ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ"

Transcript

1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ Έστω Ρ(ν) ένας ισχυρισµός, ο οποίος αναφέρεται στους θετικούς ακέραιους Αν: i) o ισχυρισµός είναι αληθής για τον ακέραιο 1, δηλαδή ο Ρ(1) είναι αληθής και ii) η αλήθεια του Ρ(ν) συνεπάγεται την αλήθεια του Ρ(ν+1) για κάθε ν τότε ο ισχυρισµός Ρ(ν) αληθεύει για όλους τους θετικούς ακέραιους ν Εναλλακτικά µπορούµε να πούµε ότι αν: i) o ισχυρισµός είναι αληθής για τον ακέραιο 1, δηλαδή ο Ρ(1) είναι αληθής και ii) δεχόµενοι την αλήθεια του Ρ(κ), όπου κ θετικός ακέραιος αποδείξουµε την αλήθεια του Ρ(κ+1) τότε ο ισχυρισµός Ρ(ν) αληθεύει για όλους τους θετικούς ακέραιους ν ΠΑΡΑ ΕΙΓΜΑ 1 Να αποδειχθεί ότι για κάθε θετικό ακέραιο ν ισχύει: ν = ν(ν + 1)(ν + 1) (1) ΑΠΟ ΕΙΞΗ Για ν=1 η πρόταση (1) γίνεται: 1 1 = 1= 1που ισχύει Έστω ότι ισχύει για ν=κ, δηλαδή κ κ(κ + 1)(κ+ 1) = () Θα αποδείξουµε ότι ισχύει και για ν=κ+1, δηλαδή: κ +(κ+1) ( κ+ 1)( κ + )(κ + ) = Έχουµε: κ +(κ+1) κ(κ+ 1)(κ+ 1) =(λόγω της () + (κ+ 1) = κ(κ+ 1)(κ+ 1) + (κ+ 1) (κ+ 1)(κ + 7κ + ) ( κ+ 1)( κ + )(κ + ) = = Άρα η πρόταση ισχύει για κάθε θετικό ακέραιο ν ΠΑΡΑ ΕΙΓΜΑ Να αποδειχθεί ότι για κάθε θετικό ακέραιο ν ισχύει: v = (v 1)(v+ 1) v+ 1 (1) ΑΠΟ ΕΙΞΗ Για ν=1 η (1) γίνεται: = = πουαληθεύει Υποθέτουµε ότι η πρόταση ισχύει για ν=κ, δηλαδή: ΚΑΡΑΚΑΣΤΑΝΙΑΣ ΘΑΝΑΣΗΣ- ΜΑΘΗΜΑΤΙΚΟΣ ΙΩΛΚΟΥ 405 ΤΗΛ

2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ κ = () Θα δείξουµε ότι ισχύει και για (κ 1)(κ + 1) κ κ + 1 ν=κ+1, δηλαδή: = (κ 1)(κ + 1) (κ + 1)(κ + ) κ = (κ 1)(κ + 1) (κ + 1)(κ + ) Από την () κ 1 κ + κ + 1 ( κ + 1)(κ + 1) + = = = κ + 1 (κ + 1)(κ + ) (κ + 1)(κ + ) (κ + 1)(κ + ) κ + 1 κ + Άρα αληθεύει για κάθε ακέραιο θετικό ν ΑΣΚΗΣΕΙΣ 1 Να δειχθεί ότι: ν-1=ν, για κάθε ν N ν ( ν + 1)( ν + ) Να δειχθεί ότι: ν ( ν + 1) =, για κάθε ν N Να δειχθεί ότι: ν =( ν -1), για κάθε ν N 4 Να δειχθεί ότι: 1 ν ν ( ν + 1) =, 1 5 (ν 1)(ν + 1) (ν + 1) για κάθε ν N ν ( ν + 1)( ν + )( ν + ) 5 Να δειχθεί ότι: ν ( ν + 1)( ν + ) =, 4 για κάθε ν N ν ν+ 1 Να δειχθεί ότι: ν = + ( ν + 1), για κάθε ν N 5 ν + 1 ν ( ν + ) 7 Να δειχθεί ότι: =, 1 ν ( ν + 1) ( ν + 1) 8 Να δειχθεί ότι: (1+α)(1+α )(1+α 4 ) (1+α ν ν+ 1 α )= 1 α 0<α 1 ****************** 9 Να δειχθεί ότι, για κάθε ακέραιο θετικό ν, ισχύει: ν >ν ( 1) ν 10 Να δειχθεί ότι, για κάθε ακέραιο θετικό ν, ισχύει: > ν + 1 ν 11 Να δειχθεί ότι, για κάθε ακέραιο θετικό ν, ισχύει: 5 > 5ν 1 για κάθε ν N *, για κάθε ν N και 1 Να δειχθεί ότι, για κάθε ακέραιο θετικό ν, ισχύει: (α+β) ν >α ν +να ν-1 β µε α, β>0 ΚΑΡΑΚΑΣΤΑΝΙΑΣ ΘΑΝΑΣΗΣ- ΜΑΘΗΜΑΤΙΚΟΣ ΙΩΛΚΟΥ 405 ΤΗΛ

3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 4 1 Να δειχθεί ότι, για κάθε ακέραιο θετικό ν, Να δειχθεί ότι, για κάθε ακέραιο θετικό ν 4, ισχύει: ν!= ν 14 Να δειχθεί ότι, για κάθε ακέραιο θετικό ν>, ισχύει: ν ν+1 >(ν+1) ν Να δειχθεί ότι, για κάθε ακέραιο θετικό ν, ισχύει: ν ν ν 1 Να δειχθεί ότι, για κάθε ακέραιο θετικό ν, ισχύει: 17 Να δειχθεί ότι, για κάθε ακέραιο θετικό ν, ισχύει: ν ν ( ν ) > + + ν + 1 ν 1 1+ ν 18 Nα αποδείξετε ότι γα κάθε θετικό ακέραιο ν ισχύει: ηµ ( να) ν ηµα, α R 19 Να αποδείξετε ότι ο αριθµός των σηµείων τοµής ν ευθειών (ν ) ενός επιπέδου που τέµνονται ανά δύο και ανά τρεις δεν διέρχονται από το ίδιο σηµείο, είναι ν ν Α= ν ( ν ) 0 Να αποδείξετε ότι το πλήθος των διαγωνίων ενός ν-γώνου είναι ********************* ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΘΕΏΡΗΜΑ 1 Αν α και β φυσικοί αριθµοί µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι αριθµοί κ και υ, τέτοιοι, ώστε: α=κβ+υ, 0 υ<β ΘΕΏΡΗΜΑ Αν α και β ακέραιοι αριθµοί µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι αριθµοί κ και υ, τέτοιοι, ώστε: α=κβ+υ, 0 υ< β Παρατηρήσεις Αν ο διαιρέτης της ευκλείδειας διαίρεσης είναι το β=, τότε: α=κ+υ, υ=0 ή 1 Αν υ=0, τότε α= κ, κ Z και τότε α λέγεται άρτιος Αν υ=1, τότε α=κ+1, κ Z και τότε α λέγεται περιττός ηλαδή, κάθε ακέραιος αριθµός α µπορεί να είναι ή άρτιος ή περιττός δηλαδή θα έχει τη µορφή κ ή κ+1 Αν ο διαιρέτης της ευκλείδειας διαίρεσης είναι το β=, τότε: α=κ+υ, υ=0 ή 1 ή Αν υ=0, τότε α=κ, κ Z, αν υ=1, τότε α=κ+1, κ Z και αν υ=, τότε α=κ+, κ Z ηλαδή, κάθε ακέραιος αριθµός α µπορεί να πάρει τη µορφή κ ή κ+1 ή κ+, κ ακέραιος Γενικά, τα δυνατά υπόλοιπα του α µε τον β είναι 0, 1,,,β-1 ΚΑΡΑΚΑΣΤΑΝΙΑΣ ΘΑΝΑΣΗΣ- ΜΑΘΗΜΑΤΙΚΟΣ ΙΩΛΚΟΥ 405 ΤΗΛ

4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 4 Μπορούν να χρησιµοποιηθούν χωρίς απόδειξη στις ασκήσεις οι εξής προτάσεις: α) Το γινόµενο δύο διαδοχικών ακέραιων είναι άρτιος αριθµός β) Το τετράγωνο κάθε περιττού ακέραιου είναι της µορφής 8λ+1, λ ακέραιος ΠΑΡΑ ΕΙΓΜΑ 1 ( ) ( ) α + α+ 1 + α+ Να αποδείξετε ότι για κάθε ακέραιο α, η παράσταση Α= είναι ακέραιος αριθµός Έστω ότι α=κ ή κ+1 ή κ+, κ Z Αν α=κ η παράσταση Α γίνεται : Α= ( κ ) + ( κ + 1 ) + ( κ + ) ( κ κ κ ) 81κ + 81κ + κ = = 7κ + 7κ + 11κ + Z Αν α=κ+1 η παράσταση Α γίνεται: Α= ( κ + 1 ) + ( κ + ) + ( κ + ) = ( κ κ κ ) 81κ + 1κ + 1κ = = = 7κ + 54κ + 4κ + 1 Z Αν α=κ+ η παράσταση Α γίνεται: Α= ( κ + ) + ( κ + ) + ( κ + 4 ) = ( κ κ κ ) 81κ + 4κ + 1κ = = = 7κ + 81κ + 87κ + Z Άρα Α Z για κάθε α Z = ΠΑΡΑ ΕΙΓΜΑ Να βρείτε για ποιες τιµές του ακέραιου κ, ο αριθµός 5 κ + 4 είναι ακέραιος Ο κ παίρνει τη µορφή κ=λ+υ, υ=0, 1, Άρα: 5κ + 4 5( λ + υ) λ+ 5υ + 4 5υ + 4 = = = 5 λ+ Παίρνουµε τις εξής περιπτώσεις: Αν υ=0, 5 υ+ 4 4 = Z Αν υ=1, 5 υ+ 4 9 = = Z ΚΑΡΑΚΑΣΤΑΝΙΑΣ ΘΑΝΑΣΗΣ- ΜΑΘΗΜΑΤΙΚΟΣ ΙΩΛΚΟΥ 405 ΤΗΛ

5 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 4 Αν υ=, 5 υ = Z ηλαδή ο αριθµός αυτός είναι ακέραιος, µόνον όταν κ=λ+1, λ Z ΑΣΚΗΣΕΙΣ 1Να βρείτε το υπόλοιπο και το πηλίκο σε κάθε µια από τις διαιρέσεις : α) 45:, β) 5: (-), γ) 81: (-1), δ) 45: (-) Να αποδείξετε ότι: α) Το τετράγωνο κάθε ακέραιου παίρνει τη µορφή: α =4κ ή α =4κ+1, κ Z β) κάθε ακέραιος αριθµός της µορφής α=8κ+7, κ Z µπορεί να πάρει τη µορφή α=4λ+, λ Z Να αποδείξετε ότι το τετράγωνο κάθε ακέραιου παίρνει τη µορφή α =κ ή α κ+1, κ Z 4Να αποδείξετε ότι το άθροισµα και η διαφορά των τετραγώνων δύο διαδοχικών ακέραιων είναι περιττός αριθµός 5Να αποδείξετε ότι η διαφορά των κύβων δύο διαδοχικών περιττών αριθµών είναι άρτιος αριθµός Να αποδείξετε ότι για κάθε ακέραιο θετικό ν, ο ν +ν είναι άρτιος αριθµός 7Να αποδείξετε ότι για κάθε ν N, ο ακέραιος (ν +)ν είναι πολλαπλάσιο του 8Να αποδείξετε ότι ο αριθµός Α=(7κ+)(5κ-1), κ Z, είναι άρτιος 9Να βρεθούν οι θετικοί ακέραιοι α οι οποίοι, όταν διαιρεθούν µε το 4, δίνουν πηλίκο ίσο µε το υπόλοιπο 10 Να βρεθούν οι θετικοί ακέραιοι α οι οποίοι, όταν διαιρεθούν µε το 4, δίνουν πηλίκο τριπλάσιο του υπολοίπου 11 Αν α ακέραιος αριθµός, να αποδείξετε ότι το υπόλοιπο της διαίρεσης του α µε το 5, είναι 0 ή 1 ή 4 1 Να βρείτε τους ακέραιους αριθµούς για τους οποίους, η διαίρεσή τους µε τον 49, δίνει πηλίκο κ και υπόλοιπο κ, κ Z 1 Έστω α και β ακέραιοι αριθµοί µε α > β καια = κβ + υ, 0 υ < β Αν α+β=970, κ=8 και υ=4, να βρείτε τους α και β ΚΑΡΑΚΑΣΤΑΝΙΑΣ ΘΑΝΑΣΗΣ- ΜΑΘΗΜΑΤΙΚΟΣ ΙΩΛΚΟΥ 405 ΤΗΛ

6 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 4 ( ) ( ) α α+ 1 + α Αν α άρτιος αριθµός, να αποδείξετε ότι ο Α= 1 ακέραιος είναι 15 Να αποδείξετε ότι γα κάθε ακέραιο αριθµό α, ο αριθµός ( ) ( ) a + a+ 1 + a+ Α= είναι ακέραιος 1 Να βρείτε για ποιες τιµές του κ Z, είναι ακέραιοι οι αριθµοί: α) κ +, β ) 5 κ, γ ) 4κ ΙΑΙΡΕΤΟΤΗΤΑ Τέλεια λέγεται η διαίρεση κατά την οποία το υπόλοιπο είναι 0 Αυτή η περίπτωση µελετάται χωριστά γιατί παρουσιάζει ιδιαίτερο ενδιαφέρον Ορισµός Έστω α, β δύο ακέραιοι µε β 0 Θα λέµε ότι ο β διαιρεί τον α και θα γράφουµε βα, όταν η διαίρεση του β µε τον α είναι τέλεια, δηλαδή όταν υπάρχει ακέραιος κ, τέτοιος, ώστε α=κβ Όταν β α, λέµε ότι ο β είναι διαιρέτης του α ή παράγοντας του α ή ακόµα ότι ο α είναι πολλαπλάσιο του β και γράφουµε α=πολβ Θα λέµε ότι ο β δεν διαιρεί τον α, όταν η διαίρεση του α µε τον β δεν είναι τέλεια Τότε θα γράφουµε ότι: α /β ή α πολβ Οι διαιρέτες ενός ακέραιου αριθµού εµφανίζονται πάντα κατά ζεύγη ακέραιων ηλαδή αν β α τότε και -β α γιατί αν α=κβ τότε α=(-κ)(-β) Άµεσες συνέπειες του ορισµού που δώσαµε προηγουµένως είναι και τα εξής: ± 1 α και ± α α για κάθε α Z β 0, για κάθε β Z Αν β α τότε και κβ κα, για κάθε κ Z ΘΕΩΡΗΜΑ ΙΑΙΡΕΤΟΤΗΤΑΣ Έστω α, β, γ ακέραιοι Ισχύουν οι παρακάτω ιδιότητες: i) Αν α β και β α, τότε α=β ή ;=-β ii) Αν α β και β γ, τότε α γ iii) Αν α β, τότε α λβ για κάθε ακέραιο λ iv) Αν α β και α γ, τότε α (β+γ) v) Αν α β και β 0, τότε α β ΑΠΟ ΕΙΞΗ i) Επειδή α β και β α, υπάρχουν ακέραιοι κ και λ, τέτοιοι, ώστε β=κα και α=λβ άρα α=κλα κλ=1 κ=λ=1 ή κ=λ=-1, οπότε α=β ή α=-β ΚΑΡΑΚΑΣΤΑΝΙΑΣ ΘΑΝΑΣΗΣ- ΜΑΘΗΜΑΤΙΚΟΣ ΙΩΛΚΟΥ 405 ΤΗΛ

7 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 4 ii) Επειδή α β και β γ, υπάρχουν ακέραιοι κ και λ, τέτοιοι, ώστε β=κα και γ=λβ Άρα γ=λκα που σηµαίνει ότι α γ iii) Επειδή α β υπάρχει ακέραιος κ, τέτοιος, ώστε β=κα οπότε λβ=λκα που σηµαίνει ότι α λβ για κάθε ακέραιο λ iv) Επειδή α β και α γ, υπάρχουν ακέραιοι κ και λ, τέτοιοι, ώστε β=κα και γ=λα Άρα β+γ=(κ+λ)α που σηµαίνει ότι α (β+γ) v) Επειδή α β και β 0, υπάρχει ακέραιος κ 0 µε β=κα Εποµένως, β = κ α α, γιατί κ 1 Παρατηρήσεις Με συνδυασµό των ιδιοτήτων iii) και iv) του παραπάνω θεωρήµατος προκύπτει ότι: Αν α β και α γ, τότε: α (κβ+λγ) για όλους τους ακέραιους κ και λ Ο ακέραιος κβ+λγ λέγεται γραµµικός συνδυασµός των β και γ ΠΑΡΑ ΕΙΓΜΑ 1 Αν α, β ακέραιοι τέτοιοι ώστε β (α+5) και β (α+), να βρεθούν οι τιµές που παίρνει ο β Επειδή ο β διαιρεί τους αριθµούς α+5 και α+ σύµφωνα µε την προηγούµενη παρατήρηση θα διαιρεί και κάθε γραµµικό τους συνδυασµό Για να βρεθεί ο β, πρέπει να βρεθεί ένας κατάλληλος γραµµικός συνδυασµός, τέτοιος, ώστε να απαλείφεται το α και να µένει κάποιος ακέραιος Εδώ, ο κατάλληλος συνδυασµός είναι ο (α+5)-(α+ )=11 Άρα ο α διαιρεί τον αριθµό 11, εποµένως β=± 1 ή β=± 11 (Μέθοδος: σε ασκήσεις αυτής της µορφής, θα πολλαπλασιάζουµε τους ακέραιους που διαιρούνται µε τον β µε κατάλληλους ακέραιους αριθµούς, ώστε ο γραµµικός συνδυασµός που θα προκύπτει, να µας δίνει ακέραιο ανεξάρτητο του α ) ΠΑΡΑ ΕΙΓΜΑ Αν α, β ακέραιοι, τέτοιοι, ώστε 11 (α+8) και 11 (19-β), να αποδείξετε ότι 11 (α+β) Επειδή 11 (α+8) και 11 (19-β), υπάρχουν ακέραιοι κ και λ τέτοιοι, ώστε: α+ 8= 11κ α = 11κ 8 α+ β = 11( κ λ) + 11 α+ β = 11( κ λ+ 1) 19 β = 11λ β = 19 11λ Εποµένως το 11 διαιρεί το α+β ΚΑΡΑΚΑΣΤΑΝΙΑΣ ΘΑΝΑΣΗΣ- ΜΑΘΗΜΑΤΙΚΟΣ ΙΩΛΚΟΥ 405 ΤΗΛ

8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 4 ΠΑΡΑ ΕΙΓΜΑ Να βρείτε τις τιµές του ακέραιου α για τις οποίες ο αριθµός 4α 1 α 1 είναι ακέραιος Κάνουµε τη διαίρεση του 4α -1 µε το α -1 και βρίσκουµε: 4α -1=(α -1) 4+ άρα 4α 1 4 = + Εποµένως αρκεί α -1 α 1 α 1 Οι διαιρέτες του είναι οι αριθµοί +1, -1, +, - ηλαδή πρέπει α -1=1 ή 1 ή ή Αν α -1=1 α = άτοπο γιατί α Z Αν α -1=-1 α =0 α=0 Αν α -1= α =4 α= ή Αν α -1= - α = - άτοπο Άρα α=0 ή ή ΠΑΡΑ ΕΙΓΜΑ 4 Να αποδείξετε ότι 7 ν+1 -ν-7=πολ, για κάθε ν N Την πρόταση αυτή θα την αποδείξουµε µε την µέθοδο της µαθηµατικής επαγωγής Για ν=1 η πρόταση γίνεται: 7 --7= που ισχύει Έστω ότι ισχύει γα ν=κ: 7 κ+1 -κ-7=λ η οποία γίνεται: 7 κ+1 =λ+κ+7 (1) Θα δείξουµε ότι ισχύει και για ν=κ+1 δηλαδή: 7 κ+ -(κ+1)-7=πολ Έχουµε: 7 κ+ -(κ+1)-7=7 7 κ+1 -κ--7 (1) = 7 ( λ+ κ + 7) κ 1= + + = ( ) 7 λ 4κ 49 κ 1 Άρα η πρόταση ισχύει για κάθε ν N 7 λ+ κ + = 7λ+ κ + 1 = πολ ΑΣΚΗΣΕΙΣ 1 Αν α, β, γ ακέραιοι αριθµοί µε α 0 να αποδείξετε ότι α γ για του οποίους ισχύει: α ( β + γ ) και α β, Αν α, β ακέραιοι µε βα και β >, να αποδείξετε ότι: β / (α+) Να αποδείξετε ότι τι γινόµενο τριών διαδοχικών ακεραίων διαιρείται µε το α( α+ 1) 4α + 14 Κατόπιν, να αποδείξετε ότι ( ) 4 Να βρείτε όλους τους ακέραιους οι οποίοι έχουν την ιδιότητα: όταν διαιρεθούν µε το 1, έχουν υπόλοιπο, ενώ, όταν διαιρεθούν µε το 7, έχουν υπόλοιπο ΚΑΡΑΚΑΣΤΑΝΙΑΣ ΘΑΝΑΣΗΣ- ΜΑΘΗΜΑΤΙΚΟΣ ΙΩΛΚΟΥ 405 ΤΗΛ

9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 4 5 Να αποδείξετε ότι αν α, β, γ Z, ισχύει: β γ αν β α και α γ τότε ( ),, ( 1) 1 Να αποδείξετε ότι ο ν -1 διαιρείται µε το 15, αν ν=πολ4 7 Να αποδείξετε ότι: ν+1 + ν+ =πολ7, για κάθε ν N ν+ 1 ν Να αποδείξετε ότι 11 ( 4 + ), για κάθε ν N + 7 4, να αποδείξετε ότι 7 17 αβ, α, β Z 9 Αν 7( α β) και ( α β) 10 Αν 7( α+ ) και ( β) να αποδείξετε ότι ( α β) 7 5, 7 11 Έστω α, β, γ Z Να αποδείξετε ότι: α) αν α ( β + γ) και α β, τότε : α γ β) αν 5( α+ 1) και 5( 18 β), τότε 5 ( α+ β) γ) αν ( α+ ) και ( + β) τότε ( α + β) δ) αν 4( α+ 1) και 4( 8 + β), τότε : 4 ( α β) , : 5 1 Να βρείτε τις τιµές του θετικού ακέραιου α για τις οποίες ο αριθµός α + 1 είναι ακέραιος 1 Να βρείτε τις τιµές του ακέραιου α για τις οποίες ο αριθµός α+ 4 είναι α+ 1 ακέραιος 14 Αν α, β ακέραιοι µε α β και α ( β ) να πάρει ο α (5 ) + 8, να βρείτε τις τιµές που µπορεί 15 Να αποδείξετε ότι: α) το άθροισµα τριών διαδοχικών ακέραιων, διαιρείται µε το β) το άθροισµα πέντε διαδοχικών ακέραιων, διαιρείται µε το 5 γ) το άθροισµα τεσσάρων διαδοχικών ακέραιων, δεν διαιρείται µε το 4 1 α) Να βρείτε τις τιµές του α Z για τις οποίες ισχύει: 4α και α 7 β) Αν α * Z, τέτοιος, ώστε: α και ( ) i) ( a+ 1), ii) ( 4α+ 1) α + 1, να αποδείξετε ότι: Για ποιους ακέραιους α ισχύουν οι παραπάνω σχέσεις; **************** ********** **** * ΚΑΡΑΚΑΣΤΑΝΙΑΣ ΘΑΝΑΣΗΣ- ΜΑΘΗΜΑΤΙΚΟΣ ΙΩΛΚΟΥ 405 ΤΗΛ

10 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 4 ΚΑΡΑΚΑΣΤΑΝΙΑΣ ΘΑΝΑΣΗΣ- ΜΑΘΗΜΑΤΙΚΟΣ ΙΩΛΚΟΥ 405 ΤΗΛ

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ 1 4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ 1. Θεώρηµα Αν α, β ακέραιοι µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι κ και υ, έτσι ώστε α = κβ + υ µε 0 υ < β. 2. Τέλεια διαίρεση Αν το υπόλοιπο υ της Ευκλείδειας

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Να γνωρίζει: την αποδεικτική μέθοδο της μαθηματικής επαγωγής για την οποία πρέπει να γίνει κατανοητό ότι η αλήθεια

Διαβάστε περισσότερα

(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ

(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ ΙΑΙΡΕΤΟΤΗΤΑ Ορισµός: Λέµε ότι ο ακέραιος β 0διαιρεί το ακέραιο α και γράφουµε β/α, ότα η διαίρεση του α µε το β είαι τέλεια, δηλαδή υπάρχει κ Z τέτοιος ώστε α = κ β. Συµβολίζουµε ότι α = πολβ. Α ο β δε

Διαβάστε περισσότερα

Πολυώνυµα - Πολυωνυµικές εξισώσεις

Πολυώνυµα - Πολυωνυµικές εξισώσεις 4 ΚΕΦΑΛΑΙΟ Πολυώνυµα - Πολυωνυµικές εξισώσεις Ορισµός πολυωνύµου Ονοµάζoυµε ΠΟΛΥΩΝΥΜΟ του κάθε παράσταση της µορφής α ν ν +α ν- ν- + +α +α 0, ν ΙΝ και α 0, α,, α ν-, α ν ΙR. Παρατηρήσεις α. Τα α ν ν, α

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 234 Κεφάλαιο 4ο: ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Απαντήσεις στις ερωτήσεις «Σωστό - Λάθος» 1. Λ 17. Σ 32. Σ 47. Σ 62. Σ 2. Σ 18. Σ 33. Λ 48. Λ 63. Σ 3. Λ 19. Λ 34. Σ 49. Σ 64. Λ 4.

Διαβάστε περισσότερα

1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. Σ Λ 2. * Οι αριθμοί 2ν και 2ν + 2 είναι διαδοχικοί άρτιοι για κάθε ν Ν.

1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. Σ Λ 2. * Οι αριθμοί 2ν και 2ν + 2 είναι διαδοχικοί άρτιοι για κάθε ν Ν. Κεφάλαιο 4ο: ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ερωτήσεις του τύπου «Σωστό-Λάθος» ν 1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. 3 Σ Λ. * Οι αριθμοί ν και ν + είναι διαδοχικοί άρτιοι για κάθε ν Ν. 3. * Αν ένας

Διαβάστε περισσότερα

1. Να σημειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισμούς :

1. Να σημειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισμούς : ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ 1. Να σημειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισμούς : 1. Αν μια πρόταση Ρ(ν) αληθής για ν = 3 και με την υπόθεση ότι Ρ(ν) είναι αληθής αποδείξουμε ότι και η Ρ(ν+1)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΕΙΣ. 1. Η μέθοδος της μαθηματικής επαγωγής αποτελείται από δυο βήματα :

ΠΑΡΑΤΗΡΗΣΕΙΣ. 1. Η μέθοδος της μαθηματικής επαγωγής αποτελείται από δυο βήματα : ΠΑΡΑΤΗΡΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ 1. Η μέθοδος της μαθηματικής επαγωγής αποτελείται από δυο βήματα : Βήμα 1 ο : Δείχνουμε ότι η πρόταση Ρ( ν ) είναι αληθής για το μικρότερο φυσικό για τον οποίο ζητείται

Διαβάστε περισσότερα

4.3 ΔΙΑΙΡΕΤΟΤΗΤΑ. Εισαγωγή

4.3 ΔΙΑΙΡΕΤΟΤΗΤΑ. Εισαγωγή 49 43 ΔΙΑΙΡΕΤΟΤΗΤΑ Εισαγωγή Στα Στοιχεία του Ευκλείδη, βιβλία VII, VIII και IX (περίπου 300 πχ), οι θετικοί ακέραιοι παριστάοται ως ευθύγραμμα τμήματα και η έοια της διαιρετότητας συδέεται άμεσα με τη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x

Διαβάστε περισσότερα

ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ( ) Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει : ! + 2 2! + 3 3! + +ν ν! = (ν + 1)!

ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ( ) Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει : ! + 2 2! + 3 3! + +ν ν! = (ν + 1)! ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ 1. Να αποδείξετε ότι για κάθε θετικό ακέραιο ισχύει : 1 + 1 1! +! +! + +! = ( + 1)!. Να αποδείξτε ότι 6 10 [ ( 1) ] = ( + 1) ( + ) ( + ) (), για κάθε θετικό ακέραιο.. Να αποδείξετε ότι

Διαβάστε περισσότερα

4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ ΣΧΟΛΙΑ ΜΕΘΟ ΟΙ

4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ ΣΧΟΛΙΑ ΜΕΘΟ ΟΙ .1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ 1. Αρχή της Μαθηµατιής Επαγωγής Έστω ισχυρισµός Ρ(ν), όπου ν θετιός αέραιος. Αν i) Ρ αληθής αι ii) Ρ(ν) Ρ(ν + 1) για άθε ν, τότε Ρ(ν) αληθής για άθε ν.. Ανισότητα Bernoulli

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ

ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΚΕΦΑΛΑΙΟ Διάνυσμα ορίζεται ένα ευθύγραμμο τμήμα στο οποίο έχει ορισθεί ποια είναι η αρχή, ή σημείο εφαρμογής του

Διαβάστε περισσότερα

Ποιος νοµίζετε ότι θα είναι ο αριθµός των διαγωνίων ενός πολυγώνου µε ν πλευρές; Να αποδειχθεί η σχέση που συµπεράνατε µε µαθηµατική επαγωγή.

Ποιος νοµίζετε ότι θα είναι ο αριθµός των διαγωνίων ενός πολυγώνου µε ν πλευρές; Να αποδειχθεί η σχέση που συµπεράνατε µε µαθηµατική επαγωγή. Ερωτήσεις ανάπτυξης 1. * Παρατηρούµε ότι: 1 11 ( + = 1 ) 1+ = ( + 1) 1 3 33 ( + + + = 1 ) Ποιο νοµίζετε ότι θα είναι το άθροισµα 1 + + 3 +... + ν; Αποδείξτε την ισότητα που συµπεράνατε µε επαγωγή.. * Μετράµε

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

2.2 ιαίρεση Πολυωνύμων

2.2 ιαίρεση Πολυωνύμων . ιαίρεση Πολυωνύμων 1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Η διαίρεση δύο πολυωνύμων στηρίζεται στο παρακάτω θεώρημα: «Για κάθε ζεύγος Δ ( x) και δ ( x) με δ ( x)

Διαβάστε περισσότερα

1.4 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ

1.4 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ 1 4 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ Ισότητα Ευκλείδειας διαίρεσης : Αν, δ φυσικοί αριθµοί µε δ 0, τότε υπάρχουν δύο άλλοι φυσικοί αριθµοί π και υ έτσι ώστε να ισχύει = δ π + υ όπου υ < δ Η διαίρεση

Διαβάστε περισσότερα

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας.

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας. Επιπλέον Ασκήσεις Μαθηµατική Επαγωγή Για κάθε n 1: 2 = n(n + 1(2n + 1 6 Ορέστης Τελέλης telels@unpgr Για κάθε n 1: 3 = n2 (n + 1 2 4 Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Για κάθε n 10: 2 n

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 13 Οκτωβρίου 016 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Για ποιες τιµές του, αν υπάρχουν, ισχύει κάθε µία από τις ισότητες α. log = log( ) β. log = log γ. log 4 log = Να λυθεί η εξίσωση 4 log ( ) + = 0 6 α) Θα πρέπει > 0 και > 0,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt01b/nt01b.html Πέµπτη 1 Οκτωβρίου 01 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος Κεφάλαιο ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό

Διαβάστε περισσότερα

4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ. Εισαγωγή

4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ. Εισαγωγή 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 41 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ Εισαγωγή Η Θεωρία Αριθμών, δηλαδή η μελέτη των ιδιοτήτων των θετικών ακεραίων, έθεσε από πολύ νωρίς τους μαθηματικούς μπροστά στο εξής πρόβλημα: Κάποια πρόταση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoocom Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ

Διαβάστε περισσότερα

( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι:

( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι: ( x) Άρα το είναι ρίζα του P, οπότε το x είναι παράγοντάς του 4 Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x ) είναι: 3 π ( x) = x + x x + 3 Η ταυτότητα της προηγούμενης διαίρεσης είναι: 4 3 x 3x + 5x

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Διαιρετότητα Μαθαίνω Πολλαπλάσια ενός φυσικού αριθμού α είναι όλοι οι αριθμοί που προκύπτουν από τον πολλαπλασιασμό του με όλους τους φυσικούς αριθμούς, δηλαδή οι αριθμοί: 0, α, 2 α, 3 α, 4 α,... Το μηδέν

Διαβάστε περισσότερα

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:

. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet: Κεφάλαιο: Συναρτήσεις Γραφική παράσταση συνάρτησης Γράφημα μιας συνάρτησης ( ) ονομάζουμε το σύνολο των σημείων G( ) (, ( ) ) / A που είναι υποσύνολο του. Το γράφημα αυτό { } συνήθως παριστάνεται πάνω

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 12+ 7 = 19 Οι αριθμοί 12 και 7 ονομάζονται ενώ το 19 ονομάζεται.. 3+5 =, 5+3 =...

Διαβάστε περισσότερα

1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 1 1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΘΕΩΡΙΑ 1. Ταυτότητα Ευκλείδειας διαίρεσης : Για δύο οποιαδήποτε πολυώνυµα (x) και δ(x) µε δ(x) µπορούµε να βρούµε δύο άλλα πολυώνυµα π(x) και υ(x) τέτοια ώστε να ισχύει (x) = δ(x)π(x)

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Πολυώνυµα ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΠΟΛΥΩΝΥΜΑ ΑΚΕΡΑΙΑ ΠΟΛΥΩΝΥΜΑ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Ορισµός Ονοµάζουµε ακέραιο πολυώνυµο του x κάθε έκφραση της µορφής : α ν x ν + α ν-1 x ν-1 + α ν-2 x ν-2 + +α 1 x + α 0 όπου α ν, α ν-1, α ν-2,, α 1, α 0 C και

Διαβάστε περισσότερα

Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001

Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001 Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 00 Ζήτηµα ο Α.. Έστω α, β, γ ακέραιοι αριθµοί. Να δείξετε ότι ισχύουν οι επόµενες ιδιότητες: α. Αν α β, τότε α λβ για κάθε ακέραιο λ. β. Αν α β και α

Διαβάστε περισσότερα

4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ

4.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ 1.1 Η ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ ΘΕΩΡΙΑ 1. Αρχή της Μαθηµατιής Επαγωγής Έστω ισχυρισµός Ρ(), όπου θετιός αέραιος. Α (i) Ρ αληθής αι (ii) Ρ() Ρ( + 1) για άθε, τότε Ρ() αληθής για άθε.. Αισότητα Bernoulli (1 +α

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» 1 2.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ιδιότητες των πράξεων Στους πραγματικούς αριθμούς ορίστηκαν οι πράξεις της πρόσθεσης και του πολλαπλασιασμού και με την οήθειά τους η αφαίρεση και η διαίρεση. Για

Διαβάστε περισσότερα

K. Μυλωνάκης Αλγεβρα B Λυκείου

K. Μυλωνάκης Αλγεβρα B Λυκείου ΠΟΛΥΩΝΥΜΑ Ονομάζουμε μονώνυμο του x κάθε πραγματικό αριθμό ή κάθε παράσταση της μορφής αx ν, όπου α είναι πραγμ. αριθμός και ν ένας θετικός ακέραιος. Π.χ. οι παραστάσεις 2χ 4, -3χ 2, 7 είναι μονώνυμα του

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Επανάληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015b/nt015b.html Πέµπτη 1 Ιανουαρίου 016 Ασκηση 1. (1) Να λυθεί

Διαβάστε περισσότερα

2.2 ιαίρεση Πολυωνύμων

2.2 ιαίρεση Πολυωνύμων ιαίρεση Πολυωνύμων Ταυτότητα διαίρεσης Όπως στους ακέραιους αριθμούς, έτσι και στα πολυώνυμα ισχύει η ταυτότητα της διαίρεσης Πιο συγκεκριμένα ισχύει ότι: Για κάθε ζεύγος πολυωνύμων Δ ( ) και δ ( ), με

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ

ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ ΜΕ ΑΘΡΟΙΣΜΑΤΑ ΚΑΙ ΑΦΑΙΡΕΣΕΙΣ ( 1 ) Να υπολογίσετε τις παραστάσεις Α = 3 + 23 + 19 Β = 8 +13 +45-7 Γ = 3 + 0 Α = 3+23 +19 =

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 ιαιρετότητα και Ισοτιµίες Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης Στη µνήµη του δασκάλου µου, Χάρη Βαφειάδη... www.math.uoc.gr/

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

A. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

A. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Μάθηµα 1 Κεφάλαιο: Εισαγωγικό Θεµατικές Ενότητες: A. Το Λεξιλόγιο της Λογικής B. Σύνολα A. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Ορισµός Πρόταση λέµε κάθε φράση που µε βάση το νοηµατικό της περιεχόµενο µπορούµε να

Διαβάστε περισσότερα

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.

Διαβάστε περισσότερα

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου 4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή). 2. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της

Διαβάστε περισσότερα

Κεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2.

Κεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2. Κεφάλαιο 6 Πεπερασµένα παραγόµενες αβελιανές οµάδες Στο κεφάλαιο αυτό ϑα ταξινοµήσουµε τις πεπερασµένα παραγόµενες αβελιανές οµάδες. Αυτές οι οµάδες είναι από τις λίγες περιπτώσεις οµάδων µε µία συγκεκριµένη

Διαβάστε περισσότερα

f( x 1, x ( ) ( ) f x > f x. ( ) ( )

f( x 1, x ( ) ( ) f x > f x. ( ) ( ) MONOTONIA ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ I MONOTONIA ΣΥΝΑΡΤΗΣΕΩΝ ΘΕΩΡΙΑ Στο διπλανό σχήµα δίνεται η γραφική παράσταση µιας συνάρτησης f στο α,β Παρατηρούµε ότι διάστηµα [ ] καθώς αυξάνουν οι τιµές του

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) 2 Αν x = -4-7 και y = 7-4 να βρεθεί η τιµή της παράστασης Α = x + y - 2xy ( ) ( )

( ) ( ) ( ) ( ) ( ) 2 Αν x = -4-7 και y = 7-4 να βρεθεί η τιµή της παράστασης Α = x + y - 2xy ( ) ( ) Τηλ 106176-7 /10600 1 Να βρεθούν τα αναπτύγµατα : i i i x x x x x + x x x x + x 16x x + 9 x 16x x + 9 x 8 + 6 8 6 6 i i 6x + x 6x + 6x x + x 6 x + 6 x x + x 6x + 60x + x 6x + 60x + x 6 + + 6 6 6 i i Αν

Διαβάστε περισσότερα

3.2. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας

3.2. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας 3. Ασκήσεις σχολικού βιβλίου σελίδας 99 A Οµάδας. Να βρεθεί η εξίσωση της παραβολής που έχει κορυφή την αρχή των αξόνων και άξονα συµµετρίας τον άξονα σε καθεµιά από τις παρακάτω περιπτώσεις : (i) Όταν

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή Επαγωγή HY8- ιακριτά Μαθηµατικά Τρίτη, /03/06 Μαθηµατική Επαγωγή Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να αναγνωρίζει πότε μια αλγεβρική παράσταση της πραγματικής μεταβλητής x, είναι πολυώνυμο και να διακρίνει τα στοιχεία του: όροι, συντελεστές, σταθερός

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009

3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009 3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009 ιαιρετότητα και Ισοτιµίες Β και Γ Λυκείου Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Ιούλιος 2009 1 ιαιρετοτητα και Ισοτιµιες ΠΡΟΛΟΓΟΣ Το

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 ο. 2= p=q 2 p =2q

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 ο. 2= p=q 2 p =2q ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ ο. Υποθέτουµε ότι ο είναι ρητός. ηλαδή, υποθέτουµε p ότι υπάρχουν φυσικοί αριθµοί p και q τέτoιοι ώστε : =, p και q δεν έχουν q κοινούς διαιρέτες. Παρατηρούµε ότι ο άρτιος αριθµός.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. 2. ίνεται το Ρ(x) αν το ρ είναι ρίζα Ρ(2x) 2x τότε το ρ είναι ρίζα του Ρ( Ρ(2x)) 2x.

ΑΣΚΗΣΕΙΣ. 2. ίνεται το Ρ(x) αν το ρ είναι ρίζα Ρ(2x) 2x τότε το ρ είναι ρίζα του Ρ( Ρ(2x)) 2x. ΑΣΚΗΣΕΙΣ. ίνονται τα πολυώνυµα Ρ (x), Ρ (x), Ρ (x) αν τα πολυώνυµα Ρ (x) και Ρ (x) δεν έχουν κοινή ρίζα και ισχύει : ( Ρ (x)) + (Ρ (x)) = (Ρ (x)) για κάθε x R να δείξετε ότι το Ρ (x) δεν έχει πραγµατική

Διαβάστε περισσότερα

Κανόνες παραγώγισης ( )

Κανόνες παραγώγισης ( ) 66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ Κάθε εξίσωση της µορφής α + β = γ όπου α + β 0 ( α, β όχι συγχρόνως 0) παριστάνει ευθεία. (Η εξίσωση λέγεται : ΓΡΑΜΜΙΚΗ) ΕΙ ΙΚΑ γ Αν α = 0 και β 0έχουµε =. ηλαδή µορφή = c.

Διαβάστε περισσότερα

Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο. Ασκήσεις

Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο. Ασκήσεις Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο Σηµειώσεις Προετοιµασίας για Μαθηµατικούς ιαγωνισµούς Ασκήσεις Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Νοέµβριος 2012 1 Ασκησεις στη Θεωρια Αριθµων 1 Μαθηµατική

Διαβάστε περισσότερα

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία ΜΑΘΗΜΑ 5.. ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ Εφαπτοµένη ευθεία Παράγωγος βασικών συναρτήσεων ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Αθροίσµατος γινοµένου - πηλίκου Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Εξίσωση

Διαβάστε περισσότερα

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΛΟΓΙΚΗ Α Ψ Α Ψ viii) 9. Α Ψ ix) Α Ψ xi) Α Ψ xii) 0 0. Α Ψ xiii) Α Ψ xiv) Α Ψ xv)

ΑΣΚΗΣΕΙΣ ΣΤΗ ΛΟΓΙΚΗ Α Ψ Α Ψ viii) 9. Α Ψ ix) Α Ψ xi) Α Ψ xii) 0 0. Α Ψ xiii) Α Ψ xiv) Α Ψ xv) ΑΣΚΗΣΕΙΣ ΣΤΗ ΛΟΓΙΚΗ 1. Σε κάθε μία από τις παρακάτω προτάσεις να κυκλώσετε το γράμμα Α, αν θεωρείτε ότι ο ισχυρισμός που διατυπώνετε είναι αληθής, ενώ αν θεωρείτε ότι είναι ψευδής να κυκλώσετε το Ψ. Οι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab

Διαβάστε περισσότερα

Διάταξη Πραγματικών Αριθμών. Έστω α, β πραγματικοί αριθμοί. Τι σχέση μπορεί να έχουν αυτοί οι αριθμοί; Μπορεί, να είναι ίσοι: Να είναι άνισοι, δηλαδή:

Διάταξη Πραγματικών Αριθμών. Έστω α, β πραγματικοί αριθμοί. Τι σχέση μπορεί να έχουν αυτοί οι αριθμοί; Μπορεί, να είναι ίσοι: Να είναι άνισοι, δηλαδή: Διάταξη Πραγματικών Αριθμών Έστω α, β πραγματικοί αριθμοί. Τι σχέση μπορεί να έχουν αυτοί οι αριθμοί; Μπορεί, να είναι ίσοι: α=β ή Να είναι άνισοι, δηλαδή: Πρόσθεση πραγματικών αριθμών Αν α, β ομόσημοι

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 1 η δεκάδα θεµάτων επανάληψης 1. Α. Έστω α = (x 1, y 1 ) και β = (x, y ) δύο διανύσµατα Να γράψετε την αναλυτική έκφραση του εσωτερικού γινοµένου τους i Αν τα διανύσµατα δεν είναι παράλληλα προς τον

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου 4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή).. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της μορφής:

Διαβάστε περισσότερα

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Ορισμός Ευκλείδεια διαίρεση ονομάζεται η πράξη κατά την οποία ένας αριθμός

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ. ικανοποιούν την ανίσωση 2x 3 < 11; (E) µεταξύ των απαντήσεων Α D δεν υπάρχει

ΕΡΩΤΗΣΕΙΣ. ικανοποιούν την ανίσωση 2x 3 < 11; (E) µεταξύ των απαντήσεων Α D δεν υπάρχει ΕΡΩΤΗΣΕΙΣ. Αν α =β, τότε η τιµή της παράστασης κ= α β +β α είναι: ( ) 4 ( Β )0, ( )4 δίνονται. Α, C, ( D ), (Ε) δεν µπορεί να προσδιοριστεί από τις πληροφορίες που. Πόσα στοιχεία του συνόλου { 5,,0,4,6,7}

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ. ΚΕΦΑΛΑΙΟ 4ο ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ. ΚΕΦΑΛΑΙΟ 4ο ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4ο ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ 1 ΚΕΦΑΛΑΙΟ 4ο ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΟΛΥΩΝΥΜΑ 1. Τι καλούμε μονώνυμο, τι πολυώνυμο, τι όροι,τι συντελεστές

Διαβάστε περισσότερα

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,... 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν-1 +...+α

Διαβάστε περισσότερα

1.5. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας ( )

1.5. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας ( ) .5 Ασκήσεις σχολικού ιλίου σελίδας 47 50 A Oµάδας. Αν α (, 3) και (, 5), τότε Να ρείτε τα εσωτερικά γινόµενα α, (α ).(-3 ) και (α ). (3α + ) Να ρείτε τη σχέση που συνδέει τους κ, λ R, ώστε το εσωτερικό

Διαβάστε περισσότερα

4.2 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

4.2 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ . ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ Ασκήσεις σχολικού βιβλίου σελίδας 9 0 A Οµάδας.i) Να κάετε τη διαίρεση ( x + 6x 7x+ 0 ) : ( x+ ) και α γράψετε τη ταυτότητα της διαίρεσης. x + 6x 7x+ 0 x+ x 9x + + x + 9x 8x+ 0 + 8x+

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι _ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +

Διαβάστε περισσότερα

Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα. Copyright: Ξένος Θ., Eκδόσεις Zήτη, Απρίλιος 2010, Θεσσαλονίκη

Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα. Copyright: Ξένος Θ., Eκδόσεις Zήτη, Απρίλιος 2010, Θεσσαλονίκη Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Με το συγγραφέα επικοινωνείτε: Tηλ. 310.348.086, e-mail: thaasisxeos@yahoo.gr ISBN 978-960-456-08-4 Copyright: Ξένος Θ., Eκδόσεις Zήτη, Απρίλιος 010,

Διαβάστε περισσότερα

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ. Να βρείτε το πεδίο ορισµού των παρακάτω συναρτήσεων: ( = g( = + 4 h( = t( = 5 φ( = ln σ( = ln(ln p( = ln m( = λ R λ - λ - k( = ln 4 s( = ηµ. Να εξετάσετε αν για τις παραπάνω συναρτήσεις

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

4.2. ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

4.2. ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 4.. Η ταυτότητα της διαίρεσης A. Όπως στους ακέραιους αριθμούς, έτσι και στα πολυώνυμα ισχύει η ταυτότητα της διαίρεσης. Πιο συγκεκριμένα ισχύει ότι: Για κάθε ζεύγος πολυωνύμων Δ(x) και δ(x), με δ(x) 0

Διαβάστε περισσότερα

ΑΝΙΣΟΤΗΤΕΣ. Αν α-β>0 τότε α>β «Αν η διαφορά είναι θετικός αριθμός τότε ο πρώτος αριθμός δηλαδή το α είναι μεγαλύτερος από τον δεύτερο δηλαδή το β»

ΑΝΙΣΟΤΗΤΕΣ. Αν α-β>0 τότε α>β «Αν η διαφορά είναι θετικός αριθμός τότε ο πρώτος αριθμός δηλαδή το α είναι μεγαλύτερος από τον δεύτερο δηλαδή το β» ΑΝΙΣΟΤΗΤΕΣ Μεταξύ δύο πραγματικών αριθμών μεγαλύτερος είναι εκείνος που βρίσκεται πιο δεξιά στον άξονα των πραγματικών αριθμών. Αν θέλουμε να συγκρίνουμε δύο αριθμούς α και β βρίσκουμε τη διαφορά τους

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)

Διαβάστε περισσότερα

2.3 Πολυωνυμικές Εξισώσεις

2.3 Πολυωνυμικές Εξισώσεις . Πολυωνυμικές Εξισώσεις η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να λύσουμε μια πολυωνυμική εξίσωση.. Να λυθούν οι εξισώσεις: i. + + + 6 = 0 ii. 7 = iii. ( + ) + 7 = 0 iv. 8 + 56 = 0 i. + + + 6 = 0 (

Διαβάστε περισσότερα

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457. 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

Α. Οι Πραγματικοί Αριθμοί

Α. Οι Πραγματικοί Αριθμοί ΠΑΡΑΡΤΗΜΑ Α Οι Πραγματικοί Αριθμοί Α1 Να τοποθετήσετε σε φθίουσα σειρά τους αριθμούς: 01 0 15, 0 15,, 01 5 5 A Να υπολογίσετε τη τιμή της παράστασης 4 1 A Να ρεθού το πηλίκο και το υπόλοιπο της διαίρεσης

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο

Διαβάστε περισσότερα

1.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ

1.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ .5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΘΕΩΡΙΑ. Ταυτότητα : Λέγεται κάθε ισότητα που περιέχει µεταβλητές και αληθεύει για οποιεσδήποτε τιµές των µεταβλητών της.. Αξιοσηµείωτες ταυτότητες : Είναι ταυτότητες που χρησιµοποιούµε

Διαβάστε περισσότερα