Од јаве до сна - анестезија

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Од јаве до сна - анестезија"

Transcript

1 1. Aнестезија потиче од: Питања за електронски тест: Од јаве до сна - анестезија а) грчке речи ан естос б) латинске речи anaesthesia в) енглеске речи anesthesia г) не зна се тачно порекло речи 2. Анестезија потиче од грчке речи ν и αισθησία, ан естос што фигуративно значи : a) без осећаја б) без бола в) без будности г) без трауме 3. Анестезија је медицинска метода анестезиологије која се примењује приликом : а) оперативних захвата б) приликом дијагностике в) приликом интензивног лечења г) сви одговори су тачни 4. Анестетици су разне врсте лекова у : а) гасовитом б) течном в) или неком другом облику 5. Реч "анестезија" је године "сковао" и остао забележен у историји медицине лекар : а) Оливер Вендел Холмс б) Вилијам Мортон в) Крофорд Лонг г) Хорас Велс 6. Реч анестезија се први пут помиње у : а) Платоновим делима б) Хипократовим делима в) Теофрастовим делима г) ниједан одговор није тачан 7. Током оперативног захвата, први је применио анестезију : а) Крофорд Лонг б) Аугуст Бир в) Џејмс Т. Кловер г) Хорас Велс 8. Врсте анестезије : а) Општа б) Локална в) Комбинована

2 9. Општа анестезија се дели на : а) инхалациону б) интравенозну в) аналгоседирајућу г) ректалну 10. Локална анестезија се дели на : a) површинску б) регионалну в) инфилтрациону г) ректалну 11. Регионална анестезија се дели на : а) периферни блок б) централни блок в) интравенозна регионална анестезија 12. Централни блок анестезија се дели на : а) спиналну анестезију б) перидуралну анестезију в) епидуралну анестезију г) комбиновану спинално епидуралну анестезију 13. Нефармаколошка анестезија подразумева технике : а) хипнозе б) расхлађивање ткива уз помоћ леда в) кратких хипервентилација продубљеним и убрзаним дисањем г) сви нсведени одговори су тачни 14. Општа анестезија подразумева : а) потпуно одсуство свести(амнезија) б) потпуно одсуство бола (аналгезија) в) потпуну мишићну релаксацију 15. Који од наведених лекова пацијента уводе у анестезију изазивајући сан? а) Пропофол б) Тиопнтал в) Дормикум г) Мепедрин ( заокружи тачне одговоре) 16. Који од наведених лекова одржавају потребан ниво анестезије? а) Десфлуран б) Севофлуран в) Изофлуран г) Сукцинилхолин

3 17. Који од наведених лекова је инхалациони гас? a) Халотан б) Азот оксидул в) Изофлуран г) Севофлуран 18. Који од наведених лекова су испарљиве течности? а) Азот оксидул б) Десфлуран в) Халотан г) Изофлуран 19. Који од наведених лекова делују паралитички тј. служе за опуштање мускулатуре(миорелаксанси)? а) Хидроморфин б) Рокуронијум в) Сукцинилхолин г) Фентанил 20. Који од наведених лекова изазивају аналгезију(сузбијају бол)? а) Фентанил б) Векуронијум в) Морфин г) Мепедрин 21. Поред примене најсавременијих лекова и метода анестезије понекад : а) није могуће елиминисати неке нежељене ефекте б) могуће је елиминисати нежељене ефекте в) није могуће елиминисати бол г) није могуће елиминисати мучнину (заокружи тачан одговор) 22. Процена и припрема за анестезију: 1) Психолошка припрема, Анамнеза 2) Физикални преглед 3) Лабораторија, Потписана сагласност 4) Фастинг, Код хитних процедура проценити risk/benefit однос 23. Главне смернице које анестезиолога руководе при одлучивању о врсти анестезије су : 1) Врста и локализација болести 2) Врста и трајање оперативног захвата 3) Здравствено стање и претходне болести болесника 4) Лекови које употребљава

4 24. На темељу општег здравственог стања болесника може се проценити операцијски ризик, односно извршити класификација болесника према његовом општем стању према АСА класификацији(аса групе) : 1) АСА 1 морибудни пацијенти 2) АСА 2 прихватљив операцијски ризик 3) АСА 3 Неприхватљив операцијски ризик 4) АСА 4 велики или висок операцијски ризик 5) АСА 5 мали операцијски ризик (заокружи тачан одговор) 25. Повећан ризик од опште анестезије бележи се код особа са : 1) Обољењима бубрега 2) Обољењима срца 3) Обољењима плућа 4) Узимање антикоагуланаса 26. Учесталост компликација током опште анестезије у односу на број извшених анестезија је око 9%, а најучесталије су : 1) Недовољна вентилација плућа, инфекције плућа 2) Хипотензија, аритмије, срчани и мождани удар 3) Повреде нерава 4) Дејства анестетика и других лекова 27. Комликације настају код : 1) Хитних и дуготрајних захвата 2) Гојазних болесника 3) Болесника у поодмаклој животној доби 4) Анестезије породиља 28. Узроци компликација могу бити : 1) Људска грешка(несавестан рад или лоша обученост) 2) Лош мониторинг виталних параметара 3) Неисправна опрема 4) Лоша организација рада 29. Умерена доза страха од губитка свести током анестезије захтева : 1) добру премедикацију 2) емпатичан став према пацијенту 3) психолошку припрему од стране лекара 4) сви наведени одговори су тачни 30. Према начину уноса анестетика општа анестезија се дели на : 1) Инхалациону 2) Интравенозну 3) Ректалну 4) Спиналну

5 31. Инхалациона анестезија се постиже и одржава путем : 1) ендотрахеалног тубуса 2) маске за лице 3) ларингеалне маске 4) само путем ендотрахеалног тубуса 32. Добре стране инхалационе анестезије су : 1) Дејство анестезије наступа брзо 2) Дубина анестезије је дозирана 3) Лако одржавање и контрола анестезије 4) Брзо буђење болесника из анестезије 33. Недостаци инхалационе анестезије су : 1) Надражај дисајних путева уз нагон на кашаљ, пролазни бол у грлу 2) Могуће задесне ситуације приликом интубације 3) Повраћање и аспирација желудачног сдржаја 4) Само уз аналгетике и релакснте је потпуно адекватна 34. Интравенозна анестезија се користи : 1) За увод у инхалациону анестезију 2) За одржавање анестезије током операције 3) Код краткотрајних оперативних завата, репозиције одређених коштаних структура 4) Инвазивне дијагностике 35. Слаба контрола анестетика чија судбина зависи од индивидуалне способности организма за његову разградњу и елиминацију је : 1) Споредни недостатак ове методе анестезије 2) Главни недостатак ове методе анестезије 3) Није један од недостатака ове методе анестезије 4) Је један од недостатака ове методе, али не и главни 36. Ректална анестезија се : 1) најчешће примењује и то угвнам код мале деце 2) најређе примењујеи то углавном код мале деце 3) најређе примењује код одраслих 4) примењује кад нису могуће друге врсте анестезије 37. Локална анестезија је поступак који изазива неосетљивост на бол одређеног дела тела : 1) Ињектирањем аналгетика 2) Ињектирањем анестетика 3) Искључиво ињектирањем аналгетика у предео одређеног дела тела 4) Искључиво интрамускуларно, никада интравенозно 38. Према начину примене анестетика локална анестезија се дели на : 1) Површинску анестезију 2) Инфилтрациону анестезију 3) Регионалну анестезију 4) Сви наведени одговори су тачни

6 39. Површинска анестезија се постиже : 1) Ињектирањем анестетика интракутано 2) Ињектирањем анестетика субкутано 3) Ињектирањем анестетика интрамускуларно 4) Применом анестетика у облику капи, спреја или масти на површину телa 40. Код инфилтрационе анестезије анестетик се ињектује : 1) На место оперативног поља 2) Око места оперативног поља 3) На место и око места оперативог поља на потребну дубину зависно од оперативне технике и мањих оперативнихнзахвата 4) Код ингвиналних кила где је контраиндикована друга врста анестезије 41. Код регионалне анестезије анестетик се апликује у близини нерва или кичмене мождине ради постизања неосетљивости на бол (блокаде) једне веће регије на телу и дели се на : 1) Централни блок 2) Периферни блок 3) Регионална интравенска анестезија 4) Сви наведени одговори су тачни 42. Централни блок је врста анестезије код које се анестетик апликује у простор око кичмене мождине, а деловање анестетика траје : 1) 2 сата 2) 3 сата 3) 4 сата 4) 2 4 сата 43. Спинална анестезија је анестезиолошка тахника где се анестетик апликује у простор око кичмене мождине и може се применити на готово све захвате на : 1) Ногама 2) Куковима 3) Карлици 4) Доњем делу трбуха(укључујући и царски рез) 44. Недостатак спиналне анестезије је : 1) Мучнина 2) Бол током опертивног захвата 3) Постоперативна амнезија 4) Строго мировање и лежање на равном 24 сата 45. Епидурална анестезија је анестезиолошка техника, приликом које може да се пласира епидурални катетер преко кога се анестетик апликује у епидурални просторпри чему се обезбеђује дуготрајнија анестезија, и користи се код : 1) Оперативних захвата на ногама, карлици и доњем делу трбуха 2) Грудном кошу и плућима 3) Трајног уклањања бола код болесника са малигном болешћу 4) Безболног порођаја применом нижих концетрација анестетика ради очувања мишићне снаге

7 46. Индикације за епидуралну анестезију приликом порођајаосим искључивања бола су : 1) Некоординисани трудови се мењају у коордисане 2) Преекламсија и екламсија 3) Болести срца и дисајних органа и др. 4) Сви наведени одговори су тачни 47. Периферни блок је анестезиолошка тахника приликом које се анестетик апликује у близини нерва или нервног снопа којом се анестезирају мање регије телаза оперативне захвате на : 1) Подручју шаке 2) Рукама 3) Ногама и стопалима 4) Раменима 48. Интравенозна регионална анестезија је анестезиолошка техника која се користи за интервенције на : 1) Рукама 2) Ногама 3) Доњем делу абдомена 4) Сви одговори су тачни 49. У професионални рад медицинских сестара/техничара, анестетичара уводи се реч мониторинг који води порекло од латинског глагола moneo-re и означава : да упозори, да сведочи, да скрене пажњу или пак од латинске именице monitor која означава сведока или опомињача.енглескозначење речи monitoring би било: надгледање, контролисање, који им помажу у обављању свакодневних дужности преме пацијентима, па се : 1) Пацијенту обезбеђује већа сигурност 2) Медицинска сестра/техничар - анестетичар 鞀 К ослања само на праћење мониторинга 3) Медицинској сетри/анестетичару умногоме олакшава рад 4) Medicinska sestra/анестетичар-profesionalac ne sme da se oslanjanja samo na nove tehnologije i zaboravi na svoja čula i posmatranje, logičko razmišljanje i povezivanje činjenica. (заокружи нетачан одговор) 50. Дефиниција профила медицинске сестре/техничара анестетичара је да : 1) Пружа негу и изводи процедуре у анестезиолошким услугама за пацијенте којима се изводи анестезија 2) Пружа негу и изводи процедуре у анестезиолошким услугама за пацијенте којима се изводи анестезија,респиреторна потпора, реанимационе мере 3) Пружа негу и изводи процедуре у анестезиолошким услугама за пацијенте којима се изводи анестезија,респиреторна потпора, реанимационе мере,неговања илечења болесника 4) Медицинска сестра/техничар - аранестетичар пружа негу и учествује у нези, као делу напредног специјализованог сестринства, и изводи процедуре у анестезиолошким услугама за пацијенте над којима се изводи анестезија, респираторна потпора, реанимационе мере, као и друге услуге везане за хитна стања и поступке одржавања живота. Напредно сестринство и анестезиолошке услуге укључују примену широког спектра знања у пракси везано за извођење процедура неговања и лечења болесника и његове породице. (заокружи тачан одговор) Анестезија није сан (како се то погрешно сматра) него свеопшти губитак свести и функција мозга, стање врло слично коми. Анестезија је најопаснији медицински захват који се може применити, јер свака непажња (чак и код врло баналне операције) може резултовати фаталним последицама.

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm 1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА . колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу

Διαβάστε περισσότερα

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ

Διαβάστε περισσότερα

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5 ШЕСТА ГОДИНА СТУДИЈА школска 2016/2017. Предмет: ЗАВРШНИ РАД Предмет се вреднује са 6 ЕСПБ. НАСТАВНИЦИ И САРАДНИЦИ: РБ Име и презиме Email адреса звање 1. Јасмина Кнежевић

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 017/018. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

ГРАДСКИ ЗАВОД ЗА ЈАВНО ЗДРАВЉЕ Б Е О Г Р А Д АНАЛИЗА ЗАДОВОЉСТВА КОРИСНИКА БОЛНИЧКОМ ЗДРАВСТВЕНОМ ЗАШТИТОМ У БЕОГРАДУ У 2012.

ГРАДСКИ ЗАВОД ЗА ЈАВНО ЗДРАВЉЕ Б Е О Г Р А Д АНАЛИЗА ЗАДОВОЉСТВА КОРИСНИКА БОЛНИЧКОМ ЗДРАВСТВЕНОМ ЗАШТИТОМ У БЕОГРАДУ У 2012. ГРАДСКИ ЗАВОД ЗА ЈАВНО ЗДРАВЉЕ Б Е О Г Р А Д АНАЛИЗА ЗАДОВОЉСТВА КОРИСНИКА БОЛНИЧКОМ ЗДРАВСТВЕНОМ ЗАШТИТОМ У БЕОГРАДУ У 212. ГОДИНИ Београд, јануар 213. године Наручилац задатка: Министарство здравља Републике

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

Количина топлоте и топлотна равнотежа

Количина топлоте и топлотна равнотежа Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина

Διαβάστε περισσότερα

Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ

Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ Прва година ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА Г1: ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА 10 ЕСПБ бодова. Недељно има 20 часова

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ 21.11.2009. I група Име и презиме студента: Број индекса: Термин у ком студент ради вежбе: Напомена: Бира се и одговара ИСКЉУЧИВО на шест питања заокруживањем

Διαβάστε περισσότερα

I Наставни план - ЗЛАТАР

I Наставни план - ЗЛАТАР I Наставни план - ЗЛААР I РАЗРЕД II РАЗРЕД III РАЗРЕД УКУО недељно годишње недељно годишње недељно годишње годишње Σ А1: ОАЕЗНИ ОПШЕОРАЗОНИ ПРЕДМЕИ 2 5 25 5 2 1. Српски језик и књижевност 2 2 4 2 2 1.1

Διαβάστε περισσότερα

EUROPEAN LUNG FOUNDATION

EUROPEAN LUNG FOUNDATION ТЕШКА АСТМА Разумевање професионалних смерница Asthma UK Овај водич садржи информацију о томе шта су Европско респираторно друштво (EРД) и Америчко торакално друштво (ATД) je рекли о тешкој астми. www.ers-education.org/guidelines.

Διαβάστε περισσότερα

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја

Διαβάστε περισσότερα

Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба

Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање ОРГАНИЗАЦИЈА ПАРКИРАЛИШТА 1. вежба Место за паркирање (паркинг место) Део простора намењен, технички опремљен и уређен за паркирање једног

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

РАДИОЛОГИЈА КЛИНИЧКА МЕДИЦИНА 1. школска 2018/2019. ЧЕТВРТА ГОДИНА СТУДИЈА

РАДИОЛОГИЈА КЛИНИЧКА МЕДИЦИНА 1. школска 2018/2019. ЧЕТВРТА ГОДИНА СТУДИЈА РАДИОЛОГИЈА КЛИНИЧКА МЕДИЦИНА 1 ЧЕТВРТА ГОДИНА СТУДИЈА школска 2018/2019. Предмет: РАДИОЛОГИЈА Предмет носи 3 ЕСПБ бода. Недељно има 4 часа активне наставе (2 часа предавања и 2 часа рада у малој групи)

Διαβάστε περισσότερα

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a

Διαβάστε περισσότερα

УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ФАКУЛТЕТ МЕДИЦИНСКИХ НАУКА. Вера Вучићевић

УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ФАКУЛТЕТ МЕДИЦИНСКИХ НАУКА. Вера Вучићевић УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ФАКУЛТЕТ МЕДИЦИНСКИХ НАУКА Вера Вучићевић МЕТОД ПРИМЕНЕ ПРОПОФОЛА И НЕЖЕЉЕНИ ЕФЕКТИ ДУБОКЕ СЕДАЦИЈЕ ТОКОМ ДИЈАГНОСТИЧКЕ КОЛОНОСКОПИЈЕ ДОКТОРСКА ДИСЕРТАЦИЈА Ментор: др сци.мед.

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

Упутство за избор домаћих задатака

Упутство за избор домаћих задатака Упутство за избор домаћих задатака Студент од изабраних задатака области Математике 2: Комбинаторика, Вероватноћа и статистика бира по 20 задатака. Студент може бирати задатке помоћу програмског пакета

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање

Διαβάστε περισσότερα

ФАРМАКОТЕРАПИЈА У СТОМАТОЛОГИЈИ

ФАРМАКОТЕРАПИЈА У СТОМАТОЛОГИЈИ ФАРМАКОТЕРАПИЈА У СТОМАТОЛОГИЈИ ИНТЕГРИСАНЕ АКАДЕМСКЕ СТУДИЈEСТОМАТОЛОГИЈЕ ДРУГА ГОДИНА СТУДИЈА школска 2014/2015. Предмет: ФАРМАКОТЕРАПИЈА У СТОМАТОЛОГИЈИ Предмет се вредније са 4 ЕСПБ. Укупно има 4

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

Осцилације система са једним степеном слободе кретања

Осцилације система са једним степеном слободе кретања 03-ec-18 Осцилације система са једним степеном слободе кретања Опруга Принудна сила F(t) Вискозни пригушивач ( дампер ) 1 Принудна (пертурбациона) сила опруга Реституциона сила (сила еластичног отпора)

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

ИЗВОД ИЗ ИЗВЕШТАЈА О ЦЕНАМА КОМУНАЛНИХ УСЛУГА - УДРУЖЕЊЕ ЗА КОМУНАЛНЕ ДЕЛАТНОСТИ -

ИЗВОД ИЗ ИЗВЕШТАЈА О ЦЕНАМА КОМУНАЛНИХ УСЛУГА - УДРУЖЕЊЕ ЗА КОМУНАЛНЕ ДЕЛАТНОСТИ - ИЗВОД ИЗ ИЗВЕШТАЈА О ЦЕНАМА КОМУНАЛНИХ УСЛУГА - УДРУЖЕЊЕ ЗА КОМУНАЛНЕ ДЕЛАТНОСТИ - ЦЕНЕ ПРОИЗВОДЊЕ И ДИСТРИБУЦИЈЕ ВОДЕ И ЦЕНЕ САКУПЉАЊА, ОДВОђЕЊА И ПРЕЧИШЋАВАЊА ОТПАДНИХ ВОДА НА НИВОУ ГРУПАЦИЈЕ ВОДОВОДА

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева

ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције Diffie-Hellman размена кључева Преглед Биће објашњено: Diffie-Hellman размена кључева 2/13 Diffie-Hellman размена кључева први алгоритам са јавним

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/2014. година УПУТСТВО ЗА РАД Тест који треба да решиш

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

РАДИОЛОГИЈА КЛИНИЧКА МЕДИЦИНА 1. школска 2015/2016. ЧЕТВРТА ГОДИНА СТУДИЈА

РАДИОЛОГИЈА КЛИНИЧКА МЕДИЦИНА 1. школска 2015/2016. ЧЕТВРТА ГОДИНА СТУДИЈА РАДИОЛОГИЈА КЛИНИЧКА МЕДИЦИНА 1 ЧЕТРТА ГОДИНА СТУДИЈА школска 2015/2016. редмет: РАДИОЛОГИЈА редмет се вреднује са 3 ЕСБ. Недељно има 4 часа активне наставе (2 часа предавања и 2 часа рада у малој групи)

Διαβάστε περισσότερα

Математика Тест 3 Кључ за оцењивање

Математика Тест 3 Кључ за оцењивање Математика Тест 3 Кључ за оцењивање ОПШТЕ УПУТСТВО ЗА ОЦЕЊИВАЊЕ Кључ за оцењивање дефинише начин на који се оцењује сваки поједини задатак. У општим упутствима за оцењивање дефинисане су оне ситуације

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2016/17. бр. LI-4

МАТЕМАТИЧКИ ЛИСТ 2016/17. бр. LI-4 МАТЕМАТИЧКИ ЛИСТ 06/7. бр. LI-4 РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред. а) 50 4 = 00; б) 0 5 = 650; в) 0 6 = 6; г) 4 = 94; д) 60 : = 0; ђ) 0 : = 40; е) 648 :

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

Садржај 1. УВОД... 1

Садржај 1. УВОД... 1 Садржај 1. УВОД... 1 1.1 ЦИЉ ДОБРЕ ТЕРАПИЈЕ БОЛА... 3 1.2. ФИЗИОЛОГИЈА БОЛА... 4 1.3. ПОЗИТИВНА УЛОГА БОЛА... 5 1.4. ПОСЛЕДИЦЕ НЕАДЕКВАТНЕ КОНТРОЛЕ ПОСТОПЕРАТИВНОГ БОЛА. 6 1.5. ТЕРАПИЈА ПОСТОПЕРАТИВНОГ

Διαβάστε περισσότερα

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 Метод разликовања случајева је један од најексплоатисанијих метода за решавање математичких проблема. У теорији Диофантових једначина он није свемогућ, али је сигурно

Διαβάστε περισσότερα

Слика бр.1 Површина лежишта

Слика бр.1 Површина лежишта . Конвенционалне методе процене.. Параметри за процену рудних резерви... Површина лежишта Површине лежишта ограничавају се спајањем тачака у којима је истражним радом утврђен контакт руде са јаловином.

Διαβάστε περισσότερα

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ОДГОВОРИ И РЕШЕЊА ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ

Διαβάστε περισσότερα

МОБИЛНЕ МАШИНЕ I. ttl. хидростатички системи, хидростатичке компоненте: вентили, главни разводници, командни разводници.

МОБИЛНЕ МАШИНЕ I. ttl. хидростатички системи, хидростатичке компоненте: вентили, главни разводници, командни разводници. МОБИЛНЕ МАШИНЕ I предавање 8.2 \ хидростатички системи, хидростатичке компоненте: вентили, главни разводници, командни разводници Хидростатички погонски системи N e M e e N h p Q F M m m v m m F o M v

Διαβάστε περισσότερα

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези Регулциј електромоторних погон 8 ЛАБОРАТОРИЈСКА ВЕЖБА Здтк вежбе: Изрчунвње фктор појчњ мотор нпонским упрвљњем у отвореној повртној спрези Увод Преносн функциј мотор којим се нпонски упрвљ Кд се з нулте

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

2.3. Решавање линеарних једначина с једном непознатом

2.3. Решавање линеарних једначина с једном непознатом . Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0

Διαβάστε περισσότερα

F( x) НЕОДРЕЂЕНИ ИНТЕГРАЛ

F( x) НЕОДРЕЂЕНИ ИНТЕГРАЛ НЕОДРЕЂЕНИ ИНТЕГРАЛ Штa треба знати пре почетка решавања задатака? Дефиниција: Интеграл једне функције је функција чији је извод функција којој тражимо интеграл (подинтегрална функција). Значи: f d F F

Διαβάστε περισσότερα

Закони термодинамике

Закони термодинамике Закони термодинамике Први закон термодинамике Први закон термодинамике каже да додавање енергије систему може бити утрошено на: Вршење рада Повећање унутрашње енергије Први закон термодинамике је заправо

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23 6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

Тест за 7. разред. Шифра ученика

Тест за 7. разред. Шифра ученика Министарство просвете Републике Србије Српско хемијско друштво Окружно/градско/међуокружно такмичење из хемије 28. март 2009. године Тест за 7. разред Шифра ученика Пажљиво прочитај текстове задатака.

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао ЗАДАЦИ ЗА САМОСТАЛНИ РАД Задаци за самостлни рад намењени су првенствено ученицима који се припремају за полагање завршног испита из математике на крају обавезног основног образовања. Задаци су одабрани

Διαβάστε περισσότερα

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 2 ПОЈАЧАВАЧ СНАГЕ У КЛАСИ Б 1. 2. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

НОМЕНКЛАТУРА ЗДРАВСТВЕНИХ УСЛУГА НА ПРИМАРНОМ НИВОУ ЗДРАВСТВЕНЕ ЗАШТИТЕ

НОМЕНКЛАТУРА ЗДРАВСТВЕНИХ УСЛУГА НА ПРИМАРНОМ НИВОУ ЗДРАВСТВЕНЕ ЗАШТИТЕ НОМЕНКЛАТУРА ЗДРАВСТВЕНИХ УСЛУГА НА ПРИМАРНОМ НИВОУ ЗДРАВСТВЕНЕ ЗАШТИТЕ Р.бр. Назив здравствених услуга 1. Превентивни преглед новорођенчади и одојчади у првој години живота 2. Превентивни преглед деце

Διαβάστε περισσότερα

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c 6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c Ако су а, b и с цели бројеви и аb 0, онда се линеарна једначина ах + bу = с, при чему су х и у цели бројеви, назива линеарна Диофантова једначина. Очигледно

Διαβάστε περισσότερα

ГЛАВОБОЉА КОД ПАЦИЈЕНАТА КОЈИ СЕ ПОДВРГАВАЈУ ОПШТОЈ АНЕСТЕЗИЈИ HEADACHE IN PATIENTS UNDERGOING GENERAL ANESTHESIA

ГЛАВОБОЉА КОД ПАЦИЈЕНАТА КОЈИ СЕ ПОДВРГАВАЈУ ОПШТОЈ АНЕСТЕЗИЈИ HEADACHE IN PATIENTS UNDERGOING GENERAL ANESTHESIA ORIGINALNI NAUČNI RAD ГЛАВОБОЉА КОД ПАЦИЈЕНАТА КОЈИ СЕ ПОДВРГАВАЈУ ОПШТОЈ АНЕСТЕЗИЈИ Валентина Д. Опанчина 1, Марија Живковић Радојевић 1, Слободан М. Јанковић 1 1Факултет медицинских наука, Универзитет

Διαβάστε περισσότερα

Аксиоме припадања. Никола Томовић 152/2011

Аксиоме припадања. Никола Томовић 152/2011 Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна

Διαβάστε περισσότερα

КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год.

КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год. КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН 7. год. Тест има задатака. Време за рад је 8 минута. Задаци са редним бројем -6 вреде по поена задаци 7- вреде по 5 поена задаци 5- вреде

Διαβάστε περισσότερα

МЕДИЦИНА И ДРУШТВО МЕДИЦИНА ЗАСНОВАНА НА ДОКАЗИМА ШЕСТА ГОДИНА СТУДИЈА. школска 2016/2017.

МЕДИЦИНА И ДРУШТВО МЕДИЦИНА ЗАСНОВАНА НА ДОКАЗИМА ШЕСТА ГОДИНА СТУДИЈА. школска 2016/2017. МЕДИЦИНА ЗАСНОВАНА НА ДОКАЗИМА МЕДИЦИНА И ДРУШТВО ШЕСТА ГОДИНА СТУДИЈА школска 2016/2017. Предмет: МЕДИЦИНА ЗАСНОВАНА НА ДОКАЗИМА Предмет се вреднује са 4 ЕСПБ. Недељно има 3 часа активне наставе (2 часа

Διαβάστε περισσότερα

Пешачки мостови. Метални мостови 1

Пешачки мостови. Метални мостови 1 Пешачки мостови Метални мостови 1 Особености пешачких мостова Мање оптерећење него код друмских мостова; Осетљиви су на вибрације. Неопходна је контрола SLS! Посебна динамичка анализа се захтева када је:

Διαβάστε περισσότερα

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем

Διαβάστε περισσότερα

Могућности и планови ЕПС на пољу напонско реактивне подршке. Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије

Могућности и планови ЕПС на пољу напонско реактивне подршке. Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије Могућности и планови ЕПС на пољу напонско реактивне подршке Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије 1 Обавезе ЈП ЕПС као КПС... ЗАКОН О ЕНЕРГЕТИЦИ ЧЛАН 94. Енергетски

Διαβάστε περισσότερα

РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004

РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004 РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 004 ТРАНСФОРМАТОРИ Tрофазни енергетски трансформатор 100 VA има напон и реактансу кратког споја u 4% и x % респективно При номиналном оптерећењу

Διαβάστε περισσότερα

Примена првог извода функције

Примена првог извода функције Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први

Διαβάστε περισσότερα

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА Стандардна девијација показује расподелу резултата мерења око средње вредности, али не указује на облик расподеле. У табели 1 су дате вредности за 50 поновљених одређивања

Διαβάστε περισσότερα

АНАЛИЗА ФАКТОРА ПОВЕЗАНИХ СА НЕОДГОВАРАЈУЋИМ ПРОПИСИВАЊЕМ ЛЕКОВА ПАЦИЈЕНТИМА СТАРИЈЕ ЖИВОТНЕ ДОБИ

АНАЛИЗА ФАКТОРА ПОВЕЗАНИХ СА НЕОДГОВАРАЈУЋИМ ПРОПИСИВАЊЕМ ЛЕКОВА ПАЦИЈЕНТИМА СТАРИЈЕ ЖИВОТНЕ ДОБИ УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ МЕДИЦИНСКИ ФАКУЛТЕТ Ивана В. Пројовић АНАЛИЗА ФАКТОРА ПОВЕЗАНИХ СА НЕОДГОВАРАЈУЋИМ ПРОПИСИВАЊЕМ ЛЕКОВА ПАЦИЈЕНТИМА СТАРИЈЕ ЖИВОТНЕ ДОБИ Крагујевац, 2015. године САДРЖАЈ 1.УВОД...

Διαβάστε περισσότερα

Заступљеност најчешћих АТC група и подгрупа лекова и њихових комбинација у оквиру полипрагмазије код пацијената Хитне помоћи Београд

Заступљеност најчешћих АТC група и подгрупа лекова и њихових комбинација у оквиру полипрагмазије код пацијената Хитне помоћи Београд Оригинални радови / Original Articles DOI:10.5937/opmed1604067P UDC: 615.2.07:616-083.98 Милоранка Петров Киурски, Славољуб Р. Живановић Дом здравља Др Бошко Вребалов, Зрењанин, Србија Градски завод за

Διαβάστε περισσότερα

8.5 ЛАБОРАТОРИЈСКА ВЕЖБА 5 Задатак вежбе: PI регулација брзине напонски управљаним микромотором једносмерне струје

8.5 ЛАБОРАТОРИЈСКА ВЕЖБА 5 Задатак вежбе: PI регулација брзине напонски управљаним микромотором једносмерне струје Регулација електромоторних погона 8.5 ЛАБОРАТОРИЈСКА ВЕЖБА 5 Задатак вежбе: регулација брзине напонски управљаним микромотором једносмерне струје Увод Simulik модел На основу упрошћеног блок дијаграма

Διαβάστε περισσότερα

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ: Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине

Διαβάστε περισσότερα

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности,

Διαβάστε περισσότερα

АНАЛИЗА ФАКТОРА ПОВЕЗАНИХ СА НЕОДГОВАРАЈУЋИМ ПРОПИСИВАЊЕМ ЛЕКОВА ПАЦИЈЕНТИМА СТАРИЈЕ ЖИВОТНЕ ДОБИ

АНАЛИЗА ФАКТОРА ПОВЕЗАНИХ СА НЕОДГОВАРАЈУЋИМ ПРОПИСИВАЊЕМ ЛЕКОВА ПАЦИЈЕНТИМА СТАРИЈЕ ЖИВОТНЕ ДОБИ УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ МЕДИЦИНСКИ ФАКУЛТЕТ Ивана В. Пројовић АНАЛИЗА ФАКТОРА ПОВЕЗАНИХ СА НЕОДГОВАРАЈУЋИМ ПРОПИСИВАЊЕМ ЛЕКОВА ПАЦИЈЕНТИМА СТАРИЈЕ ЖИВОТНЕ ДОБИ Крагујевац, 2016. године Ова докторска

Διαβάστε περισσότερα