Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ. ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ. Τελευταία ενημέρωση 16 Μαρτίου w w w. c o m m o n m a t h s. w e e b l y. c o m
|
|
- Ἰφιγένεια Παπαϊωάννου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΞΙΣΩΣΕΙΣ 2ου Τελευταία ενημέρωση 16 Μαρτίου 2016 ΒΑΘΜΟΥ w w w. c o m m o n m a t h s. w e e b l y. c o m
2 A. Αρχικά θα ασχοληθούμε με τα τριώνυμα 2 ου βαθμού. Η γενική μορφή τους είναι : αχ 2 + βχ + γ = 0 με α 0 προφανώς το (α) πρέπει να είναι διάφορο του μηδέν, για να υπάρχει ο όρος με το χ 2, ώστε η εξίσωση που θα λύσουμε να είναι 2 ου βαθμού. Πάμε όμως να λύσουμε την πιο πάνω εξίσωση και να δούμε πως προκύπτει η περιβόητη Διακρίνουσα. Θα πάρω την γενική μορφή και θα εφαρμόσω Θα χρησιμοποιήσουμε την ταυτότητα : τη μέθοδο συμπλήρωμα τετραγώνου: αχ 2 + βχ + γ = 0 α 0 αχ 2 α + βχ α + γ α = 0 α χ 2 + χ β α = γ α χ2 + 2χ β 2α = γ α χ 2 + 2χ β 2α + ( β 2α ) 2 = ( β 2α ) 2 γ α (χ + β 2α ) 2 = β2 4α 2 γ α (χ + β 2α ) 2 = β2 4αγ 4α2 4α 2 Α 2 + 2ΑΒ + Β 2 = (Α + Β) 2 Αρχικά διαιρούμε με το α για να μείνει μόνο του το χ 2 Στη συνέχεια πολ/ζω και διαιρώ τον όρο χ β με το 2 για να φτιαχτεί ο όρος α 2ΑΒ της πιο πάνω ταυτότητας. Τέλος προσθαφαιρούμε τον όρο ( β 2α )2,για να φτιαχτεί ο όρος Β 2. (χ + β 2 2α ) = β2 4αγ 4α 2 (χ + β 2α )2 = Δ 4α 2 (1) Δ=β 2 4αγ Και εδώ ξεδιαλύνεται το θέμα με το πρόσημο της Διακρίνουσας και τις 3 διαφορετικές περιπτώσεις της: Αν Δ > 0 τότε η (1) γίνεται : (χ + β 2α )2 = Δ 4α 2 χ + β 2α = ± Δ β χ = 4α2 2α ± Δ β χ = 4α2 2α ± Δ 4α 2 Σελίδα 1
3 χ = β ± Δ β± Δ χ = χ 2α 2α 2α 1,2 = β± Δ 2α η εξίσωση έχει 2 πραγματικές και άνισες λύσεις (ρίζες). Αν Δ = 0 τότε η (1) γίνεται : (χ + β 2α )2 = (χ + β 2 2α ) = 0 (χ + β β )(χ + 2α β χ = 2α { χ = β 2α χ 0 = β 2α πράγμα που σημαίνει ότι Δ Δ=0 4α 2 2α ) = 0 { χ + β 2α = 0 χ + β 2α = 0 πράγμα που σημαίνει ότι η εξίσωση έχει μία πραγματική λύση (ρίζα) δύο φορές, γι αυτό λέμε ότι έχει μία διπλή πραγματική ρίζα. Αν Δ < 0 τότε η (1) γίνεται : (χ + β 2α )2 = Δ Δ<0 4α 2 ΑΔΥΝΑΤΗ αφού το 1 ο μέλος είναι μη αρνητικός αριθμός (είναι υψωμένο στο τετράγωνο) ενώ το 2 ο μέλος είναι αρνητικός. Σελίδα 2
4 ΣΥΜΠΕΡΑΣΜΑ αχ 2 + βχ + γ = 0, Δ = β 2 4αγ α 0 Αν Δ > 0 τότε η εξίσωση έχει 2 πραγματικές και άνισες λύσεις (ρίζες) τις : χ 1,2 = β± Δ 2α Το δε τριώνυμο αχ 2 + βχ + γ παραγοντοποιείται ως εξής : αχ 2 + βχ + γ = α (χ - χ 1 ) (χ - χ 2 ) Ουσιαστικά είναι ο ίδιος τύπος με την 1 η περίπτωση μόνο που έχουμε Δ=0. Αν Δ = 0 τότε η εξίσωση έχει 1 διπλή πραγματική λύση (ρίζα) την : χ 0 = β Το δε τριώνυμο αχ 2 + βχ + γ παραγοντοποιείται ως εξής : αχ 2 + βχ + γ = α (χ - χ 0 ) (χ - χ 0 )= α (χ χ 0 ) 2 2α Αν Δ < 0 τότε η εξίσωση είναι ΑΔΥΝΑΤΗ. Το δε τριώνυμο αχ 2 + βχ + γ δεν παραγοντοποιείται, εκτός και αν μπορούμε να βγάλουμε κοινό παράγοντα το α. Αφού Δ<0 τότε δεν μπορώ να το βάλω κάτω από ρίζα άρα γι αυτό η εξίσωση είναι ΑΔΥΝΑΤΗ. Σελίδα 3
5 Πάμε όμως να λύσουμε μερικές ασκήσεις: ΑΣΚΗΣΗ 1 η Να λυθούν οι εξισώσεις: i. x 2 + 4x 3 = 0 ii. 9χ 2 6χ 1 = 0 iii. χ 2 + χ = 1 iv. (χ 1) 2 + (χ + 1) 2 = 3(χ 2) χ 2 v χ 3 = 0 χ 2 2χ χ χ 2 ΛΥΣΗ i. x 2 + 4x 3 = 0 α=-1, β=4, γ=-3 Δ = β 2 4αγ = ( 1) ( 3) = = 4 > 0 αφού η διακρίνουσα είναι θετική η εξίσωση έχει 2 πραγματικές και άνισες ρίζες τις : χ 1,2 = β± Δ 2α = 4± 4 2( 1) = 4±2 4+2 {χ 1 = 2 2 χ 2 = = 2 2 = 1 = 6 2 = 3 ii. iii. 9χ 2 6χ + 1 = 0 α=9, β=-6, γ=1 Δ = β 2 4αγ = ( 6) = = 0 αφού η διακρίνουσα είναι 0 η εξίσωση έχει 1 διπλή πραγματική ρίζα την : χ 1,2 = β 2α = ( 6) 2 9 = 6 18 = 1 3. χ 2 + χ = 1 χ 2 + χ + 1 = 0 α=1, β=1, γ=1 Δ = β 2 4αγ = = 3 < 0 αφού η διακρίνουσα είναι αρνητική η εξίσωση δεν έχει πραγματικές ρίζες. Σελίδα 4
6 iv. ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ (χ 1) 2 + (χ + 1) 2 = 3(χ 2) + 7 χ 2 2χ χ 2 + 2χ + 1 = 3χ χ χ = 0 2χ 2 3χ + 1 = 0 α=2, β=-3, γ=1 Θα χρησιμοποιήσουμε τις ταυτότητες: (Α + Β) 2 = Α 2 + 2ΑΒ + Β 2 (Α Β) 2 = Α 2 2ΑΒ + Β 2 v. Δ = β 2 4αγ = ( 3) = 9 8 = 1 > 0 αφού η διακρίνουσα είναι θετική η εξίσωση έχει 2 πραγματικές και άνισες ρίζες τις : χ 1,2 = β± Δ 2α 2 χ 2 = ( 3)± 1 = 3±1 {χ 1 = = 4 4 = 1. χ 2 = 3 1 = 2 = χ 3 = 0 χ 2 2χ χ χ 2 Για να λύσουμε την κλασματική εξίσωση ακολουθούμε τα παρακάτω βήματα: Παραγοντοποιούμε τους παρονομαστές : χ 2 2χ = χ(χ 2) θα πάρουμε τον περιορισμό: χ 0 και παρονομαστές 0 { χ 2 0 χ 2 Θα βρούμε το Ε.Κ.Π. των παρονομαστών: Ε.Κ.Π. ( χ(χ 2), χ, χ 2 ) = χ(χ 2) Πολλαπλασιάζουμε ΟΛΟΥΣ τους όρους με το Ε.Κ.Π. ώστε να κάνουμε απαλοιφή παρονομαστών. 2 χ 2 χ(χ 2). + χ(χ 2). 2 2χ 3 + χ(χ 2). = 0 χ(χ 2) χ χ 2 2 χ 2 + 2(χ 2) + χ(2χ 3) = 0 ( η συνέχεια όπως η iv) Σελίδα 5
7 B. Πάμε τώρα να δούμε πως λύνονται τα διώνυμα 2 ου βαθμού. αχ 2 + βχ + γ = 0 με α 0 β=0 αχ 2 + γ = 0 Αντί να το δούμε στη γενική μορφή δείτε πως λύνονται τα 2 παρακάτω αντιπροσωπευτικά παραδείγματα. ΑΣΚΗΣΗ 2 η Να λυθούν οι εξισώσεις: i. x = 0 ii. 9χ = 0 ΛΥΣΗ i. x = 0 x 2 = 3 x 2 = 3 3>0 x = ± 3. (Αντίθετες ρίζες) ii. 9χ = 0 9x 2 = 1 x 2 = 1 αχ 2 + βχ + γ = 0 με α 0 γ= <0 x 2 0 ΑΔΥΝΑΤΗ. αχ 2 + βχ = 0 Λύνουμε ως προς χ 2 Βγάζουμε κοινό παράγοντα το χ. Αντί να το δούμε στη γενική μορφή δείτε πως λύνεται το παρακάτω αντιπροσωπευτικό παράδειγμα. ΑΣΚΗΣΗ 3 η Να λυθεί η εξίσωση: x 2 + 2χ = 0 ΛΥΣΗ χ 2 χ = 0 ή + 2χ = 0 χ( χ + 2) = 0 { χ + 2 = 0 χ = 2 Αν Α Β=0 τότε Α=0 ή Β=0 Σελίδα 6
8 Παρακάτω υπάρχουν μερικές ασκήσεις για να τις προσπαθήσετε και μόνοι σας. ΑΣΚΗΣΗ 4 η Να λυθούν οι εξισώσεις: i. 2x 2 + x + 1 = 0 ii. 4χ 2 + 4χ + 1 = 0 iii. χ 2 χ = 1 Σελίδα 7
9 iv. (2χ + 1) 2 (χ 1) 2 = 3χ(χ 2) 7χ 1 3 v. = 5 + 2χ 3 χ 2χ 2 3χ vi. χ = χ 2 3χ χ+3 χ 2 9 (αφού πάρετε τους περιορισμούς, μπορείτε να κάνετε και μία απλοποίηση, ώστε να έχετε πιο απλό Ε.Κ.Π. ) Σελίδα 8
10 vii. 1 χ 1 χ = 5 χ 2 3χ+2 + ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ 3 χ 2 χ 2 ( πριν κάνετε το σύνθετο κλάσμα απλό να πάρετε τους περιορισμούς ). viii. χ+3 = 1 χ χ 2 9 3χ 6 6χ 12. ix. 2χ 2 3χ = 0 Σελίδα 9
11 x. 2χ 2 3 = 0 xi. 2χ = 0 ΑΣΚΗΣΗ 5 η Στις παρακάτω παραμετρικές εξισώσεις 2 ου βαθμού να βρεθεί η τιμή της παραμέτρου λ ώστε οι εξισώσεις να έχουν 1 διπλή πραγματική ρίζα. i. 2λx 2 + λx + 1 = 0 Πρέπει Δ=0 Σελίδα 10
12 ii. (λ 1)x 2 + (λ + 1)x + 2 = 0... ΑΣΚΗΣΗ 6 η Στις παρακάτω παραμετρικές εξισώσεις 2 ου βαθμού να βρεθεί η τιμή της παραμέτρου λ ώστε οι εξισώσεις να έχουν πραγματικές ρίζες. i. 2λx 2 + x + 1 = 0... Πρέπει Δ 0 ii. (λ 1)x 2 + (2λ + 1)x + λ = Σελίδα 11
13 Πρέπει Δ< 0 Για κάθε μία από τις παραπάνω εξισώσεις να βρείτε τις ακέραιες τιμές της παραμέτρου λ ώστε οι εξισώσεις να είναι Αδύνατες. ΑΣΚΗΣΗ 7 η Στις παρακάτω παραμετρικές εξισώσεις 2 ου βαθμού να βρεθεί η τιμή της παραμέτρου λ ώστε οι εξισώσεις να έχουν αντίθετες ρίζες. Διαβάστε τη σελίδα 6. i. 2x 2 + (λ 2 3λ + 2)x + 1 = 0 ii. x 2 + (λ 2 2λ + 1)x 2 = 0. Σελίδα 12
14 iii. x 2 + (λ 2 2λ)x 2 = 0 iv. x 2 + (λ 2 1)x + 2 = 0 ΑΣΚΗΣΗ 8 η Στις παρακάτω παραμετρικές εξισώσεις 2 ου βαθμού να βρεθεί η τιμή της παραμέτρου λ ώστε οι εξισώσεις να έχουν ρίζα τον αριθμό -1. i. 2x 2 + (λ 2 3λ + 2)x + 2 = 0 Σελίδα 13
15 ii. x 2 + (λ 2 2λ + 1)x 1 = 0.. Σε κάθε μία από τις παραπάνω περιπτώσεις, μόλις βρείτε την τιμή του λ να βρεθεί και η 2 η ρίζα των εξισώσεων. Για απορίες στο Σελίδα 14
16 *ΑΣΚΗΣΗ 9 η Το 4πλάσιο ενός αριθμού αυξημένο κατά 1 είναι ίσο με το τετράγωνό του αυξημένο κατά 5. Ποιοι είναι οι αριθμοί αυτοί ; *ΑΣΚΗΣΗ 10 η Σε ένα ορθογώνιο και ισοσκελές τρίγωνο η κάθετη πλευρά είναι κατά 3 μικρότερη από τη βάση. Να υπολογίσετε το εμβαδό του και το ύψος του. Σελίδα 15
17 *ΑΣΚΗΣΗ 11 η Σε ένα γλέντι τσούγκρισαν ανά δύο οι καλεσμένοι τα ποτήρια τους και ακούστηκαν 91 τσουγκρίσματα. Πόσοι είναι οι καλεσμένοι ; *ΑΣΚΗΣΗ 12 η Αν αφαιρέσουμε από έναν αριθμό τον αντίστροφό του βρίσκουμε 2. Ποιος είναι ο αριθμός αυτός ; Σελίδα 16
18 *ΑΣΚΗΣΗ 13 η 2 εκσκαφείς χρειάζονται 12 μέρες για ένα έργο, όταν εργάζονται μαζί. Ο ένας μόνος του χρειάζεται 7 ημέρες περισσότερο από τον άλλο. Πόσες μέρες χρειάζεται μόνος του ο καθένας για να τελειώσει το έργο του ; Οι ασκήσεις με * είναι από το Σχολικό Βιβλίο Γ Γυμνασίου των : Α. Αλιμπινίση, Σ. Γρηγοριάδη, Ε. Ευσταθόπουλος, Ν. Κλαουδάτος, Σ. Παπασταυρίδης, Α. Σβέρκος. Εεεεε.. νομίζω ότι έχει κι άλλες ασκήσεις πιο κάτω. Σελίδα 17
19 ΑΣΚΗΣΗ 14 η Ένας εργάτης τελειώνει το βάψιμο ενός τοίχου σε 3 μέρες γρηγορότερα από έναν άλλο.αν δουλέψουν και οι δύο ταυτόχρονα τελειώνουν το βάψιμο σε 2 ημέρες. Πόσες μέρες χρειάζεται μόνος του ο κάθε εργάτης για να τελειώσει το βάψιμο του τοίχου ; ΑΣΚΗΣΗ 15 η Να δείξετε ότι το παρακάτω τριώνυμο 2 ου βαθμού έχει τουλάχιστον μία ρίζα για κάθε τιμή της παραμέτρου α. χ 2 + (α + 2)χ + 2α = 0 Σελίδα 18
20 ΑΣΚΗΣΗ 16 η Να δείξετε ότι το παρακάτω τριώνυμο 2 ου βαθμού έχει το πολύ μία ρίζα για κάθε τιμή της παραμέτρου λ. χ 2 + 4λ 2 χ + 8λ 2 + 8λ + 4 = 0 ΑΣΚΗΣΗ 17 η Δίνονται οι παραστάσεις : Α= χ+3 χ 2 9 και Β= 1 3χ 6 χ 6χ 12 i. Να βρεθούν οι τιμές των χ για τις οποίες ορίζονται οι παραστάσεις Α και Β. Σελίδα 19
21 ii. Να απλοποιηθούν οι παραστάσεις Α,Β. iii. Να λυθεί η εξίσωση Α=Β Σελίδα 20
22 ΑΣΚΗΣΗ 18 η Δίνονται οι παραστάσεις : Α= χ2 4 χ 2 3χ+2 και Β= χ 2 χ χ 1 i. Να βρεθούν οι τιμές των χ για τις οποίες ορίζονται οι παραστάσεις Α και Β. ii. Να απλοποιηθούν οι παραστάσεις Α,Β. Σελίδα 21
23 iii. Να λυθεί η εξίσωση Α=Β Μέχρι το επόμενο φυλλάδιο καλή ξεκούραση. Σελίδα 22
ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ Τελευταία ενημέρωση: 21 Φεβρουαρίου 2015 w w w. c o m m o n m a t h s. w e e b l y. c o m A. Αρχικά θα ασχοληθούμε με τα τριώνυμα 2 ου βαθμού. Η γενική μορφή τους
Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων
ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 69. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Ορισμός Ονομάζουμε εξίσωση ου βαθμού με έναν άγνωστο κάθε ισότητα που έχει την μορφή α +β+ γ = 0 με α 0 (ο είναι ο άγνωστος της εξίσωσης,
3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ
ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ
4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ
4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ 1 : ΑΠΛΗ ΜΟΡΦΗ Για να λύσω μια ανίσωση της μορφής : 0 ή 0 1 ος τρόπος : Λειτουργώ όπως και στις εξισώσεις πρώτου βαθμού, δηλαδή χωρίζω γνωστούς από αγνώστους, και
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ www.pitetragono.gr Σελίδα. ΔΥΝΑΜΕΙΣ : Ισχύουν οι
ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού
εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες
Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο
Κεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1
Κεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1 Εξίσωση πρώτου βαθμού ή πρωτοβάθμια εξίσωση με άγνωστο x ονομάζεται κάθε εξίσωση της μορφής
1.2 Εξισώσεις 1 ου Βαθμού
1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση
12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop
qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty Επαναληπτικό Φυλλάδιο Μαθηματικών Γ Γυμνασίου uiopasdfghjklzxcvbnmqwertyui 1 η έκδοση 14/04/17
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από
Εξισώσεις πρώτου βαθμού
Εξίσωση ου βαθμού με ένα άγνωστο 0ρισμός Εξισώσεις πρώτου βαθμού Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή αχ=β λέγεται εξίσωση ου βαθμού με ένα άγνωστο. Σε μια εξίσωση η μεταβλητή λέγεται άγνωστος.οι
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...
a = f( x ) =. (Μονάδες 8) 2 = =,από όπου προκύπτει ( υψώνοντας στο τετράγωνο ), x =, επομένως x = 0 x = ή Άσκηση 4679 Δίνεται η συνάρτηση:
Άσκηση 4679 Δίνεται η συνάρτηση: a = + 4 f( x) x x α) Να βρείτε τις τιμές του πραγματικού αριθμού α, ώστε το πεδίο ορισμού της συνάρτησης f να είναι το σύνολο. (Μονάδες 0) β) Αν είναι γνωστό ότι η γραφική
3.1 Εξισώσεις 1 ου Βαθμού
1 3.1 Εξισώσεις 1 ου Βαθμού 1. Να διερευνήσετε την εξίσωση. Ισχύει: Διακρίνουμε τώρα τις περιπτώσεις: Αν τότε: ΘΕΩΡΙΑ Απάντηση Επομένως, αν η εξίσωση έχει ακριβώς μία λύση, την. Αν, τότε η εξίσωση γίνεται,
4. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί
1 ΑΣΚΗΣΕΙΣ 1. Να εκτελέσετε τις προσθέσεις, όπου αυτό είναι δυνατόν α) χ 3 +5ψ 3 β) χ 3 +6χ 3 γ) 4χ 5 ω-7ωχ 5 δ) 3χ 5 +4χ ε) χ 4 +3χ 4 ζ) χ -χ η) χ +χ θ) χ +χ ι) χ+χ 3 κ) χ -χ λ) 3χ 4-4χ 4 μ) 3χ-3χ 3.
Μαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ
5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ Για να επιλύσουμε μία παραμετρική εξίσωση ακολουθούμε τα παρακάτω βήματα: i) Βγάζω παρενθέσεις ii) Κάνω απαλοιφή παρανομαστών iii) Χωρίζω γνωστούς από αγνώστους (άγνωστος είναι
Η Θεωρία που πρέπει να θυμάσαι!!!... b a
Κεφ. εξισώσεις ανισώσεις εξάσκησηεπανάληψη Τhe Ds that make a champion: Devotion, Desire, Discipline Η Θεωρία που πρέπει να θυμάσαι!!!... Μορφές Εξισώσεων Λύση ή ρίζα εξίσωσης Εξίσωση ου βαθμού ax + b
ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Τι ονομάζουμε εξίσωση ου βαθμού; o Εξίσωση ου βαθμού με ένα άγνωστο ονομάζουμε κάθε εξίσωση που γράφεται ή μπορεί να γραφεί στη μορφή με α π.χ 5 6 Τι ονομάζουμε εξίσωση ου βαθμού ελλιπούς
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΧΡΙΣΤΟΥΓΕΝΝΩΝ 2015 ΔΕΚΕΜΒΡΙΟΣ 2015 Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ Οι ασκήσεις να λυθούν σε χαρτί Α4 1 η ΑΣΚΗΣΗ Να υπολογιστούν οι παραστάσεις: i. 2 3 +2 5 2 1 1 4 +3 2 ii. 5 2 3 2 3 ( 1 4 3 2 )
) = 0. Λύσεις/Ρίζες της εξίσωσης. Ακριβώς δύο άνισες πραγματικές λύσεις, τις: Η εξίσωση δεν έχει πραγματικές λύσεις
4. Εξισώσεις 2ου βαθμού αx 2 + βx + γ = 0, α 0 α, β, γ παράμετροι και x η μεταβλητή Αν ρ ρίζα/λύση της εξίσωσης, τότε αρ 2 + βρ + γ = 0 Αν ρ 1, ρ 2 ρίζες/λύσεις της εξίσωσης, τότε το τριώνυμο γράφεται
ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΕΠΙΛΥΣΗ ΑΝΙΣΩΣΕΩΝ 2 ου ΒΑΜΟΥ
5 ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΕΠΙ ΑΝΙΣΩΣΕΩΝ ου ΒΑΜΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ Για να βρούμε το πρόσημο του τριωνύμου αχ +βχ+γ βρίκουμε την διακρίνουσα Δ=β - 4αγ και αν: Δ>0,το τριώνυμο έχει δυο ρίζες χ 1,χ και το προσημό
( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει
μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,
4. Ανισώσεις. 4.1 Ανισώσεις 1 ου Βαθμού
Ανισώσεις ου Βαθμού Ανισώσεις. Πρωτοάθμιες Ανισώσεις Επιλύονται όπως οι εξισώσεις με την διαφορά ότι, όταν πολλαπλασιάζω ή διαιρώ με αρνητικό αριθμό αλλάζει φορά η ανίσωση.. Υπενθύμιση α) χ χ, ή χ, ) χ
( ) = 2. f x α(x x )(x x ) f x α(x ρ) x1,2. 1, x
ΜΟΡΦΕΣ ΤΡΙΩΝΥΜΟΥ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Τριώνυµο λέγεται ένα πολυώνυµο της µορφής : f x = αx + βx+ γ, όπου α, β, γ R µε α. ( ) ιακρίνουσα και ρίζες του τριωνύµου f( x) = αx + βx+ γ λέγεται η διακρίνουσα και
ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ- ΑΣΚΗΣΕΙΣ
ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ- ΑΣΚΗΣΕΙΣ Κατηγορίες ασκήσεων στα απόλυτα ΠΕΡΙΠΤΩΣΗ : Εξισώσεις που περιέχουν απόλυτο μιας παράστασης και όχι παράταση του x έξω από το απόλυτο. α) Λύνουμε ως προς το απόλυτο
Εισαγωγή Το σύνολο αναφοράς και οι περιορισμοί
ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΟΝΥΜΙΚΕΣ Εισαγωγή Το σύνολο αναφοράς και οι περιορισμοί Όταν έχουμε μία εξίσωση που περιέχει παρονομαστές ή ρίζες, πρέπει να βάζουμε περιορισμούς. Το νόημα
ΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ»
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Α ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Πεδίο
2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΧΡΙΣΤΟΥΓΕΝΝΩΝ 2016 ΜΑΡΤΙΟΣ 2017 Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ 1 η ΑΣΚΗΣΗ Να υπολογιστούν οι παραστάσεις: i. 2 3 +2 5 2 1 1 4 +3 2 = Να διαβάσετε την εφαρμογή 1 σελ.14 του Σχολικού Βιβλίου ii.
2.3 Πολυωνυμικές Εξισώσεις
. Πολυωνυμικές Εξισώσεις η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να λύσουμε μια πολυωνυμική εξίσωση.. Να λυθούν οι εξισώσεις: i. + + + 6 = 0 ii. 7 = iii. ( + ) + 7 = 0 iv. 8 + 56 = 0 i. + + + 6 = 0 (
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1
Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(
ΑΛΓΕΒΡΑ Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η
Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η ΑΛΓΕΒΡΑ Τα ςημαντικότερα ςημεία τησ θεωρίασ Ερωτήςεισ εμπζδωςησ- απαντήςεισ Μεθοδολογία αςκήςεων Προτεινόμενεσ αςκήςεισ του βιβλίου - διεξοδική ανάλυςη των λφςεων (ςκζψη-βήματα-επεξήγηςη
αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;
Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε
ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Τι ονομάζουμε εξίσωση ου βαθμού; o Εξίσωση ου βαθμού με ένα άγνωστο ονομάζουμε κάθε εξίσωση που γράφεται ή μπορεί να γραφεί στη μορφή με α π.χ 5 6 Τι ονομάζουμε εξίσωση ου βαθμού ελλιπούς
2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.
β=0 Η εξίσωση (λ-2)χ=2λ-4 για λ=2 είναι αδύνατη. Σ Λ Αν η εξίσωση αχ+β=0 έχει δύο διαφορετικές λύσεις τότε είναι αόριστη. Σ Λ
3. ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ 3. ΕΞΙΣΩΣΕΙΣ α 0 Η εξίσωση έχει μία μοναδική λύση την x= - αx+β=0 α=0 β 0 β=0 Η εξίσωση είναι αδύνατη, δηλαδή δεν έχει λύση. Η εξίσωση είναι αόριστη ή ταυτότητα, δηλαδή επαληθεύεται
ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( )
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 4: ΕΝΝΟΙΑ ΟΡΙΟΥ ΣΤΟ R - ΠΛΕΥΡΙΚΑ ΟΡΙΑ ΣΤΟ R - ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΟΡΙΣΜΟΥ ΟΡΙΟΥ ΣΤΟ R - ΟΡΙΟ ΚΑΙ ΔΙΑΤΑΞΗ - ΟΡΙΑ ΚΑΙ ΠΡΑΞΕΙΣ [Κεφ 4: Όριο Συνάρτησης
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
ΔΙΑΓΩΝΙΣΜΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Πραγματικοί Αριθμοί Εξισώσεις 1/2/2015 Απαντήσεις
ΘΕΜΑ ο ΔΙΑΓΩΝΙΣΜΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Πραγματικοί Αριθμοί Εξισώσεις //05 Απαντήσεις.Α) Σχολικό βιβλίο : σελίδα 90.Β) α) Λ β) Σ γ) Λ δ) Σ ε) Σ.Γ) α) ii β) iii γ) ii δ) v ΘΕΜΑ ο.α) α) β) 3 3 3 : : : 8 4 4
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 3. Ασκήσεις: -5 Θεωρία ως και την 3.3 Ασκήσεις: 6-8 Άσκηση Δίνεται η παράσταση: A= 3 5 +
4. Ανισώσεις. 4.1 Ανισώσεις 1 ου Βαθμού
1 Ανισώσεις 1 ου Βαθμού Ανισώσεις 1. Πρωτοάθμιες Ανισώσεις Επιλύονται όπως οι εξισώσεις με την διαφορά ότι, όταν πολλαπλασιάζω ή διαιρώ με αρνητικό αριθμό αλλάζει φορά η ανίσωση.. Υπενθύμιση α), ή, ) ή,
Εξισώσεις 2 ου βαθμού
Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Η εξίσωση της μορφής αχ 2 + βχ + γ = 0, α 0 λύνεται σύμφωνα με τον παρακάτω πίνακα. Δ = β 2 4αγ Η εξίσωση αχ 2 + βχ + γ = 0, α 0 αν Δ>0 αν Δ=0 αν Δ
4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114
1. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Ομάδας 1. Να μετατρέψετε σε γινόμενα παραγόντων τα τριώνυμα: x 3x + x 3x Δ ( 3). 1. 9 8 1 > 0 Ρίζες: x Άρα ( 3) 1.1 3 1 3 1 ή 31 x 3x +
ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :
ΕΞΙΣΩΣΕΙΣ - ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ). Να λυθούν οι εξισώσεις: α). + ( 3 ) 6 = 0 β). 4 ( 3 ) + 3 = 0 γ). + ( ) = 0 δ). 5 + 5 = 0 ε). 4( 3) + 5 + 6 6 = 0 στ).( + 3 ) ( 3 + ) ( 3 ) = 0 η). + (3 ) + (4 3 ) = 0
Παράδειγμα 8. Να βρείτε την τιμή της παράστασης:
Μιγαδικοί αριθμοί Σελ 10 ΜΕΘΟΔΟΛΟΓΙΑ 104 Ασκήσεις με παραστάσεις της μορφής συγκεκριμένοι μιγαδικοί z 1 z με z 1,z i Εξετάζουμε μήπως οι μιγαδικοί συνδέονται με σχέση της μορφής z i 1 z ii Αντικάθιστούμε
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ ΘΕΜΑ 1 Ο Δίνεται η συνάρτηση f ( x) x ( 1) x 3 με 0 Γ1. Να λυθεί η εξίσωση f ( x) 0 για λ = -1 Γ. Για λ=3, να λυθεί η ανίσωση f ( x) 0 Γ3. Να αποδείξετε ότι στην
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
Τις ασκήσεις επιμελήθηκαν οι καθηγητές της Γ Γυμνασίου των σχολείων μας και ο συντονιστής Μαθηματικών.
Τις ασκήσεις επιμελήθηκαν οι καθηγητές της Γ Γυμνασίου των σχολείων μας και ο συντονιστής Μαθηματικών. Ερωτήσεις «Σωστού - Λάθους» 1) Για όλους τους πραγματικούς α, β ισχύει: ( ) ( ) 3 3 ) Για όλους τους
Ανισώσεις Α Βαθμού -Εφαρμογές στις Ανισώσεις
1 Ανισώσεις Α Βαθμού -Εφαρμογές στις Ανισώσεις Ανίσωση με έναν άγνωστο ονομάζουμε κάθε ανισότητα που περιέχει μια μεταβλητή και η οποία αληθεύει για ορισμένες τιμές της μεταβλητής. Πχ: Οι x + > 7, 2(y
β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1
Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο
Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» www.ma8eno.gr Ανισώσεις γινόμενο και ανισώσεις πηλίκο Πρόσημο γινομένου της μορφής P()
Περί εξισώσεων με ένα άγνωστο
1 ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΧΑΝΙΩΝ 19 Φεβρουαρίου 013 ΤΑΞΗ Α Σημειώσεις Άλγεβρας Περί εξισώσεων με ένα άγνωστο Εξίσωση με ένα άγνωστο λέμε την ισότητα δύο παραστάσεων μιας μεταβλητής. Πχ f(x) = g(x) όπου x μεταβλητή
7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ Να δείξετε ότι (x 2) 3 + (3x 4) 3 + (6 4x) 3 = 3(x 2)(3x 4)(6 4x). Λύση Στο 1 0 μέλος βλέπουμε άθροισμα κύβων 3 αριθμών, εξετάζουμε αν έχουν άθροισμα 0, (x 2) + (3x 4) + (6
εξίσωση πρώτου βαθμού
κεφάλαιο 2 Α1 εξίσωση πρώτου βαθμού επίλυση της εξίσωσης πρώτου βαθμού Εξίσωση, είναι κάθε ισότητα που περιέχει κάποιον άγνωστο, την τιμή του οποίου καλούμαστε να προσδιορίσουμε. Ο βαθμός μιας εξίσωσης
Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές
0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Όταν λύνοντας μια εξίσωση καταλήγουμε στην μορφή 0x=0,τότε λέμε ότι
ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ 9. ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ Χρήσιμες ιδιότητες πράξεων Αν αβ τότε α+γβ+γ Αν αβ τότε α-γβ-γ Αν αβ τότε α γ α β γ β Αν αβ τότε γ γ με γ 0 Η έννοια της εξίσωσης Μια ισότητα, που αληθεύει
ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ
ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2
Εξίσωση 1 η 1 ο μέλος 2 ο μέλος
1 Παραδείγματα (επανάληψη) Συντελεστής του αγνώστου x. Εξίσωση 1 η 1 ο μέλος 2 ο μέλος Ε ξ ι σ ώ σ εις 1 ο υ β α θ μ ο ύ 2x + 2 = x - 1 Άγνωστος x Γνωστός Eπίλυση 1 ος τρόπος Μπορούμε να γράψουμε την εξίσωση
Π.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ
Η θεωρία της Γ Γυμνασίου 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί αριθμοί είναι όλοι οι αριθμοί που γνωρίσαμε στις προηγούμενες
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ
1. Να λύσετε τις εξισώσεις ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ 3 50 3 5 0 0 ή 3 5 0 0 ή 3 5 0 ή 8 50 8 5 αδύνατη 3 60 3 6 6 3 3 4 510, α = 4, β = -5 και γ = 1 Δ = 4 5 4 4 15169 5 9 4 53 8 1 ή 4 410
ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας
. Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο
2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ
ΜΕΡΟΣ Α.5 ΑΝΙΣΟΤΗΤΕΣ-ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ 9. 5 ΑΝΙΣΟΤΗΤΕΣ- ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΙ Εάν έχουμε δύο πραγματικούς αριθμούς α και β τότε λέμε ότι ο α είναι μεγαλύτερος
3.""Πώς"θα"λύσω"μια"εξίσωση"δευτέρου"βαθμού;
3.""Πώς"θα"λύσω"μια"εξίσωση"δευτέρου"βαθμού; Βασικό! Το να έχεις τον άγνωστο x με εκθέτη 2 εξ αρχής στην εξίσωση, δεν είναι σίγουρο ότι θα δώσει εξίσωση δευτέρου βαθμού! Αυτό θα προκύψει μετά την εκτέλεση
Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 8 /
Εξισώσεις Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr 7 / 8 / 8 A ΛΥΚΕΙΟΥ κεφάλαιο 5 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο Επιλεγμένες
Η Έννοια της εξίσωσης:
Η Έννοια της εξίσωσης: Θεωρία και λυμένα παραδείγματα Εξίσωση με έναν άγνωστο λέμε μια ισότητα η οποία περιέχει αριθμούς και έναν άγνωστο γράμμα ( μεταβλητή). Εξισώσεις είναι οι: χ+=8, χ-21=4,χ+1, 8χ=26.
Παραγοντοποίηση. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
0 Παραγοντοποίηση Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 1 Ενότητα 4 η Ταυτότητες Παραγοντοποίηση Σκοπός Ο σκοπός της 4 η ενότητας είναι να αποκτήσουν την ικανότητα
1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή
qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop
qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty Επαναληπτικό Φυλλάδιο Μαθηματικών Β Γυμνασίου uiopasdfghjklzxcvbnmqwertyui 6η έκδοση 30/4/17
Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 26 σελίδες. εκδόσεις. Καλό πήξιμο
Εξισώσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 3 445 ασκήσεις και τεχνικές σε 6 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 9 / 0 / 0 6 εκδόσεις Καλό
( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι:
( x) Άρα το είναι ρίζα του P, οπότε το x είναι παράγοντάς του 4 Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x ) είναι: 3 π ( x) = x + x x + 3 Η ταυτότητα της προηγούμενης διαίρεσης είναι: 4 3 x 3x + 5x
Συνοπτική θεωρία - Τι να προσέχουμε Ασκήσεις Θέματα από Πανελλαδικές. γ) g( x) e 2. ln( x 1) 3. x x. ζ) ( x) ln(9 x2) ια) ( ) ln x 1
Κεφ ο : Διαφορικός Λογισμός Συνοπτική θεωρία - Τι να προσέχουμε Θέματα από Πανελλαδικές Α Πεδίο ορισμού συνάρτησης (Περιορισμούς για το χ ) Όταν έχουμε κλάσμα πρέπει : παρονομαστής 0 Όταν έχουμε ρίζα πρέπει
2.1 Πολυώνυμα. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα; 3 2 ii. x iii. 3 iv. vi.
.1 Πολυώνυμα 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα; i. 1 x + x ii. x + 7 x iii. 5 x + 7x x iv. 1 x + x v. 1 4 4 x + x + 4x vi. 1 x + 5x. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα
Ασκήσεις. ι) α α ιι) α α ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ
ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ Ασκήσεις ) Να βρείτε τους ακεραίους, οι οποίοι έχουν απόλυτη τιμή μικρότερη ή ίση του. ) Να βρείτε τους ακεραίους, οι οποίοι έχουν απόλυτη τιμή μεγαλύτερη του. ) Η απόσταση δύο
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΑΛΓΕΒΡΑ ΘΕΜΑ A Α1. Να αποδείξετε ότι: αβ α β (Μονάδες 15) A. Χαρακτηρίστε ως Σωστό (Σ) ή Λάθος (Λ) τις ακόλουθες προτάσεις: 1. Η εξίσωση
Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Ανισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 1 0 / 0 1 6 εκδόσεις τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο
1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση
ΜΕΘΟΔΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ
ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ Ονομάζουμε την διαδικασία με την οποία μετατρέπουμε μια παράσταση σε γινόμενο παραγόντων Προσοχή: Οι όροι μιας παράστασης χωρίζονται μεταξύ τους με συν (+) ή πλην (-) ενώ οι παράγοντες
β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε R. Μονάδες 8 γ) Αν x
ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ ΕΤΟΣ 06-7 Εξισώσεις Β βαθμού Α Λυκείου Τριών Ιεραρχών την Δευτέρα κι ευκαιρία να τους τιμήσουμε λύνοντας μερικές ασκησούλες άλγεβρας Αρχίστε από τις,,3,4,5,6,8,3,4,5,6,7,8,9,0,
Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46
ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................
7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει
8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
3ο κεφάλαιο: Εξισώσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα 1
Μαθηματικα Γ Γυμνασιου
Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ
ΠΩΣ; Το «σωσίβιό» σου στον ωκεανό της Γ Λυκείου! ΕΥΘΥΜΙΟΣ ΛΙΑΤΣΟΣ ΑΝΑΝΕΩΜΕΝΗ ΣΥΜΠΕΠΛΗΡΩΜΕΝΗ ΕΚΔΟΣΗ!
ΕΥΘΥΜΙΟΣ ΛΙΑΤΣΟΣ Καθηγητής Μαθηµατικών άμιλλα φροντιστήρια ΠΩΣ; Βασικά στοιχεία από την Άλγεβρα της Α και Β Λυκείου, αλλά και από την Κατεύθυνση της Β Λυκείου, που είναι απαραίτητα στα Μαθηµατικά Κατεύθυνσης
Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ
Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι γνωστή ως θεώρημα
x y z xy yz zx, να αποδείξετε ότι x=y=z.
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y
ΑΝΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Αν έχω τριώνυμο της μορφής :,. Υπολογίζω την Διακρίνουσα 4 Αν Δ> τότε η εξίσωση έχει άνισες ρίζες έστω Ομόσημο του α Ετερόσημο του α, τότε: Ομόσημο του α Αν Δ= τότε η εξίσωση έχει διπλή
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Άσκηση 1102 Δίνονται δύο ενδεχόμενα ενός δειγματικού χώρου Ω και οι πιθανότητες α) Να υπολογίσετε την (Μονάδες 9) β) i) Να υπολογίσετε με διάγραμμα Venn και να γράψετε στη γλώσσα των συνόλων το ενδεχόμενο:
ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2008 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ
Πειραματικό υμνάσιο Αγίων Αναργύρων Τάξη Μάιος 8 ΘΕΜΑΤΑ ΡΑΠΤΩΝ ΠΡΟΑΩΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 8 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ : ΘΕΩΡΙΑ Έστω η εξίσωση δευτέρου βαθμού : a με a β γ (). α) Ποια παράσταση λέγεται
11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται