παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών"

Transcript

1 παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών 1

2 Διαδίκτυο (1) Είναι µάλλον αποδεκτό ότι το Διαδίκτυο έχει ξεπεράσει πλέον τον υπολογιστή von Neumann ως το πιο σύνθετο υπολογιστικό δηµιούργηµα (εάν µπορούµε να το αποκαλέσουµε έτσι) της εποχής µας. Από όλα τα τροµερά χαρακτηριστικά του Διαδικτύου το µέγεθος και η αύξησή του, η σχεδόν αυθόρµητη εµφάνισή του, η ανοικτή αρχιτεκτονική του, η πρωτοφανής διαθεσιµότητα και η καθολικότητά του ως αποθήκη πληροφοριών, κ.λπ.), πιστεύω ότι το πιο καινοτόµο και πιο καθοριστικό χαρακτηριστικό του είναι η... 2

3 Διαδίκτυο (2)... το πιο καινοτόµο και πιο καθοριστικό χαρακτηριστικό του είναι η κοινωνικοοικονοµική πολυπλοκότητά του: Το Διαδίκτυο είναι µοναδικό µεταξύ όλων των συγκροτηµάτων ηλεκτρονικών υπολογιστών δεδοµένου ότι το δηµιουργούν, το διαχειρίζονται και το χρησιµοποιούν ένα πλήθος διαφορετικών οικονοµικών συµφερόντων, στα πλαίσια ποικίλων σχέσεων συνεργασίας και ανταγωνισµού µεταξύ τους. Αυτό προτείνει ότι οι κατάλληλες µαθηµατικές έννοιες και εργαλεία για την κατανόηση του Διαδικτύου µπορούν να προέλθουν από µια τήξη των αλγοριθµικών ιδεών µε τις έννοιες και τις τεχνικές από τα οικονοµικά µαθηµατικά και τη θεωρία παιγνίων (Η παράγραφος αυτή είναι από εργασία του καθ. του Berkeley, κ. Χ. Παπαδηµητρίου στο ACM STOC 2001) 3

4 Διαδίκτυο (3) Είναι πράγµατι εντυπωσιακά τα χαρακτηριστικά και τις δυνατότητες του Διαδικτύου Υπάρχουν παραδείγµατα εφαρµογών που θα µπορούσε να αναφέρει κανείς Θα αναφέρω ενδεικτικά µία, όχι επειδή είναι η πιο σηµαντική, αλλά επειδή είναι πρόσφατο πραγµατικό γεγονός 4

5 Selfish Routing in Noncooperative Networks 5

6 Υπόβαθρο Ορισµένα δίκτυα ευρείας κλίµακας, πχ. Δίκτυα Υπολογιστών Δίκτυα Επικοινωνιών Κυκλοφοριακά δίκτυα λειτουργούν χωρίς ένα κεντρικό έλεγχο/συντονισµό 6

7 Γιατί δεν υπάρχει συντονισµός; Για διάφορους λόγους: Το δίκτυο µπορεί να είναι πολύ µεγάλο Το δίκτυο µπορεί να µεταβάλλεται δυναµικά ή Αυτόνοµοι χρήστες του δικτύου µπορεί να να κάνουν τις επιλογές τους µε γνώµονα τα δικά τους κριτήρια και όχι τη βέλτιστη λειτουργία ολόκληρου του δικτύου 7

8 Μη-Συνεργασία Χρηστών Οι χρήστες δεν είναι απαραίτητα εγωιστές: µπορεί να υποχρεώνονται συµπεριφέρονται ατοµιστικά selfishly εάν δεν γνωρίζουν τους άλλους χρήστες Δίκτυα αυτού του είδους έχουν µελετηθεί ήδη από τη δεκαετία του 50 (του προηγούµενου αιώνα... ) : Συστήµατα οδικής κυκλοφορίας 8

9 επιστήµη υπολογιστών Τα τελευταία χρόνια δίκτυα µε αυτόνοµους χρήστες έχουν γίνει πολύ σηµαντικά για την επιστήµη υπολογιστών: Πιο χαρακτηριστικό παράδειγµα είναι το ΔΙΑΔΙΚΤΥΟ 9

10 διαδίκτυο και θεωρία παιγνίων... 10

11 Διαδίκτυο Όπως αναφέραµε, µια συναρπαστική πλευρά του διαδικτύου είναι η κοινωνικοοικονοµική πολυπλοκότητά του: Το Διαδίκτυο βασίζεται σε ένα πλήθος διαφορετικών οικονοµικών συµφερόντων, στα πλαίσια ποικίλων σχέσεων συνεργασίας και ανταγωνισµού µεταξύ τους. Αυτή την πλευρά του διαδικτύου µπορούµε να την µελετήσουµε µε έννοιες της θεωρίας παιγνίων σε συνδυασµό µε αλγοριθµικές τεχνικές 11

12 Διαδίκτυο και Θεωρία Παιγνίων 12 Η λειτουργία του διαδικτύου ή γενικότερα ενός δικτύου βασίζεται στη συνεργασία όλων των κόµβων που απαρτίζουν το δίκτυο. Ταυτόχρονα όµως κάθε κόµβος του δικτύου είναι µια αυτόνοµη οντότητα που µπορεί να συµπεριφέρεται (να στέλνει δεδοµένα, να επιτρέπει τη διέλευση δεδοµένα άλλων κόµβων, κτλ.) µε βάση τα δικά του κριτήρια και τις δικές του προτεραιότητες. Θεωρώντας ότι το δίκτυο απαρτίζεται από ένα πλήθος ανεξάρτητων κόµβων που συνεργάζονται αλλά ταυτόχρονα ανταγωνίζονται κιόλας για τους πόρους του δικτύου, το συνολικό δίκτυο µπορεί να µοντελοποιηθεί ως ένα παίγνιο.

13 Διαδίκτυο και Θεωρία Παιγνίων (2) Η θεωρία παιγνίων (game theory) µας επιτρέπει να µελετήσουµε τη συµπεριφορά ενός δικτύου όπως το διαδίκτυο, και να κατανοήσουµε τις επιπτώσεις από την απουσία κεντρικού ελέγχου για λειτουργία του δικτύου. Πόσο επιβαρύνονται χαρακτηριστικά του δικτύου, όπως είναι η συµφόρηση (congestion), από την απουσία κεντρικού ρυθµιστή του δικτύου (price of anarchy) ; 13

14 Μοντελοποίηση του προβλήµατος.. 14

15 Το πρόβληµα n πηγές-χρήστες θα στείλουν δεδοµένα/κίνηση µέσω ενός κοινού διαµοιραζόµενου δικτύου οι ταχύτητες των συνδέσεων (links) καθορίζονται από το δίκτυο κάθε χρήστης µπορεί να έχει δικά του κριτήρια, ταχύτητα, QoS 15

16 Το πρόβληµα (συνέχεια) Κάθε χρήστης επιλέγει τη δική του διαδροµή (route) µε γνώµονα τη βελτιστοποίηση των δικών του κριτηρίων Οι χρήστες δε συνεννοούνται / συνεργάζονται Τα δίκτυα αυτά ονοµάζονται non-cooperative networks Χαρακτηριστικό παράδειγµα τέτοιου δικτύου είναι το διαδίκτυο (internet) 16

17 Θεωρία Παιγνίων Με αφορµή εφαρµογές όπως τα Non-cooperative δίκτυα, υπάρχει µια σύγκλιση/συνεργασία της θεωρίας παιγνίων µε την επιστήµη υπολογιστών. 17

18 Non-cooperative games Κάθε παίκτης/χρήστης επιλέγει το µονοπάτι του ή µια πιθανο-θεωρητική κατανοµή για το µονοπάτι του Κάθε χρήστης µετά θα έχει ένα expected latency µε βάση τις επιλογές όλων των χρηστών 18

19 Non-cooperative games (2) Κάθε παίκτης/χρήστης προσπαθεί να βελτιστοποίηση το δικό του κόστος, στην προκειµένη περίπτωση το δικό του latency Οι ατοµικοί στόχοι ενός παίκτη δεν συµβαδίζουν πάντοτε µε το συνολικό καλό Η µείωση της συνολικής απόδοσης ως συνέπεια των ατοµικών επιλογών των παικτών ονοµάζεται «price of anarchy» (Koutsoupias-Papadimitriou) Συγκεκριµένα η µείωση της απόδοσης µετριέται µε το «coordination ratio». 19

20 Λύσεις Ποια είναι η λύση σε ένα τέτοιο σύστηµα µε ατοµικούς παίκτες; Η πιο διαδεδοµένη έννοια είναι η ισορροπία Nash (Nash Equilibrium) 20

21 Ισορροπία Nash (NE) Μια κατάσταση του συστήµατος - παιγνίου στην οποία κανένας παίκτης µόνος του δεν µπορεί να µπορεί να κερδίσει κάτι εάν αλλάξει την επιλογή στρατηγική του. Για µια µεγάλη κατηγορία παιγνίων υπάρχει πάντοτε µία τουλάχιστον ισορροπία Nash (John Nash, 1951). 21

22 Μοντέλα KP και Wardrop 22

23 KP model Koutsoupias-Papadimitriou (STACS 1999) Το µοντέλο: Μία πηγή (source) Ένας προορισµός (destination) m παράλληλες συνδέσεις (links) µε χωρητικότητες c 1,c 2,..,c m n χρήστες µε ροή-κίνηση w 1,w 2,..,w n ο καθένας η κίνηση κάθε παίκτη εξυπηρετείται ενιαία από ένα µονοπάτι (unsplittable flow) 23

24 KP model (2) s n players/flows m παράλληλες συνδέσεις t 24

25 KP model (3) Οι χρήστες παίκτες επιτρέπεται να έχουν µεικτές στρατηγικές (µε χρήση τυχαιότητας) Το ατοµικό κόστος κάθε παίκτη είναι ο µέγιστος µέσος φόρτος στις συνδέσεις που έχει επιλέξει Πρέπει να ορίσουµε το γενικό «καλό». Αυτό γίνεται µε την έννοια του social cost. Στο KP µοντέλο το social cost είναι το µέγιστη µέσο latency µιας σύνδεσης για όλες τις τυχαίες επιλογές στρατηγικών των χρηστών 25

26 KP model (4) Τρεις διαφοροποιήσεις του µοντέλου KP µε βάση το πως υπολογίζεται το latency σε µια σύνδεση Identical Links: Όλες οι συνδέσεις έχουν την ίδια χωρητικότητα Related Links: Το latency µιας σύνδεσης είναι αντιστρόφως ανάλογο της χωρητικότητας της σύνδεσης Στη γενικής περίπτωση ο παίκτης i προκαλεί φόρτο w ij στη σύνδεση j 26

27 Wardrop model Έχει µελετηθεί από τη δεκαετία του 50 στα πλαίσια συστηµάτων οδικής κυκλοφορίας Το µοντέλο: Ένα αυθαίρετο δίκτυο και ένα σύνολο από k ροές (s i,t i ) από τον κόµβο s i στον κόµβο t i. Η κίνηση (traffic) µπορεί να διασπάται σε αυθαίρετα µικρά κοµµάτια Το traffic µοντελοποιείται ως network flow 27

28 Ισορροπία στο µοντέλο Wardrop Η κίνηση ενός παίκτη i µπορεί να µοιράζεται σε διάφορα µονοπάτια από το s i στο t i. Στην κατάσταση ισορροπίας NE όλα τα διαφορετικά µονοπάτια που χρησιµοποιεί ο παίκτης έχουν ακριβώς το ίδιο κόστος για τον παίκτη διαφορετικά θα µπορούσε να µεταφέρει λίγη κίνηση από ένα κακό µονοπάτι σε ένα πιο καλό. 28

29 Χαρακτηριστικά των µοντέλων Τοπολογία Δικτύου Ροές µε κοινά άκρα s,t ή ανεξάρτητες ροές Ροές splittable ή unsplittable Ίδιες ή όχι Συνδέσεις Ίδιοι ή όχι Παίκτες Συνάρτηση Φόρτου Δείκτης/Συνάρτηση κοινωνικού κόστους (social cost) 29

30 Convex Latency Functions Εάν οι συναρτήσεις latency των συνδέσεων είναι κυρτές (convex) τότε τα σηµεία ισορροπίας είναι λύσεις ενός convex program. 30

31 Wardrop Η ισορροπία σε ένα µοντέλο Wardrop αντιστοιχεί σε ισορροπία NE σε δίκτυο µε ένα άπειρα µεγάλο πλήθος απείρως µικρών παικτών Ένα χαρακτηριστικό του µοντέλου Wardrop που ονοµάστηκε Braess Paradox προκάλεσε το ενδιαφέρον και µελετήθηκε 31

32 Κόστος στο µοντέλο Wardrop Το κόστος κάθε παίκτη είναι το άθροισµα των latencies όλων των ακµών κατά µήκος του µονοπατιού του (απείρως µικρού) παίκτη. Το κοινωνικό κόστος (social cost) είναι το άθροισµα των latencies όλων των ακµών του δικτύου Με αφορµή την εργασία των KP οι Roughgarden και Tardos µελέτησαν ξανά το µοντέλο Wardrop 32

33 Wardrop Η εφαρµογή του µοντέλου Wardrop από traffic engineers (συγκοινωνιολόγους ;) ενισχύει την πρακτική σηµασία του µοντέλου Πρόσφατες εργασίες επέκτειναν τη µελέτη του µοντέλου Schulz, Stier Moses, MIT Sloan Jahn et al., MIT Sloan 33

34 Social Cost Μοντέλο KP Το social cost ισοδυναµεί µε scheduling n εργασίες (jobs) σε m παράλληλες µηχανές Το (µέσο) µέγιστο latency ισούται µε το µέσο makespan του schedule Διαφορετικά NE µπορεί να έχουν διαφορετικό social cost Μοντέλο Wardrop Το social cost είναι το άθροισµα του latency όλων των συνδέσεων-ακµών Όλα τα NE έχουν το ίδιο social cost 34

35 Price of Anarchy και Coordination Ratio 35

36 Price of Anarchy Σε non-cooperative δίκτυα µπορεί το social cost ενός ΝΕ να είναι υποδεέστερο του βέλτιστου social cost Αιτία είναι η έλλειψη συντονισµού ή αλλιώς το price of anarchy. Ένα µέτρο του price of anarchy είναι το coordination ratio ο λόγος του social cost του χειρότερου ΝΕ και του social cost της βέλτιστης λύσης (όχι απαραίτητα ΝΕ) 36

37 Το παράδοξο του Braess.. 37

38 Το παράδοξο του Braess Ανακαλύφθηκε από τον Braess το 1968 Μελετήθηκε εκτενώς στη συνέχεια Παρουσίαση του παράδοξου πάνω στο παρακάτω δίκτυο: l(x)=x v l(x)=1 s t 38 Ζητούµενο: Δροµολόγηση συνολικού flow 1 από το s στο t. l(x)=1 w l(x)=x

39 Το δίκτυο σε ΝΕ Ροή 1/2 στο µονοπάτι s->v->t και 1/2 στο µονοπάτι s->w->t s l(x)=x l(x)=1 v flow 1/2 flow 1/2 w l(x)=1 l(x)=x t Κόστος Παικτών: 1/2 + 1 = 3/2 39

40 Ένας νέος δρόµος... Η πολιτεία θέλοντας να βελτιώσει τη συγκοινωνία κατασκευάζει ένα δρόµο πολύ µεγάλης χωρητικότητας µε latency πρακτικά µηδενική 40

41 l(x)=x v l(x)=1 s l(x)=0 t l(x)=1 w l(x)=x 41

42 Νέα ισορροπία NE και το παράδοξο Ροή 1 στο µονοπάτι s->v->w-> l(x)=x v l(x)=1 s l(x)=0 t l(x)=1 w l(x)=x Κόστος Παικτών: = 2 Οι παίκτες έχουν µεγαλύτερο κόστος latency στο νέο δίκτυο!! 42

43 κατηγορίες αλγορίθµων 43

44 κατηγορίες αλγορίθµων Υπολογιστικό Πρόβληµα µε τον περιορισµό: Μη-ύπαρξη απεριόριστων υπολογιστικών πόρων Μη-ύπαρξη όλης της πληροφορίας εξαρχής Έλλειψη συντονισµού (coordination) Αλγοριθµική Αντιµετώπιση Αλγόριθµοι Προσέγγισης On-line Αλγόριθµοι Non-cooperative Game 44

45 Πηγές - Αναφορές Selfish Routing in Non-cooperative Networks: A Survey, R. Feldmann, M. Gairing, T. Luecking, B. Monien, M. Rode, MFCS 2003, LNCS 2747, pp 21-45, Koutsoupias, Papadimitriou, STACS Papadimitriou, STOC Roughgarden, Tardos, JACM,

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη,

Διαβάστε περισσότερα

Αλγοριθμική Θεωρία Παιγνίων

Αλγοριθμική Θεωρία Παιγνίων Αλγοριθμική Θεωρία Παιγνίων ιδάσκοντες: E. Ζάχος, Α. Παγουρτζής,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πολύπλοκα Συστήματα

Διαβάστε περισσότερα

Μοντέλα των Cournotκαι Bertrand

Μοντέλα των Cournotκαι Bertrand Μοντέλα των Cournotκαι Bertrand Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τι θα πούμε Θα εξετάσουμε αναλυτικά το μοντέλο Cournot

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Παιγνίων

Βασικές Έννοιες Θεωρίας Παιγνίων Παύλος Σ. Εφραιμίδης Περιεχόµενα Τι είναι η θεωρία παιγνίων Ο ρόλος ενός µαθηµατικού µοντέλου Το δίληµµα του φυλακισµένου Σηµείο ισορροπίας Nash Θεωρία Παιγνίων Η θεωρία παιγνίων (game theory) µας βοηθάει

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Θεωρία Παιγνίων Μαρκωβιανά Παιχνίδια Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Μερική αρατηρησιµότητα POMDPs

Διαβάστε περισσότερα

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να

- Παράδειγμα 2. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να - Παράδειγμα. Εκτέλεση Πέναλτι ή Κορώνα-Γράμματα (Heads or Tails) - Ένας ποδοσφαιριστής ετοιμάζεται να εκτελέσει ένα πέναλτι, το οποίο προσπαθεί να αποκρούσει ένας τερματοφύλακας. - Αν οι δύο παίκτες επιλέξουν

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Extensive Games with Imperfect Information

Extensive Games with Imperfect Information Extensive Games with Imperfect Information Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εκτεταµένα παίγνια µε ατελή πληροφόρηση

Διαβάστε περισσότερα

Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα

Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα 1 Είναι η διαδικασία εύρεσης της διαδρομής που πρέπει να ακολουθήσει ένα πακέτο για να φτάσει στον προορισμό του. Η διαδικασία αυτή δεν είναι πάντα εύκολη, τη στιγμή που γνωρίζουμε ότι ένα σύνθετο δίκτυο

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Α Κ Α Η Μ Α Ι Κ Ο Ε Τ Ο Σ 2 0 1 1-2 0 1 2 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT Ο συγκεκριµένος οδηγός για το πρόγραµµα

Διαβάστε περισσότερα

Ενημερωτική Διαφοροποίηση Προϊόντος: Ο Ρόλος της Διαφήμισης

Ενημερωτική Διαφοροποίηση Προϊόντος: Ο Ρόλος της Διαφήμισης Ενημερωτική Διαφοροποίηση Προϊόντος: Ο Ρόλος της Διαφήμισης - Οι επιχειρήσεις δεν ανταγωνίζονται μόνο ως προς τις τιμές στις οποίες επιλέγουν να πουλήσουν τα προϊόντα τους. - Ο μη-τιμολογιακός ανταγωνισμός

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

Προβλήµατα Μεταφορών (Transportation)

Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια

Διαβάστε περισσότερα

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29

Διάλεξη 7. Θεωρία παιγνίων VA 28, 29 Διάλεξη 7 Θεωρία παιγνίων VA 28, 29 Θεωρία παιγνίων Στη θεωρία παιγνίων χρησιμοποιούμε υποδείγματα για τη στρατηγική συμπεριφορά των οικονομικών μονάδων που καταλαβαίνουν ότι οι ενέργειές τους επηρεάζουν

Διαβάστε περισσότερα

Βασικές Αρχές της Θεωρίας Παιγνίων

Βασικές Αρχές της Θεωρίας Παιγνίων Βασικές Αρχές της Θεωρίας Παιγνίων - Ορισμός. Αν οι επιλογές μιας επιχείρησης εξαρτώνται από την αναμενόμενη αντίδραση των υπόλοιπων επιχειρήσεων που συμμετέχουν στην αγορά, τότε υπάρχει στρατηγική αλληλεπίδραση

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

I student. Μεθοδολογική προσέγγιση και απαιτήσεις για την ανάπτυξη των αλγορίθμων δρομολόγησης Χρυσοχόου Ευαγγελία Επιστημονικός Συνεργάτης ΙΜΕΤ

I student. Μεθοδολογική προσέγγιση και απαιτήσεις για την ανάπτυξη των αλγορίθμων δρομολόγησης Χρυσοχόου Ευαγγελία Επιστημονικός Συνεργάτης ΙΜΕΤ I student Μεθοδολογική προσέγγιση και απαιτήσεις για την ανάπτυξη των αλγορίθμων δρομολόγησης Χρυσοχόου Ευαγγελία Επιστημονικός Συνεργάτης ΙΜΕΤ Ινστιτούτο Bιώσιμης Κινητικότητας και Δικτύων Μεταφορών (ΙΜΕΤ)

Διαβάστε περισσότερα

Πακέτο Επιχειρησιακή Έρευνα #02 ==============================================================

Πακέτο Επιχειρησιακή Έρευνα #02 ============================================================== Πακέτο Επιχειρησιακή Έρευνα #0 www.maths.gr www.facebook.com/maths.gr Tηλ.: 69790 e-mail: maths@maths.gr Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα Λυµένες Ασκήσεις Βοήθεια στη λύση Εργασιών ==============================================================

Διαβάστε περισσότερα

Εφαρμογή της Θεωρίας Παιγνίων στην κατανομή ισχύος σε ασύρματα δίκτυα.

Εφαρμογή της Θεωρίας Παιγνίων στην κατανομή ισχύος σε ασύρματα δίκτυα. 2012 Εφαρμογή της Θεωρίας Παιγνίων στην κατανομή ισχύος σε ασύρματα δίκτυα. ΔΗΜΗΤΡΗΣ ΜΟΣΧΟΒΙΤΗΣ 03101121 ΣΗΜΜΥ, ΕΜΠ ΑΘΗΝΑ 4/7/2012 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΘΗΝΑ, 2012 Εφαρμογή της Θεωρίας Παιγνίων

Διαβάστε περισσότερα

* τη µήτρα. Κεφάλαιο 1o

* τη µήτρα. Κεφάλαιο 1o Κεφάλαιο 1o Θεωρία Παιγνίων Η θεωρία παιγνίων εξετάζει καταστάσεις στις οποίες υπάρχει αλληλεπίδραση µεταξύ ενός µικρού αριθµού ατόµων. Άρα σε οποιαδήποτε περίπτωση, αν ο αριθµός των ατόµων που συµµετέχουν

Διαβάστε περισσότερα

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας

δημιουργία: http://macedonia.uom.gr/~acg επεξεργασία: Ν.Τσάντας Θεωρία Παιγνίων Μελέτη στοιχείων που χαρακτηρίζουν καταστάσεις ανταγωνιστικής άλληλεξάρτησης με έμφαση στη διαδικασία λήψης αποφάσεων περισσοτέρων από ένα ληπτών απόφασης (αντιπάλων). Παίγνια δύο παικτών

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ» ΕΘΝΙΚΟ ΣΤΡΑΤΗΓΙΚΟ ΠΛΑΙΣΙΟ ΑΝΑΦΟΡΑΣ ΕΣΠΑ 2007-2013 ΔΡΑΣΗ «ΑΡΙΣΤΕΙΑ»

ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ» ΕΘΝΙΚΟ ΣΤΡΑΤΗΓΙΚΟ ΠΛΑΙΣΙΟ ΑΝΑΦΟΡΑΣ ΕΣΠΑ 2007-2013 ΔΡΑΣΗ «ΑΡΙΣΤΕΙΑ» ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ» ΕΘΝΙΚΟ ΣΤΡΑΤΗΓΙΚΟ ΠΛΑΙΣΙΟ ΑΝΑΦΟΡΑΣ ΕΣΠΑ 2007-2013 ΔΡΑΣΗ «ΑΡΙΣΤΕΙΑ» ΕΡΓΟ: ΤΙΤΛΟΣ: TITLE: ΔΙΚΑΙΟΥΧΟΣ: HEPHAESTUS Ευφυή Ενεργειακά Συστήματα Νέας Γενιάς

Διαβάστε περισσότερα

και κινηµατικά µοντέλα της κυκλοφοριακής ροής

και κινηµατικά µοντέλα της κυκλοφοριακής ροής Κρουστικά κύµατα Yδροδυναµικά και κινηµατικά µοντέλα της κυκλοφοριακής ροής Επειδή η οδική κυκλοφορία εκφράζεται µε ροές οχηµάτων, πυκνότητες και ταχύτητες ροής, βασικές έννοιες της θεωρίας ρευστών µπορούν

Διαβάστε περισσότερα

Διαχείριση Εφοδιαστικής Αλυσίδας

Διαχείριση Εφοδιαστικής Αλυσίδας Διαχείριση Εφοδιαστικής Αλυσίδας 7 η Διάλεξη: Δρομολόγηση & Προγραμματισμός (Routing & Scheduling) 015 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στις έννοιες Βασικές

Διαβάστε περισσότερα

η αποδοτική κατανοµή των πόρων αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα Οικονοµία των µεταφορών Η ανεπάρκεια των πόρων &

η αποδοτική κατανοµή των πόρων αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα Οικονοµία των µεταφορών Η ανεπάρκεια των πόρων & 5 η αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα: Η αποτελεί θεµελιώδες πρόβληµα σε κάθε σύγχρονη οικονοµία. Το πρόβληµα της αποδοτικής κατανοµής των πόρων µπορεί να εκφρασθεί µε 4 βασικά ερωτήµατα

Διαβάστε περισσότερα

ΔΙΚΤΥΑ (13) Π. Φουληράς

ΔΙΚΤΥΑ (13) Π. Φουληράς ΔΙΚΤΥΑ (13) Π. Φουληράς Τεχνολογίες WAN και Δρομολόγηση LAN Επεκτείνεται μόνον σε ένα κτίριο ή ομάδα κτιρίων WAN (Wide Area Network) Επεκτείνονται σε μεγάλες περιοχές MAN Ενδιάμεσο ως προς το μέγεθος της

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012

ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 ΕΠΙΧΕΙΡΗΣΙΑΚΑ ΠΑΙΓΝΙΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΠΑΙΓΝΙΑ ΜΗ ΕΝΙΚΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 Προηγούµενο Μάθηµα: Κυρίαρχη Στρατηγική- Κυριαρχούµενη στρατηγική-nash equilibrium Μια στρατηγική

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Jon Kleinberg και Éva Tardos, Σχεδιασμός αλγορίθμων, Εκδόσεις Κλειδάριθμος,

Διαβάστε περισσότερα

8 η ιάλεξη: σε δίκτυα δεδομένων

8 η ιάλεξη: σε δίκτυα δεδομένων Εργαστήριο ικτύων Υπολογιστών 8 η ιάλεξη: Βασικές αρχές δρομολόγησης Βασικές αρχές δρομολόγησης σε δίκτυα δεδομένων ρομολόγηση (Routing) Μεταφορά μηνυμάτων μέσω του διαδικτύου από μία πηγή σε ένα προορισμό

Διαβάστε περισσότερα

ιαδίκτυα & Ενδοδίκτυα Η/Υ

ιαδίκτυα & Ενδοδίκτυα Η/Υ ιαδίκτυα & Ενδοδίκτυα Η/Υ ΙΑ ΙΚΤΥΑΚΗ ΛΕΙΤΟΥΡΓΙΑ (Kεφ. 16) ΠΡΩΤΟΚΟΛΛΑ ΡΟΜΟΛΟΓΗΣΗΣ Αυτόνοµα Συστήµατα Πρωτόκολλο Συνοριακών Πυλών OSPF ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΥΠΗΡΕΣΙΩΝ (ISA) Κίνηση ιαδικτύου Προσέγγιση

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

P. Chretienne, E. Coffman, J. Lenstra, Z. Liu Scheduling Theory and its Applications John Wiley & Sons, New York, (1995)

P. Chretienne, E. Coffman, J. Lenstra, Z. Liu Scheduling Theory and its Applications John Wiley & Sons, New York, (1995) ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ 8ο Εξάμηνο ΕΡΓΑΣΙΑ P. Chretienne, E. Coffman, J. Lenstra, Z. Liu Scheduling Theory and its Applications John Wiley & Sons, New York, (995) CHAPTER (μέχρι και..) Scheduling with Communication

Διαβάστε περισσότερα

H επίδραση των ουρών στην κίνηση ενός δικτύου

H επίδραση των ουρών στην κίνηση ενός δικτύου H επίδραση των ουρών στην κίνηση ενός δικτύου Ηεπίδραση των ριπών δεδοµένων Όταν οι αφίξεις γίνονται κανονικά ή γίνονται σε απόσταση η µία από την άλλη, τότε δεν υπάρχει καθυστέρηση Arrival s 1 2 3 4 1

Διαβάστε περισσότερα

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Βfi 1 2 Αfl 1 1, 2 0, 1 2 2, 1 1, 0 ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Παίγνιο: Συμμετέχουν τουλάχιστον δύο παίκτες με τουλάχιστον δύο στρατηγικές ο καθένας και αντίθετα συμφέροντα. Το αποτέλεσμα για κάθε παίκτη καθορίζεται από τις συνδυασμένες επιλογές όλων

Διαβάστε περισσότερα

Δίκτυα Υπολογιστών II Εργασία 1 η

Δίκτυα Υπολογιστών II Εργασία 1 η Δίκτυα Υπολογιστών II Εργασία 1 η Παράδοση στο e-class Προθεσµία: 6/4/2014 Σωτήρης Διαµαντόπουλος, Σωτήρης-Άγγελος Λένας {sdiaman, slenas} @ ee.duth.gr Στα αρχεία µε όνοµα Ergasia1_a.tcl και Ergasia1_b.tcl,

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές.

ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. ΑΣΚΗΣΗ 1 Βρείτε την ισορροπία των ακόλουθων παιγνίων απαλείφοντας διαδοχικά τις κυριαρχούµενες στρατηγικές. Α 1 Α 2 Α 3 Β 1 Β 2 Β 3 1, -1 0, 0-1, 0 0, 0 0, 6 10, -1 2, 0 10, -1-1, -1 Α 1 Α 2 Α 3 Β 1 Β

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I.

ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. ΘΕΩΡΙΑ ΤΩΝ ΠΑΙΓΝΙΩΝ I. Γενικά Σε μαθήματα όπως η επιχειρησιακή έρευνα και ή λήψη αποφάσεων αναφέραμε τις αποφάσεις κάτω από συνθήκες βεβαιότητας, στις οποίες και εφαρμόζονται κυρίως οι τεχνικές της επιχειρησιακής

Διαβάστε περισσότερα

Προσφορά και κόστος. Κατηγορίες κόστους. Οριακό κόστος και µεγιστοποίηση του κέρδους. Μέσο κόστος. TC MC = q TC AC ) AC

Προσφορά και κόστος. Κατηγορίες κόστους. Οριακό κόστος και µεγιστοποίηση του κέρδους. Μέσο κόστος. TC MC = q TC AC ) AC Μέσο κόστος µέσο συνολικό κόστος (AC) 3 Προσφορά και κόστος µέσο µεταβλητό κόστος (AVC) µέσο σταθερό κόστος (AFC) Το µέσο σταθερό κόστος µειώνεται, διότι το συνολικό σταθερό κόστος κατανέµεται σε περισσότερη

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Καθυστέρηση στατικών πυλών CMOS

Καθυστέρηση στατικών πυλών CMOS Καθυστέρηση στατικών πυλών CMOS Πρόχειρες σημειώσεις Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Άνοιξη 2008 Παρόλο που οι εξισώσεις των ρευμάτων των MOS τρανζίστορ μας δίνουν

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

κεφάλαιο Βασικές Έννοιες Επιστήμη των Υπολογιστών

κεφάλαιο Βασικές Έννοιες Επιστήμη των Υπολογιστών κεφάλαιο 1 Βασικές Έννοιες Επιστήμη 9 1Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ Στόχοι Στόχος του κεφαλαίου είναι οι μαθητές: να γνωρίσουν βασικές έννοιες και τομείς της Επιστήμης. Λέξεις κλειδιά Επιστήμη

Διαβάστε περισσότερα

Intersection Control

Intersection Control Κυκλοφοριακή Ικανότητα Σηµατοδοτούµενων κόµβων Intersecton Control Traffc Control Sgnals hgh volume streets Pedestran Sgnals Full Sgnals Warrants nclude volume, peds, accdents, lanes, operatng speeds,

Διαβάστε περισσότερα

Δίκτυα Υπολογιστών. Δίκτυα υπολογιστών και το Διαδίκτυο Εισαγωγή. Κ. Βασιλάκης

Δίκτυα Υπολογιστών. Δίκτυα υπολογιστών και το Διαδίκτυο Εισαγωγή. Κ. Βασιλάκης Δίκτυα Υπολογιστών Δίκτυα υπολογιστών και το Διαδίκτυο Εισαγωγή Κ. Βασιλάκης Περίγραμμα Τι είναι το διαδίκτυο Στοιχεία που το συνθέτουν Τρόποι παροχής υπηρεσιών Τι είναι τα πρωτόκολλα Τα άκρα του δικτύου

Διαβάστε περισσότερα

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Περίληψη Αλγόριθµοι τύπου Brute-Force Παραδείγµατα Αναζήτησης Ταξινόµησης Πλησιέστερα σηµεία Convex hull Βελτιστοποίηση Knapsack problem Προβλήµατα Ανάθεσης

Διαβάστε περισσότερα

Σχολή Προγραµµατιστών Ηλεκτρονικών Υπολογιστών (ΣΠΗΥ) Τµήµα Προγραµµατιστών Σειρά 112

Σχολή Προγραµµατιστών Ηλεκτρονικών Υπολογιστών (ΣΠΗΥ) Τµήµα Προγραµµατιστών Σειρά 112 Σχολή Προγραµµατιστών Ηλεκτρονικών Υπολογιστών (ΣΠΗΥ) Τµήµα Προγραµµατιστών Σειρά 112 Πλωτάρχης Γ. ΚΑΤΣΗΣ ΠΝ Γιατί χρησιµοποιούµε δίκτυα? Δίκτυο Σύνολο Η/Υ και συσκευών Συνδεδεµένα µε κάποιο µέσο Stand-alone

Διαβάστε περισσότερα

ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες Παύλος Εφραιμίδης Δομές Δεδομένων και Αλγόριθμοι

ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες Παύλος Εφραιμίδης Δομές Δεδομένων και Αλγόριθμοι Παύλος Εφραιμίδης 1 περιεχόμενα αλγόριθμοι τεχνολογία αλγορίθμων 2 αλγόριθμοι αλγόριθμος: οποιαδήποτε καλά ορισμένη υπολογιστική διαδικασία που δέχεται κάποια τιμή ή κάποιο σύνολο τιμών, και δίνεικάποιατιμήήκάποιοσύνολοτιμώνως

Διαβάστε περισσότερα

Στατικά Παίγνια Ελλιπούς Πληροφόρησης

Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΑΤΙΚΑ ΠΑΙΓΝΙΑ ΕΛΛΙΠΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ 67 Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΟ ΠΑΡOΝ ΚΕΦAΛΑΙΟ ξεκινά η ανάλυση των παιγνίων ελλιπούς πληροφόρησης, τα οποία ονομάζονται και μπεϋζιανά παίγνια (bayesa

Διαβάστε περισσότερα

ΤΖΟΝ ΦΟΡΜΠΣ ΝΑΣ. A beautiful mind Εργασία α λυκείου

ΤΖΟΝ ΦΟΡΜΠΣ ΝΑΣ. A beautiful mind Εργασία α λυκείου ΤΖΟΝ ΦΟΡΜΠΣ ΝΑΣ A beautiful mind Εργασία α λυκείου Γεωργακλής Ιωάννης Δαβία Ιωάννα Κλάγκου Δάφνη Ευάγγελος Ραφτόπουλος Υπέυθ. Καθηγητές : κ. Γκάγκαρη, κ.μαυρόγιαννης ΒΙΟΓΡΑΦΙΑ Την ημέρα του γάμου του με

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή Εργαστήριο 10 Γράφηµα (Graph) Εισαγωγή Στην πληροφορική γράφηµα ονοµάζεται µια δοµή δεδοµένων, που αποτελείται από ένα σύνολο κορυφών ( vertices) (ή κόµβων ( nodes» και ένα σύνολο ακµών ( edges). Ενας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 008-009 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (Ημερομηνία, ώρα) Να απαντηθούν 5

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ

ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ Μωυσιάδης Πολυχρόνης, Ανδρεάδης Ιωάννης Τμήμα Μαθηματικών Α.Π.Θ. ΠΕΡΙΛΗΨΗ Στην εργασία αυτή παρουσιάζεται μία μελέτη για την ελάχιστη διαδρομή σε δίκτυα μεταβλητού

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

ΤΕΙ Κρήτης, Παράρτηµα Χανίων

ΤΕΙ Κρήτης, Παράρτηµα Χανίων ΠΣΕ, Τµήµα Τηλεπικοινωνιών & ικτύων Η/Υ Εργαστήριο ιαδίκτυα & Ενδοδίκτυα Η/Υ Εισαγωγή στο COMNET III ρ Θεοδώρου Παύλος Χανιά 2003 Περιεχόµενα 1 ΕΙΣΑΓΩΓΗ ΣΤΟ CΟMNET III...2 2 ΣΤΟΙΧΕΙΑ ΙΚΤΥΟΥ...4 3 ΤΟΠΟΛΟΓΙΑ

Διαβάστε περισσότερα

Εξωτερικές αλληλεπιδράσεις

Εξωτερικές αλληλεπιδράσεις η αποτυχία των νόµων της αγοράς Εξωτερικές αλληλεπιδράσεις Εξαιρέσεις και η αποτυχία των νόµων της αγοράς στον τοµέα των µεταφορών 1. Ο ανταγωνισµός είναι αρκετά ισχυρός έτσι ώστε να ωθήσει την τιµή στο

Διαβάστε περισσότερα

Παράλληλη Επεξεργασία Κεφάλαιο 7 ο Αρχιτεκτονική Συστημάτων Κατανεμημένης Μνήμης

Παράλληλη Επεξεργασία Κεφάλαιο 7 ο Αρχιτεκτονική Συστημάτων Κατανεμημένης Μνήμης Παράλληλη Επεξεργασία Κεφάλαιο 7 ο Αρχιτεκτονική Συστημάτων Κατανεμημένης Μνήμης Κωνσταντίνος Μαργαρίτης Καθηγητής Τμήμα Εφαρμοσμένης Πληροφορικής Πανεπιστήμιο Μακεδονίας kmarg@uom.gr http://eos.uom.gr/~kmarg

Διαβάστε περισσότερα

Αλγόριθµοι δροµολόγησης µε µέσα µαζικής µεταφοράς στο µεταφορικό δίκτυο των Αθηνών

Αλγόριθµοι δροµολόγησης µε µέσα µαζικής µεταφοράς στο µεταφορικό δίκτυο των Αθηνών 1 Αλγόριθµοι δροµολόγησης µε µέσα µαζικής µεταφοράς στο µεταφορικό δίκτυο των Αθηνών ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ της Κωτσογιάννη Μαριάννας Περίληψη 1. Αντικείµενο- Σκοπός Αντικείµενο της διπλωµατικής αυτής εργασίας

Διαβάστε περισσότερα

Κίνηση σε φθηνότερη διαδροµή µε µη γραµµικό κόστος

Κίνηση σε φθηνότερη διαδροµή µε µη γραµµικό κόστος υποδο?ών?εταφράζεταισε?ίαγενικότερηεξοικονό?ησηπαραγωγικώνπόρωνγιατηκοινωνία. τεχνικέςυποδο?ές,όπωςείναιαυτοκινητόδρο?οι,γέφυρεςκ.λ.π.ηκατασκευήτέτοιων Μιααπ τιςβασικέςλειτουργίεςτουκράτουςείναιοεφοδιασ?όςτηςκοινωνίας?εβασικές

Διαβάστε περισσότερα

Δημοπρασίες (Auctions)

Δημοπρασίες (Auctions) Δημοπρασίες (Auctions) Παύλος Στ. Εφραιμίδης Τομέας Λογισμικού και Ανάπτυξης Εφαρμογών Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Δημοπρασίες Σε μια δημοπρασία, κάποιο αγαθό πωλείται σε αυτόν

Διαβάστε περισσότερα

ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων

ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων Μαρία Ι. Ανδρέου ΗΜΥ417, ΗΜΥ 663 Κατανεµηµένα Συστήµατα Χειµερινό Εξάµηνο 2006-2007 Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 Συστήµατα αναµονής Οι ουρές αναµονής αποτελούν καθηµερινό και συνηθισµένο φαινόµενο και εµφανίζονται σε συστήµατα εξυπηρέτησης, στα οποία η ζήτηση για κάποια υπηρεσία δεν µπορεί να

Διαβάστε περισσότερα

ΤΕΙ Κρήτης, Παράρτηµα Χανίων

ΤΕΙ Κρήτης, Παράρτηµα Χανίων ΠΣΕ, Τµήµα Τηλεπικοινωνιών & ικτύων Η/Υ Εργαστήριο ιαδίκτυα & Ενδοδίκτυα Η/Υ ( ηµιουργία συστήµατος µε ροint-tο-ροint σύνδεση) ρ Θεοδώρου Παύλος Χανιά 2003 Περιεχόµενα 1 ΕΙΣΑΓΩΓΗ...2 2 ΤΟ ΚΑΝΑΛΙ PΟINT-TΟ-PΟINT...2

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων. 22 - Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων. 22 - Γράφοι HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Τρίτη, 19/05/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/21/2015 1 1 5/21/2015 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δοµών (που

Διαβάστε περισσότερα

Κατανεµηµένη Τεχνητή Νοηµοσύνη Τµήµα Πληροφορικής Πανεπιστήµιο Πειραιώς Αλέξανδρος Αρτίκης Καθολικότητα Τάσεις στην ιστορία της πληροφορικής (1) Η συνεχιζόµενη µείωση του κόστους στον υπολογιστικό εξοπλισµό

Διαβάστε περισσότερα

1.1 Επαναλήπτες (repeaters ή regenerators)

1.1 Επαναλήπτες (repeaters ή regenerators) 1.1 Επαναλήπτες (repeaters ή regenerators) Οι επαναλήπτες λειτουργούν στο φυσικό επίπεδο του OSI μοντέλου. Χρησιμεύουν για την ενίσχυση των σημάτων που μεταφέρονται στο δίκτυο. Ένα σήμα μπορεί να ταξιδέψει

Διαβάστε περισσότερα

βασικές έννοιες (τόμος Β)

βασικές έννοιες (τόμος Β) θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)

Διαβάστε περισσότερα

Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27)

Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: ίκτυα ροής και το πρόβληµα της µέγιστης ροής Η µεθοδολογία Ford-Fulkerson Ο αλγόριθµος Edmonds-Karps ΕΠΛ 232

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

7.5 Πρωτόκολλο IP. Τεχνολογία ικτύων Επικοινωνιών ΙΙ

7.5 Πρωτόκολλο IP. Τεχνολογία ικτύων Επικοινωνιών ΙΙ Τεχνολογία ικτύων Επικοινωνιών ΙΙ 7.5 Πρωτόκολλο IP 38. Τι είναι το πρωτόκολλο ιαδικτύου (Internet Protocol, IP); Είναι το βασικό πρωτόκολλο του επιπέδου δικτύου της τεχνολογίας TCP/IP. Βασίζεται στα αυτοδύναµα

Διαβάστε περισσότερα

RIP : Routing Information Protocol

RIP : Routing Information Protocol Εργαστήριο 4 ΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΔΙΚΤΥΑ Η/Υ RIP : Routing Information Protocol Στόχος Πρωτόκολλο δρομολόγησης βασισμένο στον αλγόριθμο Distance-Vector Ο στόχος του εργαστηρίου

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία

Μικροοικονοµική Θεωρία Μικροοικονοµική Θεωρία Ειδικά Θέµατα της Θεωρίας της Συµπεριφοράς του Καταναλωτή Το Συνολικό Αποτέλεσµα. Το Αποτέλεσµα Υποκατάστασης. Το Εισοδηµατικό Αποτέλεσµα. Κανονικά Αγαθά. Κατώτερα Αγαθά. Παράδοξο

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

ίκτυα υπολογιστών Στόχοι κεφαλαίου ίκτυα

ίκτυα υπολογιστών Στόχοι κεφαλαίου ίκτυα Στόχοι κεφαλαίου ίκτυα υπολογιστών (Κεφαλαιο 15 στο βιβλιο) Περιγραφή των κύριων θεµάτων σχετικά µε τα δίκτυα υπολογιστών Αναφορά στα διάφορα είδη δικτύων Περιγραφή των διαφόρων τοπολογιών των τοπικών

Διαβάστε περισσότερα

Εισαγωγή στο Παίγνιο Διοίκησης Επιχειρήσεων (business game)

Εισαγωγή στο Παίγνιο Διοίκησης Επιχειρήσεων (business game) Γιώργος Μαυρωτάς Επικ. Καθηγητής Εργαστήριο Βιομηχανικής & Ενεργειακής Οικονομίας Σχολή Χημικών Μηχανικών, Ε.Μ.Π. Εισαγωγή στο Παίγνιο Διοίκησης Επιχειρήσεων (business game) 2o Θερινό Σχολείο Νεανικής

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8

Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8 Συμπληρωματικές Σημειώσεις για τη Διάλεξη 8 Ένα από τα παράδοξα της ισορροπίας Nash που μπορεί να θεωρηθεί και σαν αδυναμία της είναι ότι σε κάποια παίγνια οι παίκτες έχουν μεγαλύτερο όφελος αν δεν διαλέξουν

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο

Κινητές επικοινωνίες. Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο Κινητές επικοινωνίες Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο 1 ΓΕΝΙΚΑ Ο αριθμός των κλήσεων σε εξέλιξη μεταβάλλεται με έναν τυχαίο τρόπο καθώς κάθε κλήση ξεχωριστά αρχίζει και τελειώνει με τυχαίο τρόπο. Κατά

Διαβάστε περισσότερα

Διπλωµατική Εργασία µε τίτλο: Ακαδηµαϊκό έτος 2007-2008

Διπλωµατική Εργασία µε τίτλο: Ακαδηµαϊκό έτος 2007-2008 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Σχολή Μηχανικών Ηλεκτρονικών Υπολογιστών & Πληροφορικής Διπλωµατική Εργασία µε τίτλο: Προσεγγιστικές ισορροπίες Nash Πειραµατική και Θεωρητική εργασία για εύρεση αποδοτικών αλγορίθµων

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο. Η Ανάλυση και ο Σχεδιασµός στην Ενοποιηµένη ιαδικασία. ρ. Πάνος Φιτσιλής

Ελληνικό Ανοικτό Πανεπιστήµιο. Η Ανάλυση και ο Σχεδιασµός στην Ενοποιηµένη ιαδικασία. ρ. Πάνος Φιτσιλής 1 Ελληνικό Ανοικτό Πανεπιστήµιο Η και ο στην Ενοποιηµένη ιαδικασία ρ. Πάνος Φιτσιλής Περιεχόµενα Γενικές αρχές ανάλυσης και σχεδιασµού Τα βήµατα της ανάλυσης και του σχεδιασµού Συµπεράσµατα 2 3 Η ανάλυση

Διαβάστε περισσότερα

Εγγυημένη ποιότητα υπηρεσίας

Εγγυημένη ποιότητα υπηρεσίας Εγγυημένη ποιότητα υπηρεσίας Απαιτήσεις ποιότητας υπηρεσίας Μηχανισμοί κατηγοριοποίησης Χρονοπρογραμματισμός Μηχανισμοί αστυνόμευσης Ενοποιημένες υπηρεσίες Διαφοροποιημένες υπηρεσίες Τεχνολογία Πολυμέσων

Διαβάστε περισσότερα

Διάλεξη 6: Εκλογή Προέδρου σε Σύγχρονους Δακτύλιους. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 6: Εκλογή Προέδρου σε Σύγχρονους Δακτύλιους. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 6: Εκλογή Προέδρου σε Σύγχρονους Δακτύλιους ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Μη Ομοιόμορφος Αλγόριθμος Εκλογής Προέδρου σε Σύγχρονο Δακτύλιο Ομοιόμορφος Αλγόριθμος Εκλογής Προέδρου

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΥΠΗΡΕΣΙΕΣ Βελώνης Γεώργιος ΤΟΥ ΔΙΑΔΙΚΤΥΟΥ. Μάθημα 2ο. Βελώνης Γεώργιος - 1ο Τ.Ε.Ε. Κατερίνης. Καθηγητής Πληροφορικής ΠΕ20 2-1

ΒΑΣΙΚΕΣ ΥΠΗΡΕΣΙΕΣ Βελώνης Γεώργιος ΤΟΥ ΔΙΑΔΙΚΤΥΟΥ. Μάθημα 2ο. Βελώνης Γεώργιος - 1ο Τ.Ε.Ε. Κατερίνης. Καθηγητής Πληροφορικής ΠΕ20 2-1 ΒΑΣΙΚΕΣ ΥΠΗΡΕΣΙΕΣ Βελών ΤΟΥ ΔΙΑΔΙΚΤΥΟΥ Μάθημα 2ο Βελών - 1ο Τ.Ε.Ε. Κατερίν Καθηγητής Πληροφορικής ΠΕ20 2-1 Τεχνολογίες Μεταγωγής Δεδομένων Δίκτυα Μεταγωγής Βελών Βελών Δίκτυα Μεταγωγής Δίκτυα Μεταγωγής

Διαβάστε περισσότερα

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games)

Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Games) Κεφάλαιο 13ο Eπαναλαµβανόµενα παίγνια (Repeated Gaes) Το δίληµµα των φυλακισµένων, όπως ξέρουµε έχει µια και µοναδική ισορροπία η οποία είναι σε αυστηρά κυρίαρχες στρατηγικές. C N C -8, -8 0, -10 N -10,

Διαβάστε περισσότερα

ΔΗΜΙΟΥΡΓΙΑ ΕΝΟΣ ΝΕΟΥ ΠΟΛΙΤΙΚΟΥ ΚΟΜΜΑΤΟΣ ΚΑΙ ΠΟΛΙΤΙΚΗ ΙΣΟΡΡΟΠΙΑ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΤΗΣ ΘΕΩΡΙΑΣ ΤΩΝ ΠΑΙΓΝΙΩΝ

ΔΗΜΙΟΥΡΓΙΑ ΕΝΟΣ ΝΕΟΥ ΠΟΛΙΤΙΚΟΥ ΚΟΜΜΑΤΟΣ ΚΑΙ ΠΟΛΙΤΙΚΗ ΙΣΟΡΡΟΠΙΑ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΤΗΣ ΘΕΩΡΙΑΣ ΤΩΝ ΠΑΙΓΝΙΩΝ «ΣΠΟΥΔΑΙ», Τόμος 52, Τείχος 4ο, (2002), Πανεπιστήμιο Πειραιώς / «SPOUDAI», Vol. 52, No 4, (2002), University of Piraeus ΔΗΜΙΟΥΡΓΙΑ ΕΝΟΣ ΝΕΟΥ ΠΟΛΙΤΙΚΟΥ ΚΟΜΜΑΤΟΣ ΚΑΙ ΠΟΛΙΤΙΚΗ ΙΣΟΡΡΟΠΙΑ: ΜΙΑ ΕΦΑΡΜΟΓΗ ΤΗΣ

Διαβάστε περισσότερα

Μεταξύ του µονοπωλίου και του τέλειου ανταγωνισµού

Μεταξύ του µονοπωλίου και του τέλειου ανταγωνισµού Ολιγοπώλιο Μεταξύ του µονοπωλίου και του τέλειου ανταγωνισµού Ο ατελής ανταγωνισµός αναφέρεται σε εκείνες τις δοµές µ της αγοράς που κυµαίνονται µεταξύ του τέλειου ανταγωνισµού και του µονοπωλίου. Μεταξύ

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ Ηλεκτρικό κύκλωμα ονομάζεται μια διάταξη που αποτελείται από ένα σύνολο ηλεκτρικών στοιχείων στα οποία κυκλοφορεί ηλεκτρικό ρεύμα. Τα βασικά ηλεκτρικά στοιχεία είναι οι γεννήτριες,

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, Κεφάλαιο 4 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 4) 1 Θέματα

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ Περίγραµµα Εισαγωγή Στοιχεία Πολυπλοκότητας Ηλίας Κ. Σάββας Επίκουρος Καθηγητής Τμήμα: Τεχνολογίας Πληροφορικής & Τηλεπικοινωνιών Email: savvas@teilar teilar.gr Αλγόριθµοι

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ / ΕΙ ΙΚΟΤΗΤΑΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ / ΕΙ ΙΚΟΤΗΤΑΣ ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α.1. 3 η ΤΑΞΗ ΕΠΑ.Λ. (Α Β ΟΜΑ Α) ΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ / ΕΙ ΙΚΟΤΗΤΑΣ Ηµεροµηνία: Κυριακή 8 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ ΙΑΤΜΗΜΑΤΙΚΟ Μ.Π.Σ. ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Ι. ΠΟΛΥΡΑΚΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΓΚΡΑΒΑΣ Αριθµός

Διαβάστε περισσότερα

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται:

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται: 4.4 Ερωτήσεις διάταξης Στις ερωτήσεις διάταξης δίνονται:! µία σειρά από διάφορα στοιχεία και! µία πρόταση / κανόνας ή οδηγία και ζητείται να διαταχθούν τα στοιχεία µε βάση την πρόταση αυτή. Οι ερωτήσεις

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται

Διαβάστε περισσότερα

Πλατφόρµα Ευρυζωνικών ικτύων - Στρατηγική Ερευνητική Ατζέντα

Πλατφόρµα Ευρυζωνικών ικτύων - Στρατηγική Ερευνητική Ατζέντα Εισηγητής: Γιώργος Καλπάκης MSc Πλατφόρµα Ευρυζωνικών ικτύων - Στρατηγική Ερευνητική Ατζέντα 1 Θέµατα Κίνητρο της Ε1 Παρούσα Κατάσταση στην Ευρώπη Παρούσα Κατάσταση στην Ελλάδα Προϋποθέσεις Προώθησης της

Διαβάστε περισσότερα