εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες"

Transcript

1 Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο βαθμό μεγέθυνσης, κι έτσι συχνά αναφέρεται σαν "απείρως περίπλοκο" Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ θεωρία-παρατηρήσεις-ασκήσεις Παναγιώτης Χρ.Χρήστου Φάνης Γρ.Γκανάς Θεολόγος Κ. Ζαχαράκης

2 Περιεχόμενα Εξισώσεις ου βαθμού... Παραμετρική εξίσωση ου βαθμού...3 Εξισώσεις που ανάγονται σε εξισώσεις ου βαθμού...4 Η εξίσωση v a...6 Εξισώσεις ου βαθμού...7 Τύποι Vieta...9 Εξισώσεις που ανάγονται σε εξισώσεις ου βαθμού...0 Ασκήσεις... εξισώσεις ου βαθμού... προβλήματα με εξισώσεις ου βαθμού...3 εξίσωσεις ου βαθμού με απόλυτα...3 v a...4 εξισώσεις ου βαθμού...5 παραμετρικές εξισώσεις ου βαθμού...6 προβλήματα μεεξισώσεις ου βαθμού...7 άθροισμα και γινόμενο ριζών...8 εξισώσεις που ανάγονται σε εξισώσεις ου βαθμού...0 Ανισώσεις ου βαθμού... ανισώσεις ου βαθμού με απόλυτα...3 Ανισώσεις ου βαθμού...5 Ασκήσεις στις ανισώσεις...7 Ανισώσεις ου βαθμού με συναλήθευση...8 Παραμετρικές ανισώσεις ου βαθμού...9 Ανισώσεις ου βαθμού με απόλυτα...30 Πρόσημο τριωνύμου...3 Ανισώσεις ου βαθμού με απόλυτα...33 Παραμετρικές ανισώσεις ου βαθμού...33

3 ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ a 0 Η γενική μορφή της εξίσωσης ου βαθμού είναι: a 0 Για να θυμηθούμε πως την λύνουμε: 0 a Χωρίζω γνωστούς απο αγνώστους. Η εξίσωση είναι μια ισότητα έτσι οτι πράξεις κάνω σε αυτήν υπακούουν στις ιδιότητες των ισοτήτων.άρα για να χωρίσω γνωστούς απο αγνώστους πρέπει να προσθέσω στα δυο μέλη το-β Τώρα πρέπει να διαιρέσω και τα δυο μέλη με το α αλλά δεν ξέρω τι αριθμός είναι ο α και γιαυτό διακρίνω περιπτώσεις: Αν 0 τότε μπορώ να διαιρέσω τα δυο μέλη της εξίσωσης με το 0 και η εξίσωση γίνεται Αν 0 τότε η εξίσωση γίνεται 0 οπότε δεν μπορώ να διαιρέσω με το συντελεστή του αγνώστου (γιατί αυτός είναι μηδέν) και ασχολούμαι με το β I. αν είναι 0 τότε η εξίσωση δεν έχει λύση και ονομάζεται αδύνατη II. αν είναι 0 τότε κάθε τιμή του είναι λύση της εξίσωσης είναι δηλαδή ταυτότητα. Επίλυση εξίσωσης ου βαθμού Τα πρώτα 3 βήματα στη λύση μιας εξίσωσης μπορώ να τα περιγράψω ως ελευθερώνω τους όρους μου

4 αν μετά το 5 ο βήμα κατέληγα σε 0 5 αδύνατη (δηλαδή ότι τιμή και να βάλω στη θέση του η ισότητα δεν θα μου λέει αλήθεια) 0 0 ταυτότητα (δηλαδή ότι τιμή και να βάλω στη θέση του Παραμετρική εξίσωση ου βαθμού η ισότητα μου λέει πάντα αλήθεια) Όταν κάποιος απο τους συντελεστές α,β εκφράζεται με τη βοήθεια γράμματος τότε αυτό το γράμμα ονομάζεται παράμετρος και η εξίσωση ονομάζεται παραμετρική.η εργασία που κάνουμε για τη λύση αυτής ονομάζεται διερεύνηση και αποτελείται απο τα βήματα με τα οποία περιγράψαμε την λύση της γενικής εξίσωσης ου βαθμού 0 Παράδειγμα παραμετρικής: Να λυθεί για τις διάφορες τιμές του η εξίσωση 0, ΛΥΣΗ Διερέυνηση: αν 0 0 και 0 και η εξίσωση έχει μοναδική λύση την η εξίσωση γίνεται: 0 0 ταυτότητα η εξίσωση γίνεται : 0 αδύνατη Για Για

5 Εξισώσεις που ανάγονται σε εξισώσεις ου βαθμού Παράδειγμα (κλασματική). Να λυθεί η εξίσωση Λύση Όταν έχω κλασματική εξίσωση πρέπει να βρώ για ποιες τιμές της μεταβλητής ορίζεται(περιορισμοι) Για να βρώ πιο εύκολα τους περιορισμούς θα ασχοληθώ με αυτούς μόλις βρώ το Ε.Κ.Π των παρονομαστών Βρίσκω Ε.Κ.Π παρονομαστών Για να το βρώ πρέπει να παραγοντοποιήσω τους παρονομαστές Ε.Κ.Π: 0, 0 και και απορρίπτεται 4 4 αφού πρέπει

6 Παράδειγμα (με απόλυτα) Να λυθεί η εξίσωση 3 Λύση 3 3 ή 3 3 ή 3 4 ή 3 4 ή 3 4 ή 3 Παράδειγμα 3 (με απόλυτα) Να λυθεί η εξίσωση 3 3 Λύση Πρέπει Με αυτόν τον περιορισμό θα λύσω την εξίσωση ή ή 3 3 ή 5 5 απορρίπτεται ή δεκτή

7 Η εξίσωση v a Διακρίνω περιπτώσεις για το ν και για το α: Παραδείγματα: ή 6 ή 5 αδύνατη

8 ΕΞΙΣΩΣΕΙΣ ου βαθμού Έστω εξίσωση a 0 με 0. Βρίσκω τη διακρίνουσα: 4. Τότε αν 0 η εξίσωση έχει στους πραγματικούς αριθμούς δυο ρίζες άνισες τις, αν 0 η εξίσωση έχει στους πραγματικούς αριθμούς μια διπλή ρίζα την,. αν 0 η εξίσωση δεν έχει ρίζες (είναι αδύνατη) στους πραγματικούς αριθμούς. Βασικές εφαρμογές: Είναι a 4, 3, Οπότε Η εξίσωση έχει δυο ρίζες άνισες τις, Είναι a, 4, Οπότε η εξίσωση έχει μια διπλή ρίζα, 4 4 Εναλλακτικά όταν 0 μπορώ να λύσω με τη χρήση ταυτοτήτων

9 a,, Η εξίσωση είναι αδύνατη (δεν έχει ρίζες) στο σύνολο των πραγματικών αριθμών. Όταν η εξίσωση ου βαθμού είναι ελλειπής (λείπει ο πρωτοβάθμιος ή ο σταθερός όρος δεν είναι απαραίτητο να τη λύσω μέσω της Διακρίνουσας αλλά μπορώ να πάω με εναλλακτικούς τρόπους: π.χ ή 0 0 ή π.χ ή ή 3 Εναλλακτικά:

10 Τύποι Vieta Έστω η εξίσωση ου βαθμού a 0, 0 και 0 Τότε η εξίσωση έχει δυο ρίζες άνισες τις: ή Ας βρώ το άθροισμα (S) και το γινόμενο (P) των ριζών S 4 4 P Άρα Με τη βοήθεια των τύπων Vieta η εξίσωση ου βαθμού γίνεται: a S P

11 Εξισώσεις που ανάγονται σε εξισώσεις ου βαθμού με απόλυτα Θέτω 0 Η () λόγω της () γίνεται: Λύνοντας την τελευταία έχω (δεκτή αφού 0) και 5 (δεκτή αφού 5 0) Η () για γίνεται: ή ή 3 Η () για 5 γίνεται: 5 5 ή 5 3 ή 7 κλασματική : 8 Περιορισμοί: Πρέπει Είναι 36 0 Άρα η εξίσωση έχει δυο ρίζες άνισες τις 7 (δεκτή) και (απορρίπτεται)

12 διτετράγωνη Θέτω y 0 Οπότε η () λόγω της () γίνεται: y 7y6 0 με 5 0 άρα η εξίσωση έχει δυο ρίζες άνισες τις: y (δεκτή) και y 6 (δεκτή) Η () για Η () για 6 y γίνεται: y γίνεται:

13 ΑΣΚΗΣΕΙΣ (εξισώσεις ου βαθμού). Να λυθούν οι εξισώσεις α) 5 β) 3 γ) 3 δ). Να λυθούν οι εξισώσεις 4 3 α) β) γ) Να λύσετε τις εξισώσεις α) β) 3 0 γ) δ) 3 0 ε) 4 4. Να λύσετε τις εξισώσεις: α) 4 γ) β) 4 δ) 5. Να λυθούν για κάθε οι εξισώσεις α) β) γ) 3 3 δ) Δίνεται η εξίσωση : Να βρείτε για ποιες τιμές του λ η παραπάνω εξίσωση είναι: α) ταυτότητα β) αδύνατη 7. Να λύσετε τις εξισώσεις: α) a,, a a 4 a a, a β) 8. Να επιλυθεί ο τύπος: ως προς R και στη συνέχεια ως προς R. R R R 03-04

14 9. Από τις ισότητες v v at και 0 v v0 να δείξετε ότι: S t. S v t at 0 Προβλήματα 0. Δυο αριθμοί έχουν άθροισμα 4 και ο ένας είναι κατά 3 μεγαλύτερος από το διπλάσιο του άλλου. Να βρείτε τους αριθμούς αυτούς.. Το διπλάσιο ενός αριθμού είναι κατά μεγαλύτερο από το μισό του αριθμού. Να βρείτε αυτόν τον αριθμό.. Να βρείτε δυο διαδοχικούς φυσικούς αριθμούς των οποίων των οποίων οι αντίστροφοι διαφέρουν κατά 0 3. Ένας πατέρας είναι σήμερα 4 ετών και ο γιος του είναι 9 ετών. Μετά από πόσα χρόνια η ηλικία του πατέρα θα είναι τριπλάσια από την ηλικία του γιου του; Ασκήσεις (εξισώσεις με απόλυτα) 4. Να λύσετε τις εξισώσεις α) 5 0 β) γ) 0 δ) 6 ε) Να λύσετε τις εξισώσεις α) 4 β) 3 7 γ) 53 δ) ε) Να λύσετε τις εξισώσεις α) 8 0 β) 4 5 γ) 3 δ) ε) 4 5 στ)

15 7. Να λύσετε τις εξισώσεις α) β) Να λύσετε τις εξισώσεις α) 4 3 β) 0 γ) 3 9. Να λύσετε τις εξισώσεις α) β) γ) Να λύσετε τις εξισώσεις α) d (,) 3 β) (3, ) 5. Να λύσετε τις εξισώσεις d γ) d,5 d, α) β) ΑΣΚΗΣΕΙΣ v a. Να λύσετε τις εξισώσεις: α) 3 8 β) 4 6 γ) 3 7 δ) 6 64 ε) στ) 3. Να λύσετε τις εξισώσεις: ζ) 3 η) α) β) 8 δ) γ) ε) στ) Να λύσετε τις εξισώσεις: α) β) 3 7 γ)

16 5. Να λύσετε τις εξισώσεις: α) β) γ) δ) Ασκήσεις (εξισώσεις ου βαθμού) 6. Να λύσετε τις εξισώσεις α) 3 0 β) δ) ε) 8 0 γ) στ) Να λύσετε τις εξισώσεις: α) β) γ) δ) ε) Να λύσετε τις εξισώσεις (με δυο τρόπους) α) 6 0 β) δ) 3 0 ε) 3 0 γ) 3 0 στ) 9. Να λύσετε τις παρακάτω εξισώσεις α) β) γ) 0 δ) 30.Να λύσετε τις παρακάτω εξισώσεις ,, α) β) γ) δ) ε) 35 στ) ( ) 4 3 ( 3) ζ) 4 5( ) η)

17 3. Να λύσετε τις παρακάτω εξισώσεις α) γ) ε) 0 3 β) δ) στ) Ασκήσεις (παραμετρικές εξισώσεις ου βαθμού) 3. Να λύσετε για τις διάφορες τιμές του λ τις εξισώσεις α) 0 β) Να αποδείξετε ότι οι παρακάτω εξισώσεις έχουν πραγματικές ρίζες τις οποίες και να βρείτε: a a 0 α) β) 3 9 0, Να βρείτε το πλήθος των ριζών των παρακάτω εξισώσεων a a 0 α) a a a 0, 0 β) 35. Αν η εξίσωση 0 έχει μια διπλή ρίζα να αποδείξετε ότι η εξίσωση: έχει πραγματικές ρίζες 36. Η εξίσωση έχει ρίζα το 3. Να βρείτε: α) τον αριθμό λ β) την άλλη ρίζα της εξίσωσης

18 37. Η εξίσωση έχει μια διπλή ρίζα. α) Να βρείτε τις τιμές του λ β) Για κάθε τιμή του λ να βρείτε τη διπλή ρίζα της εξίσωσης. 38. Δίνονται οι εξισώσεις: και Η μικρότερη ρίζα της εξίσωσης είναι και ρίζα της εξίσωσης. Να βρείτε: α) το λ β) τις ρίζες της εξίσωσης. 39. Η εξίσωση Να βρείτε: α) το λ 0 έχει μια διπλή ρίζα. β) τη διπλή ρίζα της εξίσωσης. Προβλήματα 40. Δυο αδέρφια είναι σήμερα 3 ετών και 7 ετών. Σε πόσα χρόνια το γινόμενο των ηλικιών τους θα είναι ίσο με 60; 4. Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο με Â 90o. Να βρείτε τα μήκη των πλευρών του τριγώνου. 4. Ένα ορθογώνιο παραλληλόγραμμο έχει μήκος 8cm και πλάτος 4cm. Aν αυξήσουμε και το μήκος και το πλάτος κατά cm το εμβαδόν του θα αυξηθεί κατά Να βρείτε το. 8 cm

19 Ασκήσεις (άθροισμα και γινόμενο ριζών) 43. Να βρείτε το άθροισμα και το γινόμενο των ριζών των παρακάτω εξισώσεων: α) 3 0 β) γ) δ) ε) 3 0 στ) Να βρείτε το άθροισμα και το γινόμενο των ριζών των παρακάτω εξισώσεων: α) β) α) Μια εξίσωση ου βαθμού έχει ρίζα το 4. Αν ισχύει P 4 να βρείτε το λόγο. β) Μια εξίσωση ου βαθμού έχει ρίζα το -. Αν ισχύει S 3 να βρείτε τον λόγο. 46. Το άθροισμα των ριζών της εξίσωσης: 8 0 με a 0 είναι 6. Να βρείτε: α) τον αριθμό α β) το γινόμενο των ριζών της παραπάνω εξίσωσης. 47. Αν, είναι οι ρίζες της εξίσωσης 3 0 να βρείτε τις τιμές των παρακάτω παραστάσεων: α) ε) β) γ) δ) 3 3 στ) ζ) 48. Να βρείτε εξίσωση ου βαθμού που να έχει ρίζες τους αριθμούς: α) και 4 β) -3 και 5 γ) και δ) και ε) 3 και 3 στ) 5 5 και

20 49. Έστω και οι ρίζες της εξίσωσης 5 0. Να βρείτε εξίσωση ου βαθμού που να έχει ρίζες τους αριθμούς: α) 3 και 3 β) και γ) και δ) και 50. Δίνεται η εξίσωση 6 0 α) Να αποδείξετε ότι η εξίσωση έχει πραγματικές ρίζες για κάθε τιμή της παραμέτρου λ. β) Να βρείτε για ποια τιμή του λ η εξίσωση έχει ρίζες: i) αντίθετες ii) αντίστροφες. 5. Να βρείτε για ποιες τιμές του λ η εξίσωση έχει: α) μια διπλή ρίζα β) δυο ρίζες αντίστροφες γ) δυο ρίζες αντίθετες δ) δυο ετερόσημες ρίζες ε) δυο θετικές ρίζες στ) δυο αρνητικές ρίζες 5. Δίνεται η εξίσωση: α) Να αποδείξετε ότι η εξίσωση έχει πραγματικές ρίζες για κάθε τιμή της παραμέτρου λ. β) Να βρείτε για ποιες τιμές του λ: i) η εξίσωση έχει αντίστροφες ρίζες ii) το γινόμενο των ριζών της εξίσωσης είναι τετραπλάσιο από το άθροισμά τους

21 Ασκήσεις (εξισώσεις που ανάγονται σε ου βαθμού) 53. Να λύσετε τις εξισώσεις: α) 3 0 β) δ) γ) 8 ε) στ) Να λύσετε τις εξισώσεις: α) β) δ) ε) γ) στ) Να λύσετε τις εξισώσεις: α) β) γ) δ) 56. Να λύσετε τις εξισώσεις: α) γ) ε) β) δ) στ) Να λύσετε τις εξισώσεις: α) γ) ε) β) δ) στ)

22 58. Να λύσετε τις εξισώσεις: α) 0 0 β)

23 Ανισώσεις ου βαθμού Οί ανισώσεις ου βαθμού έχουν μορφή a 0 και 0 Τα βήματα με τα οποία τις λύνω είναι τα ίδια με τις εξισώσεις ου βαθμού. Εξισώσεις και ανισώσεις ου βαθμού όμως έχουν ουσιαστικές διαφορές. Παράδειγμα (θα λύσω την εξίσωση και την ανίσωση ) 4 4 διαφορές (στα βήματα):στις ανισώσεις όταν διαιρώ με αρνητικό αριθμό αλλάζει η φορά της ανίσωσης. Επίσης στις ανισώσεις συνεχίζω με τον άξονα των αριθμών. Ουσιαστικές διαφορές: στις εξισώσεις βρίσκώ μια λύση ενώ στις ανισώσεις βρίσκω άπειρες λύσεις οι οποίες ικανοποιούν όλες μια ιδιότητα (στο παράδειγμα είναι όλες μεγαλύτερες του ) στις ειδικές περιπτώσεις των εξισώσεων έχω ότι 0 0 ταυτότητα 0, β 0 ύ ενώ στις ειδικές περιπτώσεις των ανισώσεων (δηλαδή αν ο συντελεστής του αγνώστου είναι μηδέν) πρέπει να σκεφτώ τι μου λέει η ανίσωση για να βγάλω 03-04

24 συμπέρασμα αν είναι αδύνατη ή αν όλοι οι αριθμοί είναι λύση της. Ανισώσεις με απόλυτα Όταν η ανίσωσή μου έχει απόλυτη τιμή που περιέχει τη μεταβλητή μου τότε πρέπει να κάνω όλες τις απαραίτητες εκείνες ιδιότητες των ανισοτήτων οι οποίες θα φέρουνε την ανίσωσή μου στη μορφή π.χ και στη συνέχεια να απαλλαγώ απο το απόλυτο. Παράδειγμα Να λυθεί η ανίσωση 4 Λύση Από τις ιδιότητες των απολύτων τιμών έχω οτι με 0 Άρα Δηλαδή η ανίσωση αληθεύει για 6, Παράδειγμα Να λυθεί η ανίσωση 3 4 Λύση Απο τις ιδιότητες των απολύτων τιμών εχω οτι: αν με θ 0 ή Άρα ή ή ή 3 Δηλαδή η ανίσωση αληθεύει για 5,,

25 Παράδειγμα 3 (γενικό) Να λυθεί η ανίσωση Λύση Για να μπορέσω να φτάσω την ανίσωση στο σημείο που μου δόθηκαν οι ανισώσεις στα προηγούμενα παραδείγματα πρέπει πρώτα απ ολα όπου εμφανίζεται απόλυτη τιμή να έχω την ίδια ποσότητα μέσα της.έτσι 4 Οπότε η αρχική ανίσωση γίνεται: 7 Απαλοιφή παρονομαστών με Ε.Κ.Π(,3,6)= Χωρίζω γνωστούς απο αγνώστους 3 7 Αναγωγή ομοίων όρων 7 7 Διαιρώ με το συντελεστή του αγνώστου (είναι αρνητικός άρα θα αλλάξει η φορά) και τελικά όπως στα προηγούμενα παραδείγματα ή ή 3 Δηλαδή, 3, για να απαλλαγώ απο την απόλυτη τιμη

26 Ανισώσεις ου βαθμού H παράσταση a, 0 λέγεται τριώνυμο ου βαθμού και αναλόγως τη διακρίνουσά του παραγοντοποιείται και γίνεται: αν 0 αν αν 0 a 0 4 Είτε θέλω να βρώ το πρόσημο ενός τριωνύμου είτε θέλω να λύσω μια ανίσωση ου βαθμου π.χ a 0, 0 ακολουθώ τους παρακάτω πίνακες (αναλόγως τη Διακρίνουσα του τριωνύμου). Παράδειγμα Να συναληθεύσετε τις ανισώσεις και

27 Λύση Θα λύσω την κάθε μια ανίσωση χωριστά και στο τέλος θα κάνω συναλήθευση Είναι Άρα, ( ) 75 6 Εγώ θέλω, άρα για την ανίσωση Είναι Άρα, Άρα,3 3 3 Συναλήθευση Άρα οι κοινές λύσεις είναι εκείνα τα,

28 Ασκήσεις στις Ανισώσεις ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ (ΑΠΛΕΣ ΚΛΑΣΜΑΤΙΚΕΣ). Να λύσετε τις παρακάτω ανισώσεις: i) 3 5 ii) 5 4 iii) iv) Να λύσετε τις παρακάτω ανισώσεις: i) 3( ) 5( ) 3 (3 ) ii) 3(7 3 ) (8 7 ) ( ) iii) (4 5) 3( 3) 5 9( ) iv) 6( ) (5 3 ) 9( 3) v) ( ) ( ) 5 ( ) vi) 3. Να λύσετε τις παρακάτω ανισώσεις: i) iii) v) 4 ( ) 8 ( 3) ( 3) ii) iv) ( ) vi) 3 ( 3) ( 9 ) Να βρείτε τις τιμές του για τις οποίες: i) η παράσταση 53( ) είναι μεγαλύτερη από το. ii) η παράσταση ( ) 5( ) είναι μικρότερη από το 6. iii) η παράσταση 4( ) είναι το πολύ ίση με. iv) η παράσταση v) η παράσταση διάστημα (-,3]. ( ) ( ) είναι τουλάχιστον ίση με 5. ( 3)( 3) ( ) παίρνει τιμές στο ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΠΟΥ ΑΛΗΘΕΥΟΥΝ ΓΙΑ ΚΑΘΕ ή ΕΙΝΑΙ ΑΔΥΝΑΤΕΣ 5. Να λύσετε τις παρακάτω ανισώσεις: i) 0 3 ii) 0 4 iii) 0 iv) 0 5 v) 0 0 vi)

29 6. Να λύσετε τις παρακάτω ανισώσεις: i) 0 4 ii) 0 iii) 0 iv) 0 5 v) 0 0 vi) Να λύσετε τις παρακάτω ανισώσεις: i) 3 5 4( ) ii) 4( 6) (3 ) 6( 5) iii) 6( ) 3 4(3 ) iv) 3( 4) 4( ) 5( ) v) 5 (4 5) (5 3) 5 ( ) vi) 4 ( ) 8 ( 3) ( 3) 8. Να λύσετε τις παρακάτω ανισώσεις: i) 4 9 ( ) 6 ii) iii) iv) v) vi) ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΠΟΥ ΣΥΝΑΛΗΘΕΥΟΥΝ ΔΙΠΛΕΣ ΑΝΙΣΩΣΕΙΣ 9. Να βρείτε τις κοινές λύσεις των παρακάτω ανισώσεων: i) 3( ) και ( 3) ii) 3 ( ) 7 και 5 (7 3) iii) 4( ) 6 ( 3) και 3( 4) 7 5( ) iv) 3( ) 8 9 4(3 ) και 3 5( ) 9 (6 5 ) 0. Να βρείτε τις κοινές λύσεις των παρακάτω ανισώσεων: i) και 5 ii) 4 4 και 4 8 iii) και iv) και ( 4)

30 . Να βρείτε τις κοινές ακέραιες λύσεις των παρακάτω ανισώσεων: i) 3( ) και ( 3) ii) 5( 5) 4( ) 6( 3 ) και 3( ) 4( ) 3( ) iii) και iv) ( ) 3 και Να λύσετε τις παρακάτω ανισώσεις: i) 5 9 ii) 6 8 iii) 3 ( 5) 9 7 iv) 4 ( ) 3(4 ) v) vi) Να λύσετε τις παρακάτω ανισώσεις: i) ii) ( ) 3 3( ) 4 3 iii) 5 4( ) ( 3) 5( ) 4 iv) ( ) 3 5 5( 3) 3( ) 3( ) v) vi) 3 6 ΠΑΡΑΜΕΤΡΙΚΕΣ ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ 4. Να λύσετε τις παρακάτω ανισώσεις για τις διάφορες τιμές της παραμέτρου : i) 6 3 ii) ( ) ( 4) iii) ( ) ( 3) iv) ( 4) ( )( ) 4( ) v) ( ) 4 vi) Δίνεται η ανίσωση: ( 3) ( ) 3( 3 ). Να βρείτε για ποιες τιμές των παραμέτρων λ και μ η παραπάνω ανίσωση είναι αδύνατη. 6. Δίνεται η ανίσωση: ( ) 3( ). Να βρείτε για ποιες τιμές των παραμέτρων λ και μ η παραπάνω ανίσωση είναι αόριστη

31 3( ) 7. Δίνεται η εξίσωση: και η ανίσωση: 3 4 ( ) α) Να λύσετε την εξίσωση β) Να βρείτε για ποιες τιμές του μ η λύση της εξίσωσης επαληθεύει την ανίσωση. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΜΕ ΑΠΟΛΥΤΑ 8. Να λύσετε τις παρακάτω ανισώσεις: i) 4 ii) 3 6 iii) 3 iv) 0 v) 4 vi) 7 0 vii) viii) 3 8 i) ) 5 0 i) 9 0 ii) Να λύσετε τις παρακάτω ανισώσεις: i) ii) iii) 4 3 iv) v) 4 3 vi) Να λύσετε τις παρακάτω ανισώσεις: i) ii) iii) iv) Να λύσετε τις παρακάτω ανισώσεις: i) ii) iii) iv)

32 . Να βρείτε τις κοινές λύσεις των παρακάτω ανισώσεων: i) και 4 ii) 3 5 και iii) και iv) 5 3 και 3 3. Να λύσετε τις παρακάτω ανισώσεις: i) 5 3 ii) 3 5 iii) iv) Να λύσετε τις παρακάτω ανισώσεις: i) 3 5 ii) 6 iii) 4 3 iv) 5. Να λύσετε τις παρακάτω ανισώσεις: 3 3 i) 3 ii) 4 iii) iv) v) d (,3) vi) d (, 4) 3 vii) d(, ) 4 d(,0) viii) d(,3) d(, ) 6. Να λύσετε τις παρακάτω ανισώσεις: i) ii) 5 5 iii) 8 3 iv) 3 7. Να λύσετε τις παρακάτω ανισώσεις: i) 4 3 ii) Δίνεται η εξίσωση: 8 0 α) Να βρείτε για ποιες τιμές του η εξίσωση έχει πραγματικές ρίζες β) Έστω, οι πραγματικές ρίζες της εξίσωσης. Να βρείτε για ποιες τιμές του ισχύει 3 9. Δίνεται η εξίσωση: 4 0 α) Να βρείτε για ποιες τιμές του η εξίσωση έχει πραγματικές ρίζες β) Έστω, οι πραγματικές ρίζες της εξίσωσης. Να βρείτε για ποιες τιμές του ισχύουν : i. 3 3 ii

33 30. Δίνεται η εξίσωση: οι πραγματικές ρίζες της. 4 0 και έστω, α) Να βρείτε τις τιμές των παραστάσεων: i. S ii. P iii. A β) Για τις τιμές των παραστάσεων που βρήκατε, να λύσετε την ανίσωση: A P S ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ 3. Να κάνετε τον πίνακα προσήμου των παρακάτω τριωνύμων: i) iii) v) vii) i) 5 3 ii) 4 3 iv) 4 4 vi) viii) 3 ) 3. Να λύσετε τις παρακάτω ανισώσεις: i) iii) v) vii) i) 5 4 ii) ( ) ( ) 4 iv) 3 3 vi) viii) 3 ) Να λύσετε τις παρακάτω ανισώσεις: i) iii) v) vii) (3 ) 9 ii) 69 0 iv) 9 6 vi) 3 viii) (5 3) Να βρείτε τις κοινές λύσεις των παρακάτω ανισώσεων: i) 9 και ii) 0 και iii) και ( ) iv) 6 και 0 3 και Να λύσετε τις παρακάτω ανισώσεις: i) 3 ii) iii) 3 4 iv)

34 ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΜΕ ΑΠΟΛΥΤΑ 36. Να λύσετε τις παρακάτω ανισώσεις: i) ii) () 3 0 iii) 4 4 iv) 3 3 ΠΑΡΑΜΕΤΡΙΚΕΣ ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ 37. Να βρείτε το πλήθος των ριζών των εξισώσεων για τις διάφορες τιμές της παραμέτρου : i) ( ) 0 ii) ( ) ( ) 0, 38. Να βρείτε τις τιμές της παραμέτρου ώστε οι εξισώσεις να έχουν ρίζες πραγματικές και άνισες: i) () 0 ii) ( ), 39. Να βρείτε τις τιμές της παραμέτρου ώστε οι τιμές του τριωνύμου: 3 ( 0) να διατηρούν σταθερό πρόσημο για κάθε. 40. Να βρείτε τις τιμές της παραμέτρου ώστε οι τιμές του τριωνύμου: ( ) ( ) ( ) να είναι αρνητικές για κάθε. 4. Να βρείτε τις τιμές της παραμέτρου ώστε οι τιμές του τριωνύμου: ( ) ( ) να είναι θετικές για κάθε. 4. Αν 3 να δείξετε ότι για κάθε οι τιμές του τριωνύμου: 4 8 είναι αρνητικές. 43. Αν 0 3 να δείξετε ότι για κάθε οι τιμές του τριωνύμου: είναι θετικές. 44. Να βρείτε τις τιμές της παραμέτρου ώστε η ανίσωση: ( ) 3 0 ( 0) να αληθεύει για κάθε. 45. Να δείξετε ότι η εξίσωση: πραγματικές και άνισες για κάθε 3 έχει δύο ρίζες

35 Ιδρυτής: Παναγιώτης Χρ. Χρήστου Συνεργάζονται διδάσκουν : ΜΑΘΗΜΑΤΙΚΑ ΦΥΣΙΚΗ Φάνης Γρ. Γκανάς Θεολόγος Κ. Ζαχαράκης Αρετή Λαΐου Ζησοπούλου ΦΙΛΟΛΟΓΙΚΑ Παναγιώτης Κ. Ζαχαράκης Χρύσα Οικονόμου Άρτεμις Παπανικολάου Αναστασία Κομματά Σωτήρης Παμπάλης Γιάννα Αθανασίου Κομματά ΧΗΜΕΙΑ ΒΙΟΛΟΓΙΑ Ράνια Ζαχαράκη ΠΛΗΡΟΦΟΡΙΚΗ Σωτήρης Παιάνας Α.Ο.Θ. Α.Ο.Δ.Ε. Γεωργία Σκουμή ΓΥΜΝΑΣΙΟ ΛΥΚΕΙΟ ΕΠΑΛ Ιπποκράτους, παλιό Δεσποτικό, Τρίκαλα otenet.gr internet:frontistiriopaideia.weebly.com facebook: «Γενικά Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ Τρίκαλα»

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

Η Θεωρία που πρέπει να θυμάσαι!!!... b a

Η Θεωρία που πρέπει να θυμάσαι!!!... b a Κεφ. εξισώσεις ανισώσεις εξάσκησηεπανάληψη Τhe Ds that make a champion: Devotion, Desire, Discipline Η Θεωρία που πρέπει να θυμάσαι!!!... Μορφές Εξισώσεων Λύση ή ρίζα εξίσωσης Εξίσωση ου βαθμού ax + b

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ Τελευταία ενημέρωση: 21 Φεβρουαρίου 2015 w w w. c o m m o n m a t h s. w e e b l y. c o m A. Αρχικά θα ασχοληθούμε με τα τριώνυμα 2 ου βαθμού. Η γενική μορφή τους

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 = ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,

Διαβάστε περισσότερα

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 014 ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρόν φυλλάδιο είναι ένα τμήμα μιας προσωπικής

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Εξισώσεις 2 ου βαθμού

Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Η εξίσωση της μορφής αχ 2 + βχ + γ = 0, α 0 λύνεται σύμφωνα με τον παρακάτω πίνακα. Δ = β 2 4αγ Η εξίσωση αχ 2 + βχ + γ = 0, α 0 αν Δ>0 αν Δ=0 αν Δ

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0

ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0 3 ΝΙΣΩΣΕΙΣ 31 ΝΙΣΩΣΕΙΣ 1 ου ΒΘΜΟΥ Οι ανισώσεις: α + β > 0 και α + β < 0 Γνωρίσαμε στο Γυμνάσιο τη διαδικασία επίλυσης μιας ανίσωσης της μορφής α β 0 ή της μορφής α β 0, με α και β συγκεκριμένους αριθμούς

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114 1. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Ομάδας 1. Να μετατρέψετε σε γινόμενα παραγόντων τα τριώνυμα: x 3x + x 3x Δ ( 3). 1. 9 8 1 > 0 Ρίζες: x Άρα ( 3) 1.1 3 1 3 1 ή 31 x 3x +

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

g 0 5 0, των Παναγιώτη Χριστόπουλου Κώστα Βακαλόπουλου

g 0 5 0, των Παναγιώτη Χριστόπουλου Κώστα Βακαλόπουλου ΜΑΘΗΜΑΤΙΚΑ Α ΛΥΚΕΙΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ή ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ των Παναγιώτη Χριστόπουλου Κώστα Βακαλόπουλου Με τη φράση «πρόσημο τριωνύμου» δηλώνουμε τη μέθοδο με την οποία μπορούμε να γνωρίζουμε ποιο πρόσημο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΕΠΙΛΥΣΗ ΑΝΙΣΩΣΕΩΝ 2 ου ΒΑΜΟΥ

ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΕΠΙΛΥΣΗ ΑΝΙΣΩΣΕΩΝ 2 ου ΒΑΜΟΥ 5 ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΕΠΙ ΑΝΙΣΩΣΕΩΝ ου ΒΑΜΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ Για να βρούμε το πρόσημο του τριωνύμου αχ +βχ+γ βρίκουμε την διακρίνουσα Δ=β - 4αγ και αν: Δ>0,το τριώνυμο έχει δυο ρίζες χ 1,χ και το προσημό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 3. Δίνεται ο πίνακας: 3 3 3 ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ ο. Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 6. Επιλέγουμε

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 1) Δίνεται η εξίσωση x 2-2(λ + 2) χ + 2λ 2-17 = 0. Να βρείτε το λ ώστε η εξίσωση να έχει μία ρίζα διπλή. Υπολογίστε τη ρίζα. Aσκήσεις στις εξισώσεις Β βαθμού Για να έχει η εξίσωση μία ρίζα διπλή πρέπει:

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ. ικανοποιούν την ανίσωση 2x 3 < 11; (E) µεταξύ των απαντήσεων Α D δεν υπάρχει

ΕΡΩΤΗΣΕΙΣ. ικανοποιούν την ανίσωση 2x 3 < 11; (E) µεταξύ των απαντήσεων Α D δεν υπάρχει ΕΡΩΤΗΣΕΙΣ. Αν α =β, τότε η τιµή της παράστασης κ= α β +β α είναι: ( ) 4 ( Β )0, ( )4 δίνονται. Α, C, ( D ), (Ε) δεν µπορεί να προσδιοριστεί από τις πληροφορίες που. Πόσα στοιχεία του συνόλου { 5,,0,4,6,7}

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο

Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο Ανισώσεις Γινόμενο και Ανισώσεις Πηλίκο Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» www.ma8eno.gr Ανισώσεις γινόμενο και ανισώσεις πηλίκο Πρόσημο γινομένου της μορφής P()

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Έστω η συνάρτηση f() = 80 αν < < 0 αν 0 αν i ) Να υπολογιστεί η τιµή της παράστασης Α = f( ) + f(0) 5f() f + f( ) Αν Μ(, ) και Ν(, 0) να βρείτε την εξίσωση της ευθείας ΜΝ i

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α). 1.: Έννοια της Πιθανότητας Κεφάλαιο 1ο: Πιθανότητες ΑΣΚΗΣΗ 1 (_497) Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ. 2.1 ΕΞΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Η εξίσωση αx β 0

ΕΞΙΣΩΣΕΙΣ. 2.1 ΕΞΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Η εξίσωση αx β 0 ΕΞΙΣΩΣΕΙΣ.1 ΕΞΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ Η εξίσωση α 0 Στο Γυμνάσιο μάθαμε τον τρόπο επίλυσης των εξισώσεων της μορφής α 0 για συγκεκριμένους αριθμούς α,,με α 0 Γενικότερα τώρα, θα δούμε πώς με την οήθεια των

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ 4ο Λύκειο Περιστερίου Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν ααννάά εεννόόττηητταα ΑΛΓΕΒΡΑ

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Μέθοδοι επίλυσης γραμμικού συστήματος χ Γραφική επίλυση Σχεδιάζουμε τις ευθείες που αντιπροσωπεύουν οι εξισώσεις του συστήματος. Αν: - οι δύο ευθείες τέμνονται, τότε το σύστημα έχει

Διαβάστε περισσότερα

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ 6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Αν θέλουμε να δείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ αποδεικνύουμε ότι η είναι συνεχής στο Δ και ότι για κάθε

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Email : stvrentzou@gmail.com www.ma8eno.gr

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Email : stvrentzou@gmail.com www.ma8eno.gr 1 Πρόσημο τριωνύμου - λύση ανίσωσης ου βαθμού Έστω το τριώνυμο f(x) = x - 4x - 1. Θέλουμε να εξετάσουμε για ποιες τιμές της μεταβλητής x το τριώνυμο f(x) γίνεται θετικό, για ποιες τιμές του x γίνεται αρνητικό,

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων. Άσκηση Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μέρος ο i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις: ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ Στέλιιος Μιιχαήλογλου-Δημήτρης Πατσιιμάς Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν

Διαβάστε περισσότερα

Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ

Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ τράπεζαθεμάτων θέμαδεύτεροκαιτέταρτο Επιμέλεια: ΕμμανουήλΚ.Σκαλίδης ΑντώνηςΚ.Αποστόλου ΚόμβοςΑτσιποπούλου014-15 1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΙΘΑΝΟΤΗΤΕΣ 1. Ένα κουτί περιέχει 5 άσπρες,

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άσκηση 1 Από τους µαθητές ενός Λυκείου, το 25% συµµετέχει στη οµάδα, το 30% συµµετέχει στη θεατρική οµάδα ποδοσφαίρου και το 15% των µαθητών

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α Σ Υ Λ Λ Ο Γ Η Α Σ Κ Η Σ Ε Ω Ν Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α α 3y β 5 (1) Αν το (Σ) : 3 αy 5β τους α,β έχει λύση την (, y) = (1, ) να βρείτε () Να λυθούν τα συστήματα : y 4 3 y 5 6 5 6

Διαβάστε περισσότερα

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ .7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ I. Αν μια συνάρτηση παρουσιάζει τοπικό ακρότατο σε ένα εσωτερικό σημείο του πεδίου ορισμού της και είναι παραγωγισιμη σε αυτό τότε ( ).(Θεώρημα Fermat) II.

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές, αυτό το βιβλίο αποτελεί ένα σημαντικό βοήθημα για την Άλγεβρα της Β Λυκείου, που είναι

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 4 ο (141)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 4 ο (141) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα 4 ο (141) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ 1 ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ 1.ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Σε ένα σχολείο με 00 μαθητές, οι 90 έχουν ποδήλατο, 36 έχουν «παπί», ενώ 84 άτομα δεν έχουν ούτε ποδήλατο ούτε παπί. Διαλέγουμε

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 1 ο ΣΥΣΤΗΜΑΤΑ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Όταν έχουμε δύο γραμμικές εξισώσεις αx+βy=γ και α x+β y=γ και ζητάμε τις κοινές λύσεις τους, τότε λέμε ότι έχουμε να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) Θέμα 1 Θέματα A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ο βαθμός του υπολοίπου της διαίρεσης P(x)

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΗΡΑΚΛΕΙΟΥ

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΗΡΑΚΛΕΙΟΥ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΗΡΑΚΛΕΙΟΥ ΘΕΜΑΤΑ Γραπτών προαγωγικών εξετάσεων περιόδου Μαΐου - Ιουνίου 0 στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Πέμπτη 0 Μαΐου 0 (Να απαντήσετε σε όλα τα θέματα) Όνομα:.. Θέμα Α ν ν

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1. Ένα ψυγείο την περίοδο των εκπτώσεων πωλείται µε έκπτωση 18% αντί του ποσού των 779. Να βρείτε πόση ήταν η αξία του ψυγείου πριν τις εκπτώσεις. Αν x ήταν η αξία του ψυγείου

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

Τεύχος 6. Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Περιεχόμενα

Τεύχος 6. Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Περιεχόμενα Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Τεύχος 6 Περιεχόμενα Σελίδα 5: Σελίδα 17: Α Γυμνασίου, Μέρος Α, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμεις

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Πεδίο ορισμού. Να βρείτε τα πεδία ορισμού των παρακάτω συναρτήσεων: i) f ( ) 5 6 ii) f ( ) 7 iii) iv) f( ) 4 f( ) 8 v) f ( ) 6 vi) f ( ) 0 5. Να βρείτε τα πεδία ορισμού των παρακάτω

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

6 η Δραστηριότητα στο MicroWorlds Pro (1)

6 η Δραστηριότητα στο MicroWorlds Pro (1) 6 η Δραστηριότητα στο MicroWorlds Pro (1) Προχωρημένος Προγραμματισμός με Logo Δομή επιλογής Αν & ΑνΔιαφορετικά Στην δραστηριότητα που ακολουθεί, θα προσπαθήσουμε να βρούμε την απόλυτη τιμή ενός αριθμού,

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα