Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:"

Transcript

1 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη και το ντετερμινιστικό μέρος της ζήτησης είναι πολύ μεγαλύτερο τότε οι προσεγγίσεις του Κεφαλαίου 3 μπορούν να χρησιμοποιηθούν με ασφάλεια. Εάν όμως η αβεβαιότητα είναι σημαντική πάντα σε σχέση με το γνωστό ή ντετερμινιστικό μέρος τότε χρησιμοποιούνται προσεγγίσεις που μοντελοποιούν και λαμβάνουν υπόψη την αβεβαιότητα αυτή. Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: Μέγεθος Παραγγελίας δηλαδή η ποσότητα που θα παραχθεί ή θα αγορασθεί με κάθε αναπλήρωση του αποθέματος Επίπεδο Αναπαραγγελίας δηλαδή το επίπεδο του αποθέματος στο οποίο τίθεται μία παραγγελία αναπλήρωσης παραγωγής ή προμήθειας Παρακάτω παρουσιάζονται δύο τέτοιες πολιτικές που αναφέρονται σε δύο διαφορετικές περιπτώσεις. Η πρώτη πολιτική υπολογίζει το μέγεθος μοναδικής παραγγελίας σε περίπτωση αβέβαιας ζήτησης όταν το απόθεμα που δεν χρησιμοποιείται ή πωλείται εκποιείται σε χαμηλότερη τιμή. Η δεύτερη πολιτική αναφέρεται στην περίπτωση κατά την οποία το απόθεμα παρακολουθείται συνεχώς και όταν το επίπεδο του μειωθεί σε ή κάτω από συγκεκριμένο επίπεδο τότε τίθεται παραγγελία για παραγωγή ή αγορά παρτίδας μεγέθους. 4. Το Μοντέλο του Εφημεριδοπώλη Εταιρίες εμπορίας εποχιακών ειδών π.χ. αποκριάτικων στολών χριστουγεννιάτικων δένδρων περιοδικών εφημερίδων κλπ αντιμετωπίζουν συνήθως αβέβαια ζήτηση και τα εξής χαρακτηριστικά της αγοράς: α όταν παρέλθει η αντίστοιχη περίοδος πωλήσεων το απόθεμα που δεν έχει πωληθεί εκποιείται σε τιμή πολύ χαμηλότερη της τιμής πώλησης. β Οιαδήποτε ανικανοποίητη ζήτηση οδηγεί σε χαμένες πωλήσεις καθώς ο πελάτης δεν μπορεί να περιμένει. Η προσέγγιση του μοντέλου του εφημεριδοπώλη βασίζεται στις εξής παραδοχές: Τα προϊόντα είναι ανεξάρτητα και είναι δυνατόν να θεωρηθεί το καθένα ξεχωριστά π.χ. δεν χρησιμοποιούνται κοινοί πόροι παραγωγής Το απόθεμα χρησιμοποιείται μόνο κατά τη διάρκεια μιας περιόδου Η κατανομή της αβέβαιας ζήτησης είναι γνωστή. Στην προκειμένη περίπτωση η ζήτηση περιγράφεται από συνεχή τυχαία μεταβλητή με συνάρτηση κατανομής και συνάρτηση πυκνότητας πιθανότητας =. Η προσέγγιση όμως ισχύει και στην περίπτωση διακριτής ζήτησης π.χ. = Το κόστος της χαμένης πώλησης ανά μονάδα προϊόντος και το κόστος ανά μονάδα εναπομείναντος προϊόντος ο είναι γνωστές σταθερές. Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 37

2 Παράδειγμα Ένα περίπτερο προμηθεύεται συγκεκριμένο εβδομαδιαίο περιοδικό σε τιμή και το πουλά σε τιμή 5. Τα επιστρεφόμενα περιοδικά αγοράζονται από τον εκδότη σε τιμή 5 ανά περιοδικό. Από στατιστικά στοιχεία είναι γνωστό ότι η ζήτηση προσεγγίζεται ικανοποιητικά από την κανονική κατανομή με μέση τιμή μ= και τυπική απόκλιση σ = περιοδικά. Να υπολογισθεί η βέλτιστη ποσότητα παραγγελίας. Παρατηρήσεις Στο παραπάνω παράδειγμα Το κόστος χαμένης πώλησης είναι η τιμή πώλησης μείον την τιμή αγοράς = 5 = 3 Το κόστος ανά μονάδα εναπομείναντος προϊόντος είναι ο = 5= 5 Με βάση τα παραπάνω κόστη φαίνεται λογικό η βέλτιστη ποσότητα παραγγελίας να είναι μεγαλύτερη της μέσης τιμής της ζήτησης. Πρώτα προσδιορίζουμε το κόστος C ως συνάρτηση της τυχαίας μεταβλητής και της ποσότητας παραγγελίας. Παρατηρείται ότι οι χαμένες πωλήσεις περιγράφονται από τη συνάρτηση mx{ } ά ά και αντίστοιχα το εναπομείναν απόθεμα περιγράφεται από τη συνάρτηση mx{ } ά ά Συνεπώς C mx{ } mx{ } Η αναμενόμενη τιμή του κόστους ορίζεται ως E C και δίδεται από E C C Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 38

3 Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 39 = } mx{ } mx{ ή Για να υπολογισθεί το ελάχιστο της ως προς υπολογίζουμε Για τον υπολογισμό της πρώτης παραγώγου υπενθυμίζουμε τον κανόνα του Leibnitz lim lim lim Επομένως Εφαρμόζοντας την παραπάνω σχέση στα δύο ολοκληρώματα της εξίσωσης της έχουμε καθότι = και καθότι

4 Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 4 Επομένως = = και δίνει + - = ή = Επίσης Επομένως η βέλτιστη ποσότητα παραγγελίας ικανοποιεί τη σχέση και υπολογίζεται με απλό τρόπο γνωρίζοντας την συνάρτηση κατανομής. Με την παραδοχή ότι η ζήτηση ακολουθεί την κανονική κατανομή η ποσότητα υπολογίζεται από τη σχέση z όπου Φz είναι το ολοκλήρωμα της συνάρτησης πυκνότητας πιθανότητας της τυποποιημένης κανονικής κατανομής έως την τιμή z. Από τους πίνακες της τυποποιημένης κανονικής κατανομής και γνωρίζοντας τον λόγο υπολογίζεται η τιμή z βλ. Σχήμα 4. και z

5 Για το παράδειγμα διαχείρισης αποθεμάτων του εβδομαδιαίου περιοδικού έχουμε Επομένως z 667 Από τον Πίνακα της κανονικής κατανομής βλ. Σχήμα 4. z 67 5 z 43 Επομένως z περιοδικά Παράδειγμα Πωλητής Χριστουγεννιάτικων δένδρων αγοράζει προς το τεμάχιο και το μεταπωλεί προς 3. Κάθε δένδρο που δεν πωλείται εκποιείται για χαρτομάζα προς. Η ιστορική ζήτηση περιγράφεται από κανονική κατανομή με μ= και σ= δένδρα. Να υπολογισθεί το βέλτιστο μέγεθος της παραγγελίας. Από τα παραπάνω δεδομένα προκύπτουν τα εξής = 3-= = -= z 743 Από τον Πίνακα της κανονικής κατανομής βλ. Σχήμα 4. z 43 5 z 57 Επομένως z δένδρα Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 4

6 Σχήμα 4. Τυποποιημένη Κανονική Κατανομή. Η τιμή Φz πλάγια διαγράμμιση ή η τιμή Φz 5 καρέ διαγράμμιση δίδονται από τους πίνακες της κανονικής κατανομής z 4. Το Μοντέλο Παρτίδας και Επιπέδου Αναπαραγγελίας Στο μοντέλο του πωλητή εφημερίδων το απόθεμα μιας περιόδου μόνο κατά τη διάρκεια της περιόδου αυτής. Συνεπώς δεν λαμβάνεται υπόψη το κόστος αποθεματοποίησης. Επίσης δεν λαμβάνονται υπόψη δύο βασικές παράμετροι που είναι σημαντικές σε κάθε μοντέλο διαχείρισης αποθεμάτων Το σταθερό κόστος παραγγελίας Ο χρόνος αναμονής Το μοντέλο δεν βασίζεται στις παραπάνω παραδοχές και συνεπώς είναι γενικότερο και αρκετά πρακτικό. Στο μοντέλο αυτό το απόθεμα παρακολουθείται συνεχώς μέσω του πληροφοριακού συστήματος διαχείρισης πόρων της εταιρίας- EP και όταν το ύψος του αποθέματος φθάσει την τιμή τίθεται παραγγελία ή ακριβέστερα εκδίδεται αίτημα παραγγελίας μεγέθους. Για την ανάπτυξη του μοντέλου γίνονται οι εξής παραδοχές: Η ζήτηση είναι στοχαστική αλλά στάσιμη sttinry. Συνεπώς η μέση τιμή της ζήτησης είναι σταθερή ανεξάρτητη του χρόνου καθώς και όλες οι άλλες στατιστικές παράμετροι Ο χρόνος αναμονής της παραγγελίας L είναι γνωστός και σταθερός Η ζήτηση περιγράφεται με βάση τον χρόνο αναμονής L. Ως ορίζεται η ζήτηση εντός της χρονικής περιόδου L. Η είναι τυχαία μεταβλητή με μέση τιμή μ= Ε και διασπορά σ = Ε μ. Ο μέσος ρυθμός της ζήτησης είναι λ= μ/l μονάδες προϊόντος ανά μονάδα χρόνου. Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 4

7 Τα σχετικά κόστη είναι σταθερά και έχουν ως εξής: = σταθερό κόστος παραγγελίας = κόστος αποθεματοποίησης μιας μονάδας προϊόντος ανά μονάδα χρόνου = μεταβλητό κόστος ανά μονάδα προϊόντος = κόστος ανά μονάδα ανικανοποίητης ζήτησης. Το πρόβλημα είναι να προσδιορισθούν οι τιμές των μεταβλητών απόφασης και που ελαχιστοποιούν το συνολικό κόστος. Η συνάρτηση του συνολικού κόστους περιλαμβάνει τα εξής κόστη: Το σταθερό κόστος παραγγελίας δαπανάται άπαξ ανά κύκλο παραγγελίας. Καθώς θα ελαχιστοποιηθεί το κόστος ανά μονάδα χρόνου πρέπει να υπολογισθεί η περίοδος κύκλος παραγγελίας. Η μέση τιμή του κύκλου ικανοποιεί την εξίσωση = λ Τ και κατά συνέπεια η μέση τιμή του σταθερού κόστους ανά μονάδα χρόνου είναι T Το κόστος αποθεματοποίησης. Για να υπολογισθεί το κόστος αυτό υπολογίζεται η μέση τιμή του αποθέματος από το μοντέλο του Σχήματος 4. το οποίο παρουσιάζει την χρονική μεταβολή της μέσης τιμής του ύψους του αποθέματος. Επισημαίνεται ότι η μεταβολή του ύψους του αποθέματος είναι φυσικά τυχαία μεταβλητή και δεν ακολουθεί την κατά τμήματα γραμμική μεταβολή της μέσης τιμής του Σχήματος. Σύμφωνα με αυτό το Σχήμα η μέση τιμή του αποθέματος μειώνεται γραμμικά από την τιμή + s έως την τιμή s όπου s είναι το απόθεμα ασφαλείας sety stk. Το τελευταίο χρησιμοποιείται για να μειωθεί η πιθανότητα έλλειψης αποθέματος stk t λόγω της τυχαίας ζήτησης. Στο Σχήμα 4. φαίνεται επίσης και το επίπεδο αναπαραγγελίας = s + λ L όπου L είναι ο σταθερός χρόνος αναμονής. Με βάση τις παραμέτρους του σχήματος το μέσο χρονικά επίπεδο αποθέματος δίδεται από την εξίσωση s L Επισημαίνεται ότι το κόστος αποθεματοποίησης υπολογίζεται μόνο στην περίπτωση θετικού αποθέματος και συνεπώς το μέσο κόστος αποθεματοποίησης ανά μονάδα χρόνου L είναι υποεκτιμημένο. Η υποεκτίμηση αυτή είναι μεγαλύτερη όταν η τιμή του s είναι μικρότερη και συνεπώς η πιθανότητα έλλειψης αποθέματος είναι μεγαλύτερη. Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 43

8 Σχήμα 4. Η χρονική μεταβολή της μέσης τιμής του αποθέματος EI Το κόστος μη ικανοποίησης της ζήτησης. Η μη ικανοποίηση της ζήτησης εξαρτάται προφανώς από την ζήτηση. Επισημαίνεται ότι έχει ορισθεί ως η αναμενόμενη ζήτηση εντός του χρόνου αναμονής L. Εντός του χρόνου αυτού ελλείψεις θα συμβούν μόνο όταν > βλ. Σχήμα 4.. Η αναμενόμενη τιμή των ελλείψεων εντός του χρονικού αυτού διαστήματος είναι m Emx Συνεπώς η αναμενόμενες ελλείψεις ανά μονάδα χρόνου είναι m m T και η αναμενόμενη τιμή του κόστους μη ικανοποίησης της ζήτησης ανά μονάδα χρόνου είναι m Το μεταβλητό κόστος παραγωγής ή προμήθειας είναι το γινόμενο του μοναδιαίου κόστους επί την ποσότητα παραγωγής ή προμήθειας. Συνεπώς η μέση τιμή του κόστους αυτού ανά μονάδα χρόνου ισούται με λ και είναι σταθερή για κάθε πολιτική διαχείρισης του αποθέματος δηλαδή ανεξάρτητη των και και έτσι δεν περιλαμβάνεται στην ανάλυση. Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 44

9 Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 45 Κατά συνέπεια το συνολικό κόστος ανά μονάδα χρόνου περιλαμβάνει όρους που εξαρτώνται από τις μεταβλητές απόφασης και ήτοι το σταθερό κόστος παραγγελίας το κόστος αποθεματοποίησης και το κόστος μη ικανοποίησης της ζήτησης. m L C T Η ελαχιστοποίηση της συνάρτησης κόστος T C συνεπάγεται m C T 4. m C T 4. Αλλά lim m lim lim 4.3 Η εξίσωση 4. παραπάνω συνεπάγεται m m ή m 4.4 Χρησιμοποιώντας την Εξίσωση 4.3 στην Εξίσωση 4. η τελευταία μετασχηματίζεται σε

10 4.5 Το σύστημα των εξισώσεων 4.4 και 4.5 έχει δύο αγνώστους και και λύνεται ως εξής:. Έστω δηλαδή EO και i=. Υπολογίζεται η τιμή από με τη βοήθεια του σχετικού Πίνακα της εκάστοτε κατανομής 3. m i i 4. i= i+ 5. i i m i 6. Υπολογίζεται η τιμή του i από την i i 7. Συνεχίζονται τα βήματα 3 έως 6 έως ότου και i i i i Συνήθως ο αλγόριθμος αυτός συγκλίνει στα πρώτα 4 βήματα αναλόγως της ζητούμενης ακρίβειας 3. Όταν το προϊόν μετράται σε ακέραιες μονάδες τότε ε =. Στην περίπτωση που η κατανομή της τυχαίας μεταβλητής είναι κανονική τότε ο υπολογισμός του βήματος 4 χρησιμοποιεί πίνακα της συνάρτησης A z x z x x z όπου φx είναι η συνάρτηση πυκνότητας πιθανότητας της κανονικής κατανομής. Οι τιμές Lz δίδονται από τον πίνακα Α του Παραρτήματος Α. Με βάση της τιμές του πίνακα αυτού Παράδειγμα i m i A Κατάστημα παιχνιδιών πωλεί εισαγόμενο τηλεκατευθυνόμενο ελικόπτερο σε τιμή. Το κόστος αγοράς του ελικοπτέρου είναι 5 και ο χρόνος αναμονής είναι 3 μήνες. Η αναμενόμενη ζήτηση είναι τεμάχια ανά μήνα με τυπική απόκλιση 6 τεμάχια και η κατανομή της ζήτησης είναι κανονική. Ο λογιστής του καταστήματος εκτιμά το σταθερό κόστος παραγγελίας σε και αποτιμά το κόστος αποθέματος με ετήσιο επιτόκιο %. Να προσδιορίσετε τη βέλτιστη πολιτική διαχείρισης του αποθέματος του ελικοπτέρου. Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 46

11 Παρατηρείται ότι L = 3 μήνες και επομένως η ζήτηση στους τρείς μήνες = ος μήνας + ος μήνας + 3 ος μήνας = Τότε E E E E E Επίσης Με βάση τα παραπάνω στοιχεία έχουμε = 5 = 5 4 μ=3 =3 σ = 3*6 39 Για τον υπολογισμό του έχουμε δύο επιλογές 5 α Υπολογίζεται ανά μήνα. Στην περίπτωση αυτή αλλά και ο μέσος ρυθμός ανάλωσης πρέπει να αντιστοιχεί στον μήνα δηλαδή λ=. 5 β Υπολογίζεται στην περίοδο αναμονής. Τότε = και λ= 3. 4 Το αποτέλεσμα φυσικά είναι το ίδιο Από τον πίνακα της κανονικής κατανομής z=94 z= 56 ή 56 ή 3 56 ή m Από τον πίνακα Α. m i= z m A 39 A i= Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 47

12 z Με βάση την παραπάνω λύση υπολογίζουμε τα εξής: Απόθεμα ασφαλείας s = λ= 46 3=6 καθότι ο ρυθμός ανάλωσης έχει υπολογισθεί για ολόκληρη την περίοδο του χρόνου αναμονής L= 3 μήνες Περίοδος μεταξύ δύο διαδοχικών αναπληρώσεων αποθέματος 53 T 53 μήνες Η πιθανότητα να μην συμβούν ελλείψεις είναι 46 3 P Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 48

Πρόλογος Κατανόηση της εφοδιαστικής αλυσίδας Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41

Πρόλογος Κατανόηση της εφοδιαστικής αλυσίδας Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41 Περιεχόμενα Πρόλογος...7 1 Κατανόηση της εφοδιαστικής αλυσίδας...9 2 Σχεδιασμός δικτύου εφοδιαστικής αλυσίδας...41 3 Πρόβλεψη της ζήτησης σε μια εφοδιαστική αλυσίδα...109 4 Συγκεντρωτικός προγραμματισμός

Διαβάστε περισσότερα

Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές

Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές 3. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΟΣ 3. Τι Είναι Απόθεμα Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές. Απόθεμα Α, Β υλών και υλικών συσκευασίας: Είναι το απόθεμα των υλικών που χρησιμοποιούνται

Διαβάστε περισσότερα

Ασκήσεις Αποθεµάτων. Υποθέστε ότι την στιγμή αυτή υπάρχει στην αποθήκη απόθεμα για 5 μήνες.

Ασκήσεις Αποθεµάτων. Υποθέστε ότι την στιγμή αυτή υπάρχει στην αποθήκη απόθεμα για 5 μήνες. Ασκήσεις Αποθεµάτων 1. Το πρόγραμμα παραγωγής μιας βιομηχανίας προβλέπει την κατανάλωση 810.000 μονάδων πρώτης ύλης το χρόνο, με ρυθμό πρακτικά σταθερό, σε όλη τη διάρκεια του έτους. Η βιομηχανία εισάγει

Διαβάστε περισσότερα

Η άριστη ποσότητα παραγγελίας υπολογίζεται άμεσα από τη κλασική σχέση (5.5): = 1000 μονάδες

Η άριστη ποσότητα παραγγελίας υπολογίζεται άμεσα από τη κλασική σχέση (5.5): = 1000 μονάδες ΠΡΟΒΛΗΜΑ 1 Η ετήσια ζήτηση ενός σημαντικού εξαρτήματος που χρησιμοποιείται στη μνήμη υπολογιστών desktops εκτιμήθηκε σε 10.000 τεμάχια. Η αξία κάθε μονάδας είναι 8, το κόστος παραγγελίας κάθε παρτίδας

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Ειδικά Μοντέλα Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Μοντέλο μη αυτόματου εφοδιασμού (Economic Lot size) Αλγόριθμος Wagner-Whitin

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΠΟΘΕΜΑΤΩΝ. Ι. Προσδιοριστικά Μοντέλα αποθεµάτων

ΘΕΩΡΙΑ ΑΠΟΘΕΜΑΤΩΝ. Ι. Προσδιοριστικά Μοντέλα αποθεµάτων ΘΕΩΡΙΑ ΑΠΟΘΕΜΑΤΩΝ Οι αποφάσεις σχετικά µε την διαχείριση ή «πολιτική» των αποθεµάτων που πρέπει να πάρει κάποιος, ασχολείται µε το «πόσο» πρέπει να παραγγείλει (ή να παράγει) και «πότε» να παραγγείλει

Διαβάστε περισσότερα

Μοντέλα Διαχείρισης Αποθεμάτων

Μοντέλα Διαχείρισης Αποθεμάτων Μοντέλα Διαχείρισης Αποθεμάτων 2 Εισαγωγή (1) Ο όρος απόθεμα αναφέρεται σε προϊόντα και υλικά που αποθηκεύονται από την επιχείρηση για μελλοντική χρήση Τα αποθέματα μπορεί να περιλαμβάνουν Πρώτες ύλες

Διαβάστε περισσότερα

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας»

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Άσκηση 1. Έστω ότι μια επιχείρηση αντιμετωπίζει ετήσια ζήτηση = 00 μονάδων για ένα συγκεκριμένο προϊόν, σταθερό κόστος παραγγελίας

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΔΙΑΧΕΙΡΗΣΗ ΑΠΟΘΕΜΑΤΩΝ ΕΝΟΤΗΤΑ 7η

ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΔΙΑΧΕΙΡΗΣΗ ΑΠΟΘΕΜΑΤΩΝ ΕΝΟΤΗΤΑ 7η ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΔΙΑΧΕΙΡΗΣΗ ΑΠΟΘΕΜΑΤΩΝ ΕΝΟΤΗΤΑ 7η ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ Τι ορίζεται ως απόθεμα;

Διαβάστε περισσότερα

Προγραμματισμός και έλεγχος αποθεμάτων. Source: Corbis

Προγραμματισμός και έλεγχος αποθεμάτων. Source: Corbis Προγραμματισμός και έλεγχος αποθεμάτων Source: Corbis Προγραμματισμός και έλεγχος αποθεμάτων Προγραμματισμός και έλεγχος αποθεμάτων Στρατηγική παραγωγής Η αγορά απαιτεί μια ποσότητα προϊόντων και υπηρεσιών

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ Ασκήσεις Αθήνα, Ιανουάριος 2010 Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών

Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών Τεχνο-οικονοµικά Συστήµατα ιοίκηση Παραγωγής & Συστηµάτων Υπηρεσιών 9. ιαχείριση αποθεµάτων Μοντέλα διαχείρισης Η αβεβαιότητα στη διαχείριση αποθεµάτων Συστήµατα Kanban/Just In Time (JIT) Εισηγητής: Θοδωρής

Διαβάστε περισσότερα

Η Κανονική Κατανομή. Κανονικές Κατανομές με την ίδια διασπορά και διαφορετικές μέσες τιμές.

Η Κανονική Κατανομή. Κανονικές Κατανομές με την ίδια διασπορά και διαφορετικές μέσες τιμές. Η Κανονική Κατανομή 1. Η Κανονική Κατανομή Λέμε ότι τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους μ και σ 2, και συμβολίζουμε Χ ~ N (μ, σ 2 ) αν έχει συνάρτηση πυκνότητας πιθανότητας

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Η εταιρεία Ζ εξετάζει την πιθανότητα κατασκευής ενός νέου, πρόσθετου εργοστασίου για την παραγωγή ενός νέου προϊόντος. Έτσι έχει δυο επιλογές: Η πρώτη αφορά στην κατασκευή

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Συστήματα Συνεχούς και Περιοδικής Αναθεώρησης Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Συστήματα ελέγχου αποθεμάτων Σύστημα συνεχούς

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ. Από το βιβλίο: Κώστογλου, Β. (2015). Επιχειρησιακή Έρευνα. Θεσσαλονίκη: Εκδόσεις Τζιόλα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ. Από το βιβλίο: Κώστογλου, Β. (2015). Επιχειρησιακή Έρευνα. Θεσσαλονίκη: Εκδόσεις Τζιόλα ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ 1 Εισαγωγικά Απόθεμα εννοείται κάθε είδους αγαθό, το οποίο μπορεί να αποθηκευτεί με στόχο την τρέχουσα ή μελλοντική χρησιμοποίησή του. Αποθέματα συναντώνται σε κάθε

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 7: Έλεγχος Αποθεμάτων Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

7.1. Εισαγωγή Τύποι Αποθεμάτων Βασικοί Τύποι αποθεμάτων Μέθοδοι Μείωσης παραγγελιών Ταξινόμηση ΑΒC...

7.1. Εισαγωγή Τύποι Αποθεμάτων Βασικοί Τύποι αποθεμάτων Μέθοδοι Μείωσης παραγγελιών Ταξινόμηση ΑΒC... Κεφάλαιο 7: ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ Περιεχόμενα 7.1. Εισαγωγή... 2 7.2. Το Πρόβλημα Διαχείρισης Αποθεμάτων... 4 7.2.1 Σκοπός Διατήρησης Αποθεμάτων... 4 7.2.2 Στοιχεία Κόστους Αποθεμάτων... 4 7.2.3 Εξαρτημένη

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

Τι είναι απόθεµα (Inventory) ;

Τι είναι απόθεµα (Inventory) ; Τι είναι απόθεµα (Inventory) ; κάθε αδρανές οικονοµικό µέσο ή πόρος που διατηρείται για την ικανοποίηση µελλοντικής ζήτησης γι αυτό. 1995 Corel Corp. 1984-1994 T/Maker Co. 1984-1994 T/Maker Co. 3 Απόθεµα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ

ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓΗ Η εταιρεία Ζ εξετάζει την πιθανότητα κατασκευής ενός νέου, πρόσθετου εργοστασίου για την παραγωγή ενός νέου προϊόντος. Έτσι έχει δυο επιλογές: Η πρώτη αφορά στην κατασκευή

Διαβάστε περισσότερα

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι: Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ. Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ. Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ Αθήνα, Ιανουάριος 2015 Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #6: Στοχαστικός Γραμμικός Προγραμματισμός Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Έλεγχος Αποθεμάτων υπό Αβέβαιη Ζήτηση

Έλεγχος Αποθεμάτων υπό Αβέβαιη Ζήτηση Έλεγχος Αποθεμάτων υπό Αβέβαιη Ζήτηση Γιώργος Λυμπερόπουλος 1 Πρότυπο Εφημεριδοπώλη Υποθέσεις/Συμβολισμός Ορίζοντας μίας περιόδου Αβέβαιη ζήτηση περιόδου: DD (μονάδες). Υπόθεση: DD συνεχής τυχαία μεταβλητή

Διαβάστε περισσότερα

Έλεγχος Αποθεμάτων. Γιώργος Λυμπερόπουλος. Γ. Λυμπερόπουλος - Διoίκηση Παραγωγής

Έλεγχος Αποθεμάτων. Γιώργος Λυμπερόπουλος. Γ. Λυμπερόπουλος - Διoίκηση Παραγωγής Έλεγχος Αποθεμάτων Γιώργος Λυμπερόπουλος 1 Σημασία Ελέγχου Αποθεμάτων Η συνολική επένδυση σε αποθέματα σε μία χώρα είναι τεράστια (20-25% του ΑΕΠ). Τομείς οικονομίας με αποθέματα: Βιομηχανική παραγωγή

Διαβάστε περισσότερα

Άσκηση 5. Εργοστάσια. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης

Άσκηση 5. Εργοστάσια. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης Άσκηση Μια μεγάλη εταιρεία σκοπεύει να μπει δυναμικά στην αγορά αναψυκτικών της χώρας διαθέτοντας συνολικά 7 μονάδες κεφαλαίου. Το πρόβλημα που αντιμετωπίζει είναι αν πρέπει να κατασκευάσει ένα κεντρικό

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ

2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ .5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ & ΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ

ΟΡΓΑΝΩΣΗ & ΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΛΕΙΤΟΥΡΓΙΕΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΟΡΓΑΝΩΣΗ & ΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΣΥΣΤΗΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΑΠΑΙΤΟΥΜΕΝΩΝ ΥΛΙΚΩΝ (MRP) Δημ. Εμίρης Αναπλ. Καθηγητής Πειραιάς, 2012 ΔΙΑΡΘΡΩΣΗ ΤΗΣ ΕΝΟΤΗΤΑΣ Εισαγωγή Ορισμοί Είδη ζήτησης Χρόνοι υστέρησης Κοινόχρηστα είδη Δομή και συστατικά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (16/06/2010, 18:00)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (16/06/2010, 18:00) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 2009-2010 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (16/06/2010, 18:00) Να απαντηθούν

Διαβάστε περισσότερα

Διάλεξη 5: Τυχαία Μεταβλητή Κατανομές Πιθανότητας

Διάλεξη 5: Τυχαία Μεταβλητή Κατανομές Πιθανότητας Διάλεξη 5: ΑΣΚΗΣΕΙΣ 1. Έστω η ποιότητα ενός προϊόντος που παίρνουμε από ένα σύνολο προϊόντων με απλή τυχαία δειγματοληψία. Ανάλογα με το αν το προϊόν είναι ελαττωματικό, καλο ή άριστο, η παίρνει τις τιμές,

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας. Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς

Διαβάστε περισσότερα

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0 ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής Δεσμευμένη αξιοπιστία Η δεσμευμένη αξιοπιστία R t είναι η πιθανότητα το σύστημα να λειτουργήσει για χρονικό

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

, µπορεί να είναι η συνάρτηση. αλλού. πλησιάζουν προς την τιµή 1, η διασπορά της αυξάνεται ή ελαττώνεται; (Εξηγείστε γιατί).

, µπορεί να είναι η συνάρτηση. αλλού. πλησιάζουν προς την τιµή 1, η διασπορά της αυξάνεται ή ελαττώνεται; (Εξηγείστε γιατί). Εργαστήριο Μαθηµατικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου 009 στη Στατιστική 0/0/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. [0] Οι ακαθάριστες εβδοµαδιαίες εισπράξεις µιας κτηνοτροφικής µονάδας, από την πώληση

Διαβάστε περισσότερα

Επώνυµη ονοµασία. Ενότητα 13 η Σχεδίαση,Επιλογή, ιανοµή Προϊόντων 1

Επώνυµη ονοµασία. Ενότητα 13 η Σχεδίαση,Επιλογή, ιανοµή Προϊόντων 1 Επώνυµη ονοµασία Η επώνυµη ονοµασία είναι αυτή η ονοµασία που ξεχωρίζει τα προϊόντα και τις υπηρεσίες µας από αυτές των ανταγωνιστών. Οι σχετικές αποφάσεις θα επηρεαστούν από τις εξής ερωτήσεις: 1. Χρειάζεται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@e.aegea.gr Τηλ: 7035468 Μέθοδος Υπολογισμού

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Σε αντίθεση με την διακριτή τυχαία μεταβλητή, μία συνεχής τυχαία μεταβλητή παίρνει μη-αριθμήσιμο (συνεχές) πλήθος τιμών. Δεν μπορούμε να καταγράψουμε το σύνολο των τιμών

Διαβάστε περισσότερα

Κεφάλαιο 12 Προγραµµατισµός και έλεγχος αποθεµάτων

Κεφάλαιο 12 Προγραµµατισµός και έλεγχος αποθεµάτων Κεφάλαιο 12 Προγραµµατισµός και έλεγχος αποθεµάτων Source: Corbis Προγραµµατισµός και έλεγχος αποθεµάτων Προγραµµατισµός και έλεγχος αποθεµάτων Στρατηγική παραγωγής Η αγορά απαιτεί µια ποσότητα προϊόντων

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Γραμμικός προγραμματισμός: Εισαγωγή Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 3 η /2017 Γραμμικός προγραμματισμός Είναι μια μεθοδολογία

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΠΡΟΪΟΝΤΟΣ, ΔΥΝΑΜΙΚΟΤΗΤΑΣ, ΜΕΘΟΔΟΥ ΠΑΡΑΓΩΓΗΣ

ΣΧΕΔΙΑΣΜΟΣ ΠΡΟΪΟΝΤΟΣ, ΔΥΝΑΜΙΚΟΤΗΤΑΣ, ΜΕΘΟΔΟΥ ΠΑΡΑΓΩΓΗΣ Διοίκηση Παραγωγής και Συστημάτων Υπηρεσιών ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2016-2017 ΣΧΕΔΙΑΣΜΟΣ ΠΡΟΪΟΝΤΟΣ, ΔΥΝΑΜΙΚΟΤΗΤΑΣ, ΜΕΘΟΔΟΥ ΠΑΡΑΓΩΓΗΣ ΑΣΚΗΣΗ 1 Σε μια εταιρεία εκτελέστηκε μια μελέτη του παραγωγικού χρόνου των

Διαβάστε περισσότερα

Ορισμός και Ιδιότητες

Ορισμός και Ιδιότητες ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Ορισμός και Ιδιότητες H κανονική κατανομή norml distriution θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης Q ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το

ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης Q ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το ΕΦΑΡΜΟΓΕΣ Α. ΟΜΑΔΑ Ι 1 α) Η ποσότητα ζήτησης ενός αγαθού εξαρτάται από την μοναδιαία τιμή του P και από το εισόδημα Y, σύμφωνα με την σχέση: = P Y. Αν η τιμή αυξηθεί κατά %, να εκτιμηθεί πόσο πρέπει να

Διαβάστε περισσότερα

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling) 3 ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratfed Radom Samplg) Είναι προφανές από τα τυπικά σφάλματα των εκτιμητριών των προηγούμενων παραγράφων, ότι ένας τρόπος να αυξηθεί η ακρίβεια τους είναι να αυξηθεί

Διαβάστε περισσότερα

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 )

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 ) Κατανομή συνάρτησης τυχαίας μεταβλητής =() Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ3 ( ) Κατανομή συνάρτησης τυχαίας μεταβλητής Έστω τ.μ. Χ με γνωστή κατανομή. Δηλαδή

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. Η τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας που δίνεται από τον πίνακα: x f(x) / / / / / Να βρεθεί η μέση τιμή και η διασπορά.. Η τυχαία μεταβλητή

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Εισαγωγή Ο Δυναμικός Προγραμματισμός (ΔΠ) είναι μία υπολογιστική μέθοδος η οποία εφαρμόζεται όταν πρόκειται να ληφθεί μία σύνθετη απόφαση η οποία προκύπτει από τη σύνθεση επιμέρους

Διαβάστε περισσότερα

«ΤΟ ΣΤΟΧΑΣΤΙΚΟ ΠΡΟΤΥΠΟ EOQ ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΟΥ»

«ΤΟ ΣΤΟΧΑΣΤΙΚΟ ΠΡΟΤΥΠΟ EOQ ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΟΥ» Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΤΟ ΣΤΟΧΑΣΤΙΚΟ ΠΡΟΤΥΠΟ EOQ ΣΤΗ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΟΥ» Του σπουδαστή ΜΑΧΑΙΡΟΥΔΗ KΩΝΣΤΑΝΤΙΝΟΥ Επιβλέπων Δρ. ΓΕΡΟΝΤΙΔΗΣ ΙΩΑΝΝΗΣ Αναπληρωτής

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

Να εξετάσετε αν είναι συναρτήσεις πυκνότητας πιθανότητας, κι αν είναι να υπολογίσετε τη συνάρτηση κατανομής πιθανότητας F x (x).

Να εξετάσετε αν είναι συναρτήσεις πυκνότητας πιθανότητας, κι αν είναι να υπολογίσετε τη συνάρτηση κατανομής πιθανότητας F x (x). Κεφάλαιο 2, άσκηση 1: Δίνονται οι συναρτήσεις: α) 2, β), Να εξετάσετε αν είναι συναρτήσεις πυκνότητας πιθανότητας, κι αν είναι να υπολογίσετε τη συνάρτηση κατανομής πιθανότητας F x (x). Λύση : Για να είναι

Διαβάστε περισσότερα

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Copyright 2009 Cengage Learning 8.1 Συναρτήσεις Πυκνότητας Πιθανοτήτων Αντίθετα με τη διακριτή τυχαία μεταβλητή που μελετήσαμε στο Κεφάλαιο 7, μια συνεχής τυχαία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 22Νοεμβρίου 2015 ΑΥΞΟΥΣΕΣ ΦΘΙΝΟΥΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Αν μια συνάρτηση f ορίζεται σε ένα διάστημα

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0.

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0. ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου 8:-: ΑΠΑΝΤΗΣΕΙΣ Θέμα (Α) ( 5 μονάδες) Δίδονται οι πίνακες Α=,

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό

Πληροφοριακά Συστήματα Διοίκησης. Εισαγωγή στον Γραμμικό Προγραμματισμό Πληροφοριακά Συστήματα Διοίκησης Εισαγωγή στον Γραμμικό Προγραμματισμό Τι είναι ο Γραμμικός Προγραμματισμός; Είναι το σημαντικότερο μοντέλο στη Λήψη Αποφάσεων Αντικείμενό του η «άριστη» κατανομή περιορισμένων

Διαβάστε περισσότερα

ΘΕΜΑ 5ο (ΜΟΝΑΔΕΣ 0) www.oleclassroom.gr Ένας οικονομικός αναλυτής θέλει να διερευνήσει τη σχέση μεταξύ της τιμής ενός αγαθού με τις σημειούμενες πωλήσεις του σε διαφορετικά καταστήματα μιας αστικής περιοχής.

Διαβάστε περισσότερα

Σημειώσεις. Μοντέλα ανταγωνισμού και συνεργασίας σε εφοδιαστικές αλυσίδες

Σημειώσεις. Μοντέλα ανταγωνισμού και συνεργασίας σε εφοδιαστικές αλυσίδες Σημειώσεις Μοντέλα ανταγωνισμού και συνεργασίας σε εφοδιαστικές αλυσίδες Απόστολος Μπουρνέτας, Πανεπιστήμιο Αθηνών 1 Προβλήματα Παραγωγής μιας Περιόδου Το πρόβλημα του εφημεριδοπώλη. Σ αυτές τις σημειώσεις

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουλίου Θέμα ( μονάδες) 4 Θεωρούμε τον Ευκλείδειο χώρο και τον υποχώρο του V που παράγεται

Διαβάστε περισσότερα

7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ

7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ 7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ Για να αναπτυχθούν οι βασικές έννοιες της δυναμικής του εργοστασίου εισάγουμε εδώ ορισμένους όρους πέραν αυτών που έχουν ήδη αναφερθεί σε προηγούμενα Κεφάλαια π.χ. είδος,

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του έβδομου φυλλαδίου ασκήσεων. f X (t) dt για κάθε x. F Y (y) = P (Y y) = P X y b ) a.

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του έβδομου φυλλαδίου ασκήσεων. f X (t) dt για κάθε x. F Y (y) = P (Y y) = P X y b ) a. Θεωρία Πιθανοτήτων, εαρινό εξάμηνο 207- Λύσεις του έβδομου φυλλαδίου ασκήσεων Αν η συνεχής τμ X έχει συνάρτηση κατανομής F X και συνάρτηση πυκνότητας πιθανότητας f X, να βρείτε τις αντίστοιχες συναρτήσεις

Διαβάστε περισσότερα

Οι παραγγελίες ακολουθούν την κατανομή Poisson. Σύμφωνα με τα δεδομένα ο

Οι παραγγελίες ακολουθούν την κατανομή Poisson. Σύμφωνα με τα δεδομένα ο ΘΕΜΑ 1 ο (ΜΟΝΑΔΕΣ 10) Μια βιοτεχνία καθαρισμού ρούχων λειτουργεί καθημερινά 8 ώρες. Η βιοτεχνία δέχεται κατά μέσο όρο 4 παραγγελίες την ημέρα για καθαρισμό ενδυμάτων. (ι). Να υπολογισθεί η πιθανότητα να

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση II

Απλή Γραμμική Παλινδρόμηση II . Ο Συντελεστής Προσδιορισμού Η γραμμή Παλινδρόμησης στο δείγμα, αποτελεί μία εκτίμηση της γραμμής παλινδρόμησης στον πληθυσμό. Αν και από τη μέθοδο των ελαχίστων τετραγώνων προκύπτουν εκτιμητές που έχουν

Διαβάστε περισσότερα

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ Ιουλίου 0 Θέμα α) (Μον.6) Να βρεθεί η τιμή του πραγματικού

Διαβάστε περισσότερα

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου 4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

Στοχαστικές Ανελίξεις- Φεβρουάριος 2015

Στοχαστικές Ανελίξεις- Φεβρουάριος 2015 Στοχαστικές Ανελίξεις- Φεβρουάριος 2015 ΟΔΗΓΙΕΣ (1) Απαντήστε σε όλα τα θέματα. Τα θέματα είναι ισοδύναμα. (2) Οι απαντήσεις να είναι αιτιολογημένες. Απαντήσεις χωρίς να φαίνεται η απαιτούμενη εργασία

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Μαθηματικά για Οικονομολόγους Ι Εργασία - ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ - ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Παρακάτω δίνονται συνολικά ασκήσεις με πολλαπλά ερωτήματα τις οποίες θα επιλύσετε

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Έλεγχος Αποθεμάτων υπό γνωστή χρονικά μεταβαλλόμενη ζήτηση

Έλεγχος Αποθεμάτων υπό γνωστή χρονικά μεταβαλλόμενη ζήτηση Έλεγχος Αποθεμάτων υπό γνωστή χρονικά μεταβαλλόμενη ζήτηση Γιώργος Λυμπερόπουλος Δυναμική Επιλογή Μεγέθους Παρτίδας (Dynamic Lo Sizing) Υποθέσεις/συμβολισμός Ο χρόνος είναι διαιρεμένος σε διακριτές χρονικές

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

6 ΔΙΟΙΚΗΣΗ ΕΚΜΕΤΑΛΛΕΥΣΗΣ

6 ΔΙΟΙΚΗΣΗ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΕΡΙΕΧΟΜΕΝΑ 1 Ο ΣΚΟΠΟΣ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ... 13 Γενική περιγραφή των συστημάτων παραγωγής και εκμετάλλευσης... 16 Λειτουργίες μεταποίησης και λειτουργίες υπηρεσιών... 18 Στρατηγική

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 7: Ασκήσεις - Παραδείγματα Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΗΣ - ΑΠΟΘΕΜΑΤΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΗΣ - ΑΠΟΘΕΜΑΤΩΝ ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΗΣ - ΑΠΟΘΕΜΑΤΩΝ Γιώργος Λυμπερόπουλος Γ. Λυμπερόπουλος, ΠΘ 1 Εφοδιαστική Αλυσίδα (ΕΑ) Όλες οι δραστηριότητες που σχετίζονται με το κύκλωμα προμήθειας, μεταποίησης, αποθήκευσης, μεταφοράς

Διαβάστε περισσότερα

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Η «OutBoard Motors Co» παράγει τέσσερα διαφορετικά είδη εξωλέμβιων (προϊόντα 1 4) Ο γενικός διευθυντής κ. Σχοινάς, ενδιαφέρεται

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ Τομέας Οργάνωσης Παραγωγής & Βιομηχανικής Διοίκησης Σημειώσεις του μαθήματος: ΣΤΟΧΑΣΤΙΚΑ ΠΡΟΤΥΠΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Γιώργος Λυμπερόπουλος

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές

Στοχαστικές Στρατηγικές Στοχαστικές Στρατηγικές 1 η ενότητα: Εισαγωγή στον Δυναμικό Προγραμματισμό Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Συνάρτηση Γάμμα: Ιδιότητες o d Γ(α+)=αΓ(α) - αναδρομική συνάρτηση Γ(α+) = α! αν α ακέραιος. Πιθανότητες & Στατιστική 5 Τμήμα Μηχανικών Η/Υ

Διαβάστε περισσότερα

Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες

Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες Είπαμε ότι γενικά τα συστηματικά σφάλματα που υπεισέρχονται σε μια μέτρηση ενός φυσικού μεγέθους είναι γενικά δύσκολο να επισημανθούν και να διορθωθούν.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 00-0 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (/05/0, 9:00) Να απαντηθούν 4 από τα 5

Διαβάστε περισσότερα