7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ"

Transcript

1 7. Η ΔΥΝΑΜΙΚΗ ΤΟΥ ΕΡΓΟΣΤΑΣΙΟΥ Για να αναπτυχθούν οι βασικές έννοιες της δυναμικής του εργοστασίου εισάγουμε εδώ ορισμένους όρους πέραν αυτών που έχουν ήδη αναφερθεί σε προηγούμενα Κεφάλαια π.χ. είδος, ημιέτοιμο, έτοιμο τεχνική προδιαγραφή, φασεολόγιο, χρόνος αναμονής, εντολή παραγωγής, κέντρο (σταθμό) εργασίας και δυναμικότητα. Οι όροι αυτοί είναι οι εξής: Παρτίδα σε εξέλιξη (J): Είναι μια εντολή παραγωγής σε εξέλιξη, δηλαδή, ένα σύνολο υλικών που ακολουθεί ένα συγκεκριμένο φασεολόγιο Χρόνος κύκλου παραγωγής (Cycle Time): Είναι ο μέσος χρόνος που μεσολαβεί από την απελευθέρωση μιας εντολής έως την παραλαβή της από την αποθήκη Απόθεμα παραγωγής σε εξέλιξη (Wk-In-Pcess): Είναι το απόθεμα μίας παρτίδας σε εξέλιξη (από την απελευθέρωση έως την παραλαβή της) Ρυθμός παραγωγής (Thughpu) μίας παραγωγικής διαδικασίας: Είναι ο λόγος της ποσότητας παραγωγής της διαδικασίας ανά μονάδα χρόνου (π.χ τεμάχια ανά ώρα) Γύρισμα αποθέματος (Inveny Tuns): Είναι ο λόγος του ρυθμού απόδοσης προς το μέσο απόθεμα (μίας κατεργασίας, ενός τμήματος ή ενός εργοστασίου). Επισημαίνεται ότι ο ρυθμός παραγωγής και το μέσο απόθεμα μετρώνται στις ίδιες μονάδες. Εκμετάλλευση (Uilizain): Είναι το ποσοστό του χρόνου που το κέντρο εργασίας παράγει. Δίδεται από: Εκμετάλλευση = έ ό ί ό ή όπου ανηγμένος ρυθμός παραγωγής είναι ο μέγιστος ρυθμός κατά τον οποίο δύναται να παράγει ένας σταθμός εργασίας θεωρώντας και όλους τους ενγενείς λόγος αδυναμίας παραγωγής, όπως προετοιμασία, βλάβες, προγραμματισμένη συντήρηση, κλπ. Ρυθμός στενώματος παραγωγής (Bleneck Rae): Είναι ο ρυθμός παραγωγής (σε μονάδες μέτρησης ανά μονάδα χρόνου) του σταθμού εργασίας με την υψηλότερη εκμετάλλευση. Στις επόμενες Ενότητες εξετάζονται οι σχέσεις μεταξύ ορισμένων από τις παραπάνω μεταβλητές με επίκεντρο την αρχιτεκτονική της γραμμής παραγωγής. Η τελευταία, πέραν του σημαντικού ενδιαφέροντος που παρουσιάζει στην πράξη, είναι και ένα από τα χαρακτηριστικά παραδείγματα δυναμικής συμπεριφοράς στην παραγωγή. 7. Ο Νόμος του Lile Θεωρείστε μία γραμμή παραγωγής με τρεις σταθμούς εργασίας. Θεωρείστε επίσης, ένα από τα είδη που παράγονται από τη γραμμή αυτή. Έστω ότι το φασεολόγιο του είδους περιλαμβάνει τους τρεις σταθμούς στη σειρά και ότι ο χρόνος επεξεργασίας μίας μονάδας μέτρησης του είδους σε κάθε σταθμό εργασίας ισούται με h. Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 94

2 Στο απλό αυτό παράδειγμα οιοσδήποτε από τους τρεις σταθμούς εργασίας μπορεί να θεωρηθεί ως στένωμα παραγωγής (leneck), με ρυθμό = MM/h. Στον Πίνακα 7. παρουσιάζονται οι τιμές του ρυθμού παραγωγής της γραμμής, του αποθέματος παραγωγής σε εξέλιξη και του χρόνου κύκλου παραγωγής για αυξανόμενο πλήθος μονάδων του είδους που απελευθερώνονται στη γραμμή (απαιτήσεις παραγωγής) Πίνακας 7. Χαρακτηριστικά γραμμής παραγωγής με αυξανόμενο WIP Πλήθος Μονάδων Χρόνος κύκλου Ρυθμός Παραγωγής (WIP) Παραγωγής 3 / / Για παράδειγμα, όταν η γραμμή επεξεργάζεται μία μονάδα μόνον, ο χρόνος κύκλου παραγωγής είναι 3x= 3 h και ο ρυθμός παραγωγής είναι μονάδα ανά 3h. Όταν επεξεργάζεται 2 μονάδες (WIP= 2) την μία κατόπιν της άλλης, (δηλ. όταν η πρώτη είναι στο σταθμό εργασίας 2, η δεύτερη είναι στο σταθμό εργασίας κ.ο.κ) τότε ο χρόνος που απαιτείται για να παραχθεί μία μονάδα εξακολουθεί να είναι = 3h, αλλά ο ρυθμός παραγωγής αυξάνεται σε 2 μονάδες ανά 3h. Στην περίπτωση που το WIP είναι 3 μονάδων, τότε όλοι οι σταθμοί εργασίας εργάζονται ταυτόχρονα (και σε ισορροπία καθότι ο χρόνος επεξεργασίας κάθε σταθμού είναι ο ίδιος) παράγοντας σε ρυθμό 3 μονάδες ανά 3h (= ). Ο χρόνος κύκλου παραγωγής εξακολουθεί να είναι = 3h, καθότι δεν υφίσταται χρόνος αναμονής (όπως και στις δύο προηγούμενες περιπτώσεις) μετά από μία αρχική μεταβατική κατάσταση. Ο χρόνος αναμονής είναι μεγαλύτερος του μηδενός όταν WIP> 3. Στην περίπτωση αυτή, ακόμα και μετά την αρχική μεταβατική κατάσταση (δηλ. όταν η γραμμή ευρίσκεται σε σταθερή κατάσταση) η κάθε μονάδα παραμένει στην ουρά αναμονής h, καθότι την στιγμή της άφιξης κάθε μονάδας είδους στη γραμμή όλοι οι σταθμοί εργασίας είναι απασχολημένοι. Μόνο μετά την παρέλευση h ο πρώτος σταθμός γίνεται διαθέσιμος. Με βάση αυτή την παρατήρηση, ο χρόνος παραμονής κάθε μονάδας είδους στη γραμμή είναι = 3+=4h αλλά ο ρυθμός παραγωγής παραμένει ο ίδιος (=). Με την περαιτέρω αύξηση του WIP, ο ρυθμός παραμένει στη μέγιστη τιμή max = = (όπου ο ρυθμός στενώματος παραγωγής) αλλά ο χρόνος κύκλου παραγωγής αυξάνει αναλογικά από την κατώτερη τιμή του min = = 3h. Για την γραμμή αυτή που είναι πλήρως ισορροπημένη ο μέγιστος ρυθμός παραγωγής και ο ελάχιστος χρόνος κύκλου παραγωγής συνδέονται με τη σχέση = Η τιμή καλείται κρίσιμη τιμή αποθέματος παραγωγής εν εξελίξει. Τα παραπάνω αποτελέσματα παρουσιάζονται στο Σχήμα 7. Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 95

3 Σχήμα 7. Σχέση μεταξύ α) ρυθμού παραγωγής () και β) χρόνου κύκλου παραγωγής () και WIP () Το παρόν παράδειγμα έχει δύο χαρακτηριστικά που το καθιστά εξαιρετικά απλό: Η γραμμή παραγωγής είναι πλήρως ισορροπημένη Οι χρόνοι επεξεργασίας είναι απόλυτα γνωστοί και σταθεροί Στην περίπτωση αυτή το κρίσιμο απόθεμα παραγωγής σε εξέλιξη 0 ισούται με το πλήθος των σταθμών εργασίας στη γραμμή παραγωγής. Στην περίπτωση μη ισορροπημένων γραμμών το 0 είναι μικρότερο του πλήθους των σταθμών εργασίας, αλλά εξακολουθεί να ισχύει η σχέση = (δηλαδή ο μέγιστος ρυθμός παραγωγής αντιστοιχεί στον ελάχιστο χρόνο κύκλου παραγωγής). Στην περίπτωση που οι χρόνοι παραγωγής είναι τυχαίες μεταβλητές, τότε η σχέση μεταξύ των παραπάνω μεταβλητών είναι πολύπλοκη. Το παράδειγμα όμως αυτό μας δείχνει μία σημαντική σχέση (βλ. Πίνακα 7.). Δηλαδή = ήτοι το απόθεμα παραγωγής σε εξέλιξη ισούται με το γινόμενο του ρυθμού παραγωγής επί τον χρόνο κύκλου παραγωγής. Η σχέση αυτή ονομάζεται ο νόμος του Lile και αποδεικνύεται ότι ισχύει για κάθε γραμμή παραγωγής, ακόμη και για τις γραμμές στις οποίες οι χρόνοι επεξεργασίας είναι τυχαίες μεταβλητές. (Η μαθηματική ισχύς προϋποθέτει ότι ο χρόνος παρατήρησης τείνει στο άπειρο). Γενικότερα, ο νόμος αυτός μπορεί να εφαρμοσθεί σε ένα κέντρο εργασίας, σε μία γραμμή παραγωγής ή σε ένα εργοστάσιο. Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 96

4 Η λέξη νόμος ίσως είναι άστοχη για την παραπάνω σχέση, καθότι ουσιαστικά είναι μία ταυτότητα. Θεωρείστε ένα εργοστάσιο συναρμολόγησης αυτοκινήτων με ρυθμό παραγωγής 0 αυτοκίνητα την ώρα, το οποίο εργάζεται 6 ώρες την ημέρα (60 αυτοκίνητα ημερησίως). Θεωρείστε επίσης, ότι ο χρόνος κύκλου παραγωγής ενός αυτοκινήτου είναι 2 εβδομάδες (= 0 εργάσιμες ημέρες). Τότε είναι σχεδόν προφανές ότι για να είναι σε θέση το εργοστάσιο να διατηρεί τον ρυθμό αυτό παραγωγής, το WIP θα πρέπει να είναι 0 ημέρες x 60 αυτοκίνητα/ ημέρα = 600 αυτοκίνητα. Με βάση τον νόμο Lile τα αποτελέσματα του Πίνακα 7. και του Σχήματος 7. γενικεύονται ως εξής: Η ελάχιστη τιμή του χρόνου κύκλου παραγωγής για επίπεδο WIP ίσο με δίδεται από min ώ Η μέγιστη τιμή ρυθμού παραγωγής για επίπεδο WIP ίσο με δίδεται από max ώ Οι τιμές min και max είναι εκείνες που οριοθετούν την καλύτερη δυνατή απόδοση της γραμμής παραγωγής (για συγκεκριμένο επίπεδο WIP). Στην επόμενη Ενότητα οριοθετείται η δυσμενέστερη απόδοση της γραμμής παραγωγής, καθώς και μία κατάσταση ενδιάμεσης απόδοσης με τυχαίους χρόνους επεξεργασίας. 7.2 Δυσμενέστερη και Ενδιάμεση Απόδοση Γραμμής Παραγωγής υπό Σταθερό WIP Η δυσμενέστερη δυνατή απόδοση της γραμμής παραγωγής υπό σταθερό WIP είναι εκείνη που αντιστοιχεί στον μέγιστο χρόνο κύκλου παραγωγής και τον ελάχιστο ρυθμό παραγωγής. Θεωρείστε την γραμμή παραγωγής της προηγούμενης Ενότητας με τους τρεις σταθμούς εργασίας που επεξεργάζονται είδος με χρόνο επεξεργασίας h ανά σταθμό. Έστω, επίσης = = 3. Όπως αναλύσαμε προηγουμένως η βέλτιστη απόδοση δίδεται από min = = 3 και max = = μον/h. Η απόδοση αυτή μπορεί να επιτευχθεί με σύστημα το οποίο διασφαλίζει συνεχή τροφοδοσία της γραμμής με τον βέλτιστο ρυθμό ΜΜ/h. Με τον τρόπο αυτό ο χρόνος αναμονής κάθε μονάδας του είδους είναι μηδέν. Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 97

5 Θεωρείστε, τώρα, την περίπτωση της ίδιας γραμμής παραγωγής σε κατάσταση, η οποία αντιστοιχεί στον μέγιστο δυνατό χρόνο αναμονής. Η κατάσταση αυτή επιτυγχάνεται όταν οι 3 μονάδες του είδους μεταφέρονται από σταθμό εργασίας σε σταθμό εργασίας μαζί. Δηλαδή, η πρώτη μονάδα της οποίας η επεξεργασία ολοκληρώθηκε στον πρώτο σταθμό παραμένει στην έξοδο του σταθμού αυτού έως ότου ολοκληρωθεί η επεξεργασία και των άλλων δύο μονάδων στον πρώτο σταθμό, προτού η παρτίδα των τριών μονάδων μεταφερθεί στον δεύτερο σταθμό όπου θα αρχίσει η επεξεργασία της πρώτης μονάδας στην παρτίδα κ.ο.κ. Στην περίπτωση αυτή ο χρόνος κύκλου παραγωγής ισούται με 3x3=9 h και ο ρυθμός απόδοσης είναι 3 μονάδες σε 9 ώρες ή /3. Φυσικά ισχύει ότι όπως προβλέπεται από τον νόμο Lile. = = 9 /3= 3 Συμπερασματικά, διατυπώνεται η εξής αρχή: Ο μεγαλύτερος δυνατός χρόνος κύκλου παραγωγής δίνεται από max = Ο μικρότερος δυνατός ρυθμός απόδοσης δίδεται από min = Στην πραγματικότητα η απόδοση μιας γραμμής παραγωγής ευρίσκεται μεταξύ της δυσμενέστερης και της βέλτιστης. Για να κατανοηθεί καλύτερα η δήλωση αυτή θεωρείστε την παραπάνω γραμμή παραγωγής ως ένα στοχαστικό σύστημα, οι πιθανές καταστάσεις του οποίου δίνονται στον Πίνακα 7.2 Πίνακας 7.2 Πιθανές καταστάσεις της γραμμής παραγωγής A/A Κατάσταση Α/Α Κατάσταση (3, 0, 0) 6 (, 2, 0) 2 (0, 3, 0) 7 (0, 2, ) 3 (0, 0, 3) 8 (, 0, 2) 4 (2,, 0) 9 (0,, 2) 5 (2, 0, ) 0 (,, ) 0 Κάθε κατάσταση δίνει την κατανομή του WIP (=3) στο σύστημα, δηλ. το πλήθος των μονάδων σε κάθε ένα από τους τρεις σταθμούς εργασίας. Από τον Πίνακα 7.2 φαίνεται ότι η βέλτιστη απόδοση αντιστοιχεί στην κατάσταση 0, ενώ η χειρότερη δυνατή απόδοση αντιστοιχεί στην επανάληψη των καταστάσεων, 2 και 3. Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 98

6 Για να προσεγγισθεί μία ενδιάμεση κατάσταση θα θεωρηθεί η περίπτωση που όλες οι καταστάσεις είναι εξ ίσου πιθανές. Για να επιτευχθεί η περίπτωση αυτή πρέπει να ισχύουν οι εξής δύο προϋποθέσεις:. Η γραμμή είναι ισορροπημένη (δηλ. ο μέσος χρόνος επεξεργασίας είναι ο ίδιος για κάθε σταθμό εργασίας) και ο κάθε σταθμός εργασίας περιλαμβάνει μία μόνο μηχανή. 2. Οι χρόνοι επεξεργασίας είναι τυχαίες μεταβλητές και ακολουθούν την εκθετική κατανομή. Στην περίπτωση αυτή θεωρείστε ότι το επίπεδο WIP είναι και η γραμμή έχει Ν σταθμούς εργασίας με μέσο χρόνο επεξεργασίας (για το συγκεκριμένο είδος). Με βάση τις μέσες τιμές: Μία μονάδα που φθάνει σε ένα σταθμό βρίσκει στον σταθμό αυτό μονάδες κατά μέσο όρο Ο μέσος χρόνος επίσκεψης της μονάδας στον σταθμό, επομένως, είναι ( ) Ο μέσος χρόνος κύκλου παραγωγής είναι c ( ) ( ) και λαμβάνοντας υπόψη ότι και ότι Τ ο = τ τότε Με τη βοήθεια του νόμου του Lile c T c T ( ) Η παραπάνω κατάσταση είναι η πλέον τυχαία ή αντιστοιχεί στις δυσμενέστερες συνθήκες μεταβλητότητας. Κάτω από τις δυσμενέστερες συνθήκες μεταβλητότητας η απόδοση της γραμμής παραγωγής χαρακτηρίζεται από και c T Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 99

7 Οι παραπάνω τιμές προσεγγίζουν την απόδοση πολλών πρακτικών περιπτώσεων και καταδεικνύουν την σημασία των στοχαστικών διαδικασιών στην ανάλυση συστημάτων παραγωγής. Η έμφαση αυτή δίδεται στο Κεφάλαιο 8 του παρόντος βιβλίου. Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης 00

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές

Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές 3. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΟΣ 3. Τι Είναι Απόθεμα Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές. Απόθεμα Α, Β υλών και υλικών συσκευασίας: Είναι το απόθεμα των υλικών που χρησιμοποιούνται

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ 3 ΗΣ ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ 3 ΗΣ ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών : Θεματική Ενότητα : Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 11 Εισαγωγή στη Διοικητική Επιχειρήσεων & Οργανισμών Ακαδ. Έτος: 2007-08 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

Διαβάστε περισσότερα

Προγραμματισμός και έλεγχος αποθεμάτων. Source: Corbis

Προγραμματισμός και έλεγχος αποθεμάτων. Source: Corbis Προγραμματισμός και έλεγχος αποθεμάτων Source: Corbis Προγραμματισμός και έλεγχος αποθεμάτων Προγραμματισμός και έλεγχος αποθεμάτων Στρατηγική παραγωγής Η αγορά απαιτεί μια ποσότητα προϊόντων και υπηρεσιών

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣMΟΣ ΠΑΡΑΓΩΓΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ

ΣΧΕΔΙΑΣMΟΣ ΠΑΡΑΓΩΓΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ III ΣΧΕΔΙΑΣMΟΣ ΠΑΡΑΓΩΓΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ Ι. Γιαννατσής ΣΧΕΔΙΑΣMΟΣ ΠΑΡΑΓΩΓΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ Σχεδιασμός Επιλογή Παραγωγικής παραγωγικής Διαδικασίας (πως) ικανότητας (πόσο)

Διαβάστε περισσότερα

Η άριστη ποσότητα παραγγελίας υπολογίζεται άμεσα από τη κλασική σχέση (5.5): = 1000 μονάδες

Η άριστη ποσότητα παραγγελίας υπολογίζεται άμεσα από τη κλασική σχέση (5.5): = 1000 μονάδες ΠΡΟΒΛΗΜΑ 1 Η ετήσια ζήτηση ενός σημαντικού εξαρτήματος που χρησιμοποιείται στη μνήμη υπολογιστών desktops εκτιμήθηκε σε 10.000 τεμάχια. Η αξία κάθε μονάδας είναι 8, το κόστος παραγγελίας κάθε παρτίδας

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΣΥΣΤΗΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΑΠΑΙΤΟΥΜΕΝΩΝ ΥΛΙΚΩΝ (MRP) Δημ. Εμίρης Αναπλ. Καθηγητής Πειραιάς, 2012 ΔΙΑΡΘΡΩΣΗ ΤΗΣ ΕΝΟΤΗΤΑΣ Εισαγωγή Ορισμοί Είδη ζήτησης Χρόνοι υστέρησης Κοινόχρηστα είδη Δομή και συστατικά

Διαβάστε περισσότερα

Σχεδιασμός διαδικασιών. Source: Joe Schwarz, www.joyrides.com

Σχεδιασμός διαδικασιών. Source: Joe Schwarz, www.joyrides.com Σχεδιασμός διαδικασιών Source: Joe Schwarz, www.joyrides.com Σχεδιασμός διαδικασιών Σχεδιασμός διαδικασιών Σχεδιασμός δικτύου εφοδιασμού Στρατηγική παραγωγής Διάταξη και ροή Σχεδιασμός Διοίκηση παραγωγής

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 Συστήµατα αναµονής Οι ουρές αναµονής αποτελούν καθηµερινό και συνηθισµένο φαινόµενο και εµφανίζονται σε συστήµατα εξυπηρέτησης, στα οποία η ζήτηση για κάποια υπηρεσία δεν µπορεί να

Διαβάστε περισσότερα

Κεφάλαιο 11 Προγραμματισμός και έλεγχος της παραγωγικής δυναμικότητας

Κεφάλαιο 11 Προγραμματισμός και έλεγχος της παραγωγικής δυναμικότητας Κεφάλαιο 11 Προγραμματισμός και έλεγχος της παραγωγικής δυναμικότητας Source: Arup Προγραμματισμός και έλεγχος παραγωγικής δυναμικότητας Προγραμματισμός και έλεγχος παραγωγικής δυναμικότητας Στρατηγική

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ).

p k = (1- ρ) ρ k. E[N(t)] = ρ /(1- ρ). ΚΕΦΑΛΑΙΟ 2: CAM 2.1 Συστήµατα Μ/Μ/1 2.1.1 Ανασκόπηση θεωρίας Η ουρά Μ/Μ/1 είναι η πιο σηµαντική διαδικασία ουράς Άφιξη: ιαδικασία Poisson Εξυπηρέτηση: Ακολουθεί εκθετική κατανοµή Εξυπηρετητής: Ένας Χώρος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2006-7 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Βασικές Αρχές και Κατηγοριοποιήσεις Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Ορισμός αποθεμάτων Κατηγορίες αποθεμάτων Λόγοι πίεσης

Διαβάστε περισσότερα

Συστήµατα Παραγωγής. Η βασική επιδίωξη του Ohno στην Toyota στηρίχθηκε σε δύο αρχές:

Συστήµατα Παραγωγής. Η βασική επιδίωξη του Ohno στην Toyota στηρίχθηκε σε δύο αρχές: 6. ΟΙ ΑΡΧΕΣ JUST- IN- TIME (JIT) Ο όρος Just-in-Time (JIT) περιγράφει ένα χαρακτηριστικό τρόπο διοίκησης τις παραγωγής που περιλαµβάνει ένα σύνολο στόχων, τεχνικών και µεθόδων, οι ρίζες των οποίων προέρχονται

Διαβάστε περισσότερα

5. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΗΣ

5. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΗΣ 5. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΗΣ Η βασική ιεραρχία διοίκησης ενός τυπικού συστήµατος παραγωγής έχει ήδη περιγραφεί στο Κεφάλαιο 1 και συγκεκριµένα στο Σχήµα 1.2. Στα προηγούµενα Κεφάλαια (2 4)

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

Προβλήματα Μαρκοβιανών Αλυσίδων

Προβλήματα Μαρκοβιανών Αλυσίδων Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανολόγων Μηχανικών Προβλήματα Μαρκοβιανών Αλυσίδων Γιώργος Λυμπερόπουλος 2009 1. Να βρεθούν οι κλάσεις καταστάσεων στις παρακάτω Μαρκοβιανές αλυσίδες και να σημειωθεί αν

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΔΙΑΧΕΙΡΗΣΗ ΑΠΟΘΕΜΑΤΩΝ ΕΝΟΤΗΤΑ 7η

ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΔΙΑΧΕΙΡΗΣΗ ΑΠΟΘΕΜΑΤΩΝ ΕΝΟΤΗΤΑ 7η ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΔΙΑΧΕΙΡΗΣΗ ΑΠΟΘΕΜΑΤΩΝ ΕΝΟΤΗΤΑ 7η ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ Τι ορίζεται ως απόθεμα;

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Γραμμές Παραγωγής Εκτίμηση Ελαττωματικών Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Παρουσίαση χαρακτηριστικών γραμμών παραγωγής Παραδείγματα σε παραγωγή

Διαβάστε περισσότερα

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης K.5.1 Γραμμή Παραγωγής Μια γραμμή παραγωγής θεωρείται μια διάταξη με επίκεντρο το προϊόν, όπου μια σειρά από σταθμούς εργασίας μπαίνουν σε σειρά με στόχο ο κάθε ένας από αυτούς να κάνει μια ή περισσότερες

Διαβάστε περισσότερα

ιοίκηση Παραγωγής και Υπηρεσιών

ιοίκηση Παραγωγής και Υπηρεσιών ιοίκηση Παραγωγής και Υπηρεσιών Προγραµµατισµός Παραγωγής Εισαγωγή Ορισµοί Προβλήµατα µίας µηχανής Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Ορισµός Προγραµµατισµού Παραγωγής Είδη προβληµάτων

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣMΟΣ ΠΑΡΑΓΩΓΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ

ΣΧΕΔΙΑΣMΟΣ ΠΑΡΑΓΩΓΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ III ΣΧΕΔΙΑΣMΟΣ ΠΑΡΑΓΩΓΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ Ι. Γιαννατσής ΣΧΕΔΙΑΣMΟΣ ΠΑΡΑΓΩΓΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ Σχεδιασμός Παραγωγικής Διαδικασίας (πως) Επιλογή παραγωγικής ικανότητας (πόσο)

Διαβάστε περισσότερα

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ 6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ Το 1965, από τον Conover και πάλι προτάθηκε ένας άλλος έλεγχος τύπου Smirnov για k ανεξάρτητα δείγματα. Ο έλεγχος αυτός διαφέρει από τον προηγούμενο

Διαβάστε περισσότερα

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) Σε αυτή την ενότητα θα ασχοληθούμε με προβλήματα που αφορούν τη μεταφορά αγαθών από διαφορετικά σημεία παραγωγής ή κεντρικής αποθήκευσης

Διαβάστε περισσότερα

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0 ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής Δεσμευμένη αξιοπιστία Η δεσμευμένη αξιοπιστία R t είναι η πιθανότητα το σύστημα να λειτουργήσει για χρονικό

Διαβάστε περισσότερα

9. Συστολικές Συστοιχίες Επεξεργαστών

9. Συστολικές Συστοιχίες Επεξεργαστών Κεφάλαιο 9: Συστολικές συστοιχίες επεξεργαστών 208 9. Συστολικές Συστοιχίες Επεξεργαστών Οι συστολικές συστοιχίες επεξεργαστών είναι επεξεργαστές ειδικού σκοπού οι οποίοι είναι συνήθως προσκολλημένοι σε

Διαβάστε περισσότερα

8.1. Εισαγωγή... 2 8.2. Στόχοι, Ρόλος και Λογική MRP Συστήματος... 4. 8.3. Διάγραμμα Ροής Πληροφοριών για Λειτουργία Συστήματος MRP...

8.1. Εισαγωγή... 2 8.2. Στόχοι, Ρόλος και Λογική MRP Συστήματος... 4. 8.3. Διάγραμμα Ροής Πληροφοριών για Λειτουργία Συστήματος MRP... ΚΕΦΑΛΑΙΟ 8. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΠΑΙΤΟΥΜΕΝΩΝ ΥΛΙΚΩΝ (MRP) Περιεχόμενα 8.1. Εισαγωγή... 2 8.2. Στόχοι, Ρόλος και Λογική MRP Συστήματος... 4 8.2.1 Στόχοι και Ρόλος MRP συστήματος... 4 8.2.2 Λογική MRP συστήματος...

Διαβάστε περισσότερα

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A) Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας

Διαβάστε περισσότερα

Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε "Ναι" Τέλος Α2

Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε Ναι Τέλος Α2 Διδακτική πρόταση ΕΝΟΤΗΤΑ 2η, Θέματα Θεωρητικής Επιστήμης των Υπολογιστών Κεφάλαιο 2.2. Παράγραφος 2.2.7.4 Εντολές Όσο επανάλαβε και Μέχρις_ότου Η διαπραγμάτευση των εντολών επανάληψης είναι σημαντικό

Διαβάστε περισσότερα

Βασικές Έννοιες Κοστολόγησης

Βασικές Έννοιες Κοστολόγησης Οργάνωση Παραγωγής & ιοίκηση Επιχειρήσεων ΙΙ Κοστολόγηση Επιχειρήσεων & Λήψη Αποφάσεων Κεφάλαιο 2 Βασικές Έννοιες Κοστολόγησης Νικόλαος Α. Παναγιώτου 2004 ΕΜΠ Τομέας Βιομηχανικής ιοίκησης & Επιχειρησιακής

Διαβάστε περισσότερα

Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής

Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής Γ. Λυμπερόπουλος Ιανουάριος 2012 Θέμα 1 Ένα εργοστάσιο που δουλεύει ασταμάτητα έχει τέσσερις (4) πανομοιότυπες γραμμές παραγωγής. Από αυτές, μπορούν

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης ΕΠ.1 Να αναπτυχθεί αλγόριθμος που θα εκτυπώνει τους διψήφιους άρτιους ακέραιους. Η άσκηση στην ουσία θα πρέπει να εκτυπώσει του αριθμούς 10, 12, 14,.,96, 98. Μεμιαπρώτηματιάθαμπορούσαμενατηνλύσουμεμετοναπροσπελάσουμετιςτιμές

Διαβάστε περισσότερα

Ένα σηµαντικό χαρακτηριστικό γνώρισµα των τελευταίων ετών αλλά και αυτών που ακολουθούν είναι οι αλλαγές που σηµειώνονται στο χώρο των επιχειρήσεων.

Ένα σηµαντικό χαρακτηριστικό γνώρισµα των τελευταίων ετών αλλά και αυτών που ακολουθούν είναι οι αλλαγές που σηµειώνονται στο χώρο των επιχειρήσεων. Atlantis MRP & MRP II MRP I Ένα σηµαντικό χαρακτηριστικό γνώρισµα των τελευταίων ετών αλλά και αυτών που ακολουθούν είναι οι αλλαγές που σηµειώνονται στο χώρο των επιχειρήσεων. Στις προβλέψεις αναφέρεται

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο

Κινητές επικοινωνίες. Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο Κινητές επικοινωνίες Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο 1 ΓΕΝΙΚΑ Ο αριθμός των κλήσεων σε εξέλιξη μεταβάλλεται με έναν τυχαίο τρόπο καθώς κάθε κλήση ξεχωριστά αρχίζει και τελειώνει με τυχαίο τρόπο. Κατά

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN 3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HESHER-OHIN Υπάρχουν δύο συντελεστές παραγωγής, το κεφάλαιο και η εργασία τους οποίους χρησιμοποιεί η επιχείρηση για να παράγει προϊόν Y μέσω μιας συνάρτησης παραγωγής

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ & ΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ

ΟΡΓΑΝΩΣΗ & ΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΛΕΙΤΟΥΡΓΙΕΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΟΡΓΑΝΩΣΗ & ΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ

Διαβάστε περισσότερα

Κεφάλαιο 1: Στρατηγική Παραγωγικής Διαδικασίας

Κεφάλαιο 1: Στρατηγική Παραγωγικής Διαδικασίας Κ1.1: Αναμενόμενες Χρηματικές Αξίες (ΑΧΑ) Οι ΑΧΑ ορίζονται ως η πιθανότητα ενός ενδεχόμενου επί το καθαρό ή μεικτό κέρδος (ή κόστος) του ενδεχόμενου συν η πιθανότητα του άλλου ενδεχόμενου επί το καθαρό

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

Operations Management Διοίκηση Λειτουργιών

Operations Management Διοίκηση Λειτουργιών Operatons Management Διοίκηση Λειτουργιών Διδάσκων: Δρ. Χρήστος Ε. Γεωργίου xgr@otenet.gr 4 η εβδομάδα μαθημάτων 1 Το περιεχόμενο της σημερινής ημέρας Επιλογή τοποθεσίας εγκατάστασης παραγωγικής µονάδας

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

Διοικητική Λογιστική Κοστολόγηση συνεχούς παραγωγής. Δημήτρης Μπάλιος

Διοικητική Λογιστική Κοστολόγηση συνεχούς παραγωγής. Δημήτρης Μπάλιος Διοικητική Λογιστική Κοστολόγηση συνεχούς παραγωγής Δημήτρης Μπάλιος ΘΕΩΡΙΑ Κοστολόγηση συνεχούς παραγωγής Η επιχείρηση παράγει πολλά τεμάχια ενός μοναδικού προϊόντος (τυποποιημένο προϊόν) για μεγάλο χρονικό

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

ΔΟΜΗ ΕΠΙΧΕΙΡΗΣΗΣ. Αριστομένης Μακρής Ο.Δ.Ε.Π. ΑΓΟΡΕΣ

ΔΟΜΗ ΕΠΙΧΕΙΡΗΣΗΣ. Αριστομένης Μακρής Ο.Δ.Ε.Π. ΑΓΟΡΕΣ ΔΟΜΗ ΕΠΙΧΕΙΡΗΣΗΣ ΕΡΓΟΣΤΑΣΙΟ ΑΓΟΡΕΣ ΠΩΛΗΣΕΙΣ ΒΙΟΜΗΧΑΝΙΚΗ ΠΑΡΑΓΩΓΗ ΔΟΜΗ ΕΡΓΟΣΤΑΣΙΟΥ ΕΡΓΟΣΤΑΣΙΟ ΑΠΟΘΗΚΕΣ ΚΕΝΤΡΑ ΕΡΓΑΣΙΑΣ ΔΟΜΗ ΕΡΓΟΣΤΑΣΙΟΥ ΚΕΝΤΡΑ ΕΡΓΑΣΙΑΣ ΑΠΟΘΗΚΕΣ ΟΜΑΔΕΣ ΚΕΝΤΡΩΝ ΕΡΓΑΣΙΑΣ ΚΕΝΤΡΑ ΕΡΓΑΣΙΑΣ ΥΛΙΚΩΝ

Διαβάστε περισσότερα

Εργαστήριο Διοίκησης Παραγωγής & Έργων. Εισαγωγή στην προσομοίωση διεργασιών χρησιμοποιώντας το λογισμικό Extend

Εργαστήριο Διοίκησης Παραγωγής & Έργων. Εισαγωγή στην προσομοίωση διεργασιών χρησιμοποιώντας το λογισμικό Extend Εργαστήριο Διοίκησης Παραγωγής & Έργων Εισαγωγή στην προσομοίωση διεργασιών χρησιμοποιώντας το λογισμικό Extend ΕΠΙΣΚΟΠΗΣΗ ΤΟΥ EXTEND Το Extend είναι ένα λογισμικό εικονικής προσομοίωσης που μπορεί να

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Ειδικά Μοντέλα Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Μοντέλο μη αυτόματου εφοδιασμού (Economic Lot size) Αλγόριθμος Wagner-Whitin

Διαβάστε περισσότερα

ΑΛΟΥΜΙΝΙΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ: Η ΠΕΡΙΠΤΩΣΗ ΠΑΡΑΓΩΓΗΣ ΑΛΟΥΜΙΝΙΟΥ

ΑΛΟΥΜΙΝΙΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ: Η ΠΕΡΙΠΤΩΣΗ ΠΑΡΑΓΩΓΗΣ ΑΛΟΥΜΙΝΙΟΥ ΑΛΟΥΜΙΝΙΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ: Η ΠΕΡΙΠΤΩΣΗ ΠΑΡΑΓΩΓΗΣ ΑΛΟΥΜΙΝΙΟΥ Μια εταιρεία αλουμινίου έχει αποθέματα βωξίτη στην περιοχή G, στην S και στην A. Επίσης, υπάρχουν εργοστάσια μετάλλου, όπου ο βωξίτης

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 (Α) Σημειώστε δίπλα σε κάθε πρόταση «Σ» ή «Λ» εφόσον είναι σωστή ή λανθασμένη αντίστοιχα. 1. Τα συντακτικά λάθη ενός προγράμματος

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Οργάνωση και Διοίκηση Εργοστασίων. Σαχαρίδης Γιώργος

Οργάνωση και Διοίκηση Εργοστασίων. Σαχαρίδης Γιώργος Οργάνωση και Διοίκηση Εργοστασίων Σαχαρίδης Γιώργος Πρόβλημα 1 Μία εταιρεία έχει μία παραγγελία για την παραγωγή κάποιου προϊόντος. Με τις 2 υπάρχουσες βάρδιες (40 ώρες την εβδομάδα η καθεμία) μπορούν

Διαβάστε περισσότερα

Operations Management Διοίκηση Λειτουργιών

Operations Management Διοίκηση Λειτουργιών Operations Management Διοίκηση Λειτουργιών Διδάσκων: Δρ. Χρήστος Ε. Γεωργίου xgr@otenet.gr 3 η εβδομάδα μαθημάτων 1 Το περιεχόμενο της σημερινής ημέρας Συστήµατα προγραµµατισµού, ελέγχου και διαχείρισης

Διαβάστε περισσότερα

Οργάνωση & Έλεγχος Παραγωγής

Οργάνωση & Έλεγχος Παραγωγής OPUS Οργάνωση & Έλεγχος Παραγωγής Παραγγελίες Έλεγχος Παραγωγής Αποθήκη Κοστολόγηση Προγραµµατισµός Παραγωγής Ποιοτικός Έλεγχος Συντήρηση SCADA Παραγγελίες Καταχωρίστε τις παραγγελίες εύκολα και γρήγορα

Διαβάστε περισσότερα

Με τον όρο μνήμη αναφερόμαστε στα μέσα που χρησιμοποιούνται για την αποθήκευση προγραμμάτων και δεδομένων σε έναν υπολογιστή ή άλλη ψηφιακή

Με τον όρο μνήμη αναφερόμαστε στα μέσα που χρησιμοποιούνται για την αποθήκευση προγραμμάτων και δεδομένων σε έναν υπολογιστή ή άλλη ψηφιακή Μνήμη Με τον όρο μνήμη αναφερόμαστε στα μέσα που χρησιμοποιούνται για την αποθήκευση προγραμμάτων και δεδομένων σε έναν υπολογιστή ή άλλη ψηφιακή ηλεκτρονική συσκευή, σε προσωρινή ή μόνιμη βάση. Τα σύγχρονα

Διαβάστε περισσότερα

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού 1 2 Τα θεωρήματα του Green, Stokes και Gauss 211 9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού Ήδη στην παράγραφο 5.7 ασχοληθήκαμε με την ύπαρξη συνάρτησης

Διαβάστε περισσότερα

Περιπτωσιακή μελέτη μεθόδων κοστολόγησης σε μικρομεσαία εταιρία επεξεργασίας μαρμάρου και γρανιτών

Περιπτωσιακή μελέτη μεθόδων κοστολόγησης σε μικρομεσαία εταιρία επεξεργασίας μαρμάρου και γρανιτών Περιπτωσιακή μελέτη μεθόδων κοστολόγησης σε μικρομεσαία εταιρία επεξεργασίας μαρμάρου και γρανιτών Εισαγωγικά Η παγκοσμιοποίηση της αγοράς και η αύξηση της έντασης του ανταγωνισμού οδηγούν τις επιχειρήσεις

Διαβάστε περισσότερα

ιοίκηση Παραγωγής και Υπηρεσιών

ιοίκηση Παραγωγής και Υπηρεσιών ιοίκηση Παραγωγής και Υπηρεσιών Η φιλοσοφία Just-in-Time Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Ορισµός Προέλευση JIT Το παράδειγµα τηςtoyota Βασικές αρχές JIT Στόχοι JIT Τεχνικές

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ Τομέας Οργάνωσης Παραγωγής & Βιομηχανικής Διοίκησης Σημειώσεις του μαθήματος: ΣΤΟΧΑΣΤΙΚΑ ΠΡΟΤΥΠΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Γιώργος Λυμπερόπουλος

Διαβάστε περισσότερα

Η ΠΕΡΙΠΤΩΣΗ ΠΑΡΑΓΩΓΗΣ ΑΛΟΥΜΙΝΙΟΥ

Η ΠΕΡΙΠΤΩΣΗ ΠΑΡΑΓΩΓΗΣ ΑΛΟΥΜΙΝΙΟΥ ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Η ΠΕΡΙΠΤΩΣΗ ΠΑΡΑΓΩΓΗΣ ΑΛΟΥΜΙΝΙΟΥ Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών ΔΠΜΣ Οικονομική & Διοίκηση Τηλεπικοινωνιακών Δικτύων Αθήνα,

Διαβάστε περισσότερα

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα

Προσομοίωση ΚΕΦΑΛΑΙΟ 7

Προσομοίωση ΚΕΦΑΛΑΙΟ 7 ΚΕΦΑΛΑΙΟ 7 Προσομοίωση 7.1 Συστήματα και πρότυπα συστημάτων 7.2 Η διαδικασία της προσομοίωσης 7.3 Ανάπτυξη προτύπων διακριτών γεγονότων 7.4 Τυχαίοι αριθμοί 7.5 Δείγματα από τυχαίες μεταβλητές 7.6 Προσομοίωση

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ Α3. α. (σελ. 183-184) Στοίβα: ώθηση, απώθηση Ουρά:

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΚΩΔΙΚΟΛΟΓΙΟΥ ΣΤΗΝ ΠΑΡΑΓΩΓΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

ΔΙΑΧΕΙΡΙΣΗ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΚΩΔΙΚΟΛΟΓΙΟΥ ΣΤΗΝ ΠΑΡΑΓΩΓΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΔΙΑΧΕΙΡΙΣΗ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΚΩΔΙΚΟΛΟΓΙΟΥ ΣΤΗΝ ΠΑΡΑΓΩΓΙΚΗ ΔΙΑΔΙΚΑΣΙΑ Βλάσιος Στεφανίδης Factory Supply Chain Manager Athens plant Colgate Palmolive (Hellas) SAIC Περιεχόμενα Το εργοστάσιο Αθήνας της Colgate

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

Υλο οίηση Ιχνηλασιµότητας στον κλάδο των Εύκαµπτων Υλικών Συσκευασίας

Υλο οίηση Ιχνηλασιµότητας στον κλάδο των Εύκαµπτων Υλικών Συσκευασίας Θεοδώρου Αυτοµατισµοί ΑΒΕΤΕ Case Study ΙΧΝΗΛΑΣΙΜΟΤΗΤΑ ΑΕ Υλο οίηση Ιχνηλασιµότητας στον κλάδο των Εύκαµπτων Υλικών Συσκευασίας Εισαγωγή Η βιοµηχανία Εύκαµπτων Υλικών Συσκευασίας διαχειρίζεται πολλές πρώτες

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Διαχείριση Εφοδιαστικής Αλυσίδας

Διαχείριση Εφοδιαστικής Αλυσίδας Διαχείριση Εφοδιαστικής Αλυσίδας 1 η Διάλεξη: Βασικές Έννοιες στην Εφοδιαστική Αλυσίδα - Εξυπηρέτηση Πελατών 2015 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στη Διοίκηση

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

ΘΡΑΥΣΗΣ-ΚΟΣΚΙΝΙΣΗΣ ΚΛΕΙΣΤΑ ΚΥΚΛΩΜΑΤΑ 1. ΑΜΕΣΟ ΚΛΕΙΣΤΟ ΚΥΚΛΩΜΑ ΘΡΑΥΣΗΣ 2. ΕΜΜΕΣΟ ΚΛΕΙΣΤΟ ΚΥΚΛΩΜΑ ΘΡΑΥΣΗΣ

ΘΡΑΥΣΗΣ-ΚΟΣΚΙΝΙΣΗΣ ΚΛΕΙΣΤΑ ΚΥΚΛΩΜΑΤΑ 1. ΑΜΕΣΟ ΚΛΕΙΣΤΟ ΚΥΚΛΩΜΑ ΘΡΑΥΣΗΣ 2. ΕΜΜΕΣΟ ΚΛΕΙΣΤΟ ΚΥΚΛΩΜΑ ΘΡΑΥΣΗΣ ΚΛΕΙΣΤΑ ΚΥΚΛΩΜΑΤΑ ΘΡΑΥΣΗΣ-ΚΟΣΚΙΝΙΣΗΣ 1. ΑΜΕΣΟ ΚΛΕΙΣΤΟ ΚΥΚΛΩΜΑ ΘΡΑΥΣΗΣ 2. ΕΜΜΕΣΟ ΚΛΕΙΣΤΟ ΚΥΚΛΩΜΑ ΘΡΑΥΣΗΣ 1 ΚΛΕΙΣΤΑ ΚΥΚΛΩΜΑΤΑ ΘΡΑΥΣΗΣ-ΚΟΣΚΙΝΙΣΗΣ Τα κλειστά κυκλώματα θραύσης κοσκίνισης (κ.κ.θ.) χρησιμοποιούνται

Διαβάστε περισσότερα

Διοίκηση Παραγωγής και Υπηρεσιών

Διοίκηση Παραγωγής και Υπηρεσιών Διοίκηση Παραγωγής και Υπηρεσιών Διαχείριση Αποθεμάτων Συστήματα Συνεχούς και Περιοδικής Αναθεώρησης Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Συστήματα ελέγχου αποθεμάτων Σύστημα συνεχούς

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας κυρίως τρεις μεθόδους:. Αναλυτικές Μέθοδοι: πραγματοποιείται κατάλληλη μαθηματική μοντελοποίηση του στοχαστικού

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ & ΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΙΙ

ΟΡΓΑΝΩΣΗ & ΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΙΙ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΛΕΙΤΟΥΡΓΙΕΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΟΡΓΑΝΩΣΗ & ΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ

Διαβάστε περισσότερα

ΕΙΔΗ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ

ΕΙΔΗ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ III ΕΙΔΗ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ Ι. Γιαννατσής ΒΑΣΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ ΚΑΘΟΡΙΣΜΟΥ ΣΥΣΤΗΜΑΤΟΣ ΠΑΡΑΓΩΓΗΣ Φύση Προϊόντος/Υπηρεσίας και Αγορά Απαιτούμενος βαθμός διαφοροποίησης Απαιτούμενος

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ. ικανοποιούν την ανίσωση 2x 3 < 11; (E) µεταξύ των απαντήσεων Α D δεν υπάρχει

ΕΡΩΤΗΣΕΙΣ. ικανοποιούν την ανίσωση 2x 3 < 11; (E) µεταξύ των απαντήσεων Α D δεν υπάρχει ΕΡΩΤΗΣΕΙΣ. Αν α =β, τότε η τιµή της παράστασης κ= α β +β α είναι: ( ) 4 ( Β )0, ( )4 δίνονται. Α, C, ( D ), (Ε) δεν µπορεί να προσδιοριστεί από τις πληροφορίες που. Πόσα στοιχεία του συνόλου { 5,,0,4,6,7}

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2014-2015 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα. MSc in Accounting & Finance ΤΕΙ ΠΕΙΡΑΙΑ Μάθημα: ΕΠΕΝΔΥΣΕΙΣ. Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων

Μεταπτυχιακό Πρόγραμμα. MSc in Accounting & Finance ΤΕΙ ΠΕΙΡΑΙΑ Μάθημα: ΕΠΕΝΔΥΣΕΙΣ. Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων Μεταπτυχιακό Πρόγραμμα MSc in Accounting & Finance ΤΕΙ ΠΕΙΡΑΙΑ Μάθημα: ΕΠΕΝΔΥΣΕΙΣ Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων Μέτρηση Κινδύνου & Απόδοσης Επενδύσεων Οτιδήποτε δύναται να μετρηθεί, δύναται και

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

Τίτλος Ειδικού Θεματικού Προγράμματος: «Διοίκηση, Οργάνωση και Πληροφορική για Μικρομεσαίες Επιχειρήσεις»

Τίτλος Ειδικού Θεματικού Προγράμματος: «Διοίκηση, Οργάνωση και Πληροφορική για Μικρομεσαίες Επιχειρήσεις» ΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, ΒΑΣΙΚΟΣ ΠΑΡΑΓΟΝΤΑΣ ΓΙΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΑΙ ΚΟΙΝΩΝΙΚΗ ΑΝΑΠΤΥΞΗ ΤΟΥ ΑΙΓΑΙΟΠΕΛΑΓΙΤΙΚΟΥ ΧΩΡΟΥ Τίτλος Ειδικού Θεματικού Προγράμματος: «Διοίκηση, Οργάνωση και Πληροφορική για Μικρομεσαίες

Διαβάστε περισσότερα

Εξαναγκασμένη Ταλάντωση. Τυχαία Φόρτιση (Ολοκλήρωμα Duhamel)

Εξαναγκασμένη Ταλάντωση. Τυχαία Φόρτιση (Ολοκλήρωμα Duhamel) Εξαναγκασμένη Ταλάντωση Τυχαία Φόρτιση (Ολοκλήρωμα Duhamel) Εξαναγκασμένη Ταλάντωση: Τυχαία Φόρτιση: Απόκριση σε Τυχαία Φόρτιση: Βασική Ιδέα Δ10-2 Το πρόβλημα της κίνησης μονοβάθμιου συστήματος σε τυχαία

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο 3.07 Να γραφεί αλγόριθμος που θα δημιουργεί πίνακα 100 θέσεων στον οποίο τα περιττά στοιχεία του θα έχουν την τιμή 1 και τα άρτια την τιμή 0. ΛΥΣΗ Θα δημιουργήσω άσκηση βάση κάποιων κριτηρίων. Δηλ. δεν

Διαβάστε περισσότερα

ΤΟ ΝΕΟ ΠΛΗΡΟΦΟΡΙΑΚΟ ΣΥΣΤΗΜΑ LOGISTICS ΑΠΟΘΗΚΩΝ ΤΗΣ L OREAL Α.Ε.

ΤΟ ΝΕΟ ΠΛΗΡΟΦΟΡΙΑΚΟ ΣΥΣΤΗΜΑ LOGISTICS ΑΠΟΘΗΚΩΝ ΤΗΣ L OREAL Α.Ε. ΤΟ ΝΕΟ ΠΛΗΡΟΦΟΡΙΑΚΟ ΣΥΣΤΗΜΑ LOGISTICS ΑΠΟΘΗΚΩΝ ΤΗΣ L OREAL Α.Ε. Απόστολος Θεοδωρόπουλος Μαθηµατικός Παν/µίου Αθηνών -Επιχειρησιακός Ερευνητής RWTH Aachen (M.O.R.) ιευθύνων Σύµβουλος OPTIMUM Α.Ε. 1. Εισαγωγή

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ III ΤΥΠΟΙ ΔΙΑΔΙΚΑΣΙΩΝ ΠΑΡΑΓΩΓΗΣ

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ III ΤΥΠΟΙ ΔΙΑΔΙΚΑΣΙΩΝ ΠΑΡΑΓΩΓΗΣ ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ III ΤΥΠΟΙ ΔΙΑΔΙΚΑΣΙΩΝ ΠΑΡΑΓΩΓΗΣ Ι. Γιαννατσής ΒΑΣΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ ΚΑΘΟΡΙΣΜΟΥ ΣΥΣΤΗΜΑΤΟΣ ΠΑΡΑΓΩΓΗΣ Φύση Προϊόντος/Υπηρεσίας και Αγορά Απαιτούμενος βαθμός διαφοροποίησης

Διαβάστε περισσότερα

ιαχείριση Αποθεµάτων Applied Mathematics

ιαχείριση Αποθεµάτων Applied Mathematics ιαχείριση Αποθεµάτων 1 Περιεχόµενα Εισαγωγή Κόστος Αποθεµάτων Κατηγορίες Αποθεµάτων Στρατηγικές µείωσης των αποθεµάτων 2 Εισαγωγή Πως δηµιουργούνται τα αποθέµατα? Όταν οι ποσότητες εισαγωγής πρώτων υλών,

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα