤΟΙΧΕΙΑ ΘΕΩΡΙΑ - ΑΚΗΕΙ ΘΕΩΡΙΑ. Οι πράξεις και οι ιδιότητες τους Αν α, β, γ, δ πραγματικοί αριθμοί τότε ισχύουν οι ιδιότητες : α = β Û α + γ = β + γ Αν γ ¹ 0, α = β Û αγ = βγ αβ = 0 Û α
x y z xy yz zx, να αποδείξετε ότι x=y=z.
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y
4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114
1. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Ομάδας 1. Να μετατρέψετε σε γινόμενα παραγόντων τα τριώνυμα: x 3x + x 3x Δ ( 3). 1. 9 8 1 > 0 Ρίζες: x Άρα ( 3) 1.1 3 1 3 1 ή 31 x 3x +
Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται
Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5
Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο
ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =
ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,
a n = 3 n a n+1 = 3 a n, a 0 = 1
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
3.1 Εξισώσεις 1 ου Βαθμού
1 3.1 Εξισώσεις 1 ου Βαθμού 1. Να διερευνήσετε την εξίσωση. Ισχύει: Διακρίνουμε τώρα τις περιπτώσεις: Αν τότε: ΘΕΩΡΙΑ Απάντηση Επομένως, αν η εξίσωση έχει ακριβώς μία λύση, την. Αν, τότε η εξίσωση γίνεται,
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό