UVOD U ANALIZU I OBRADU SIGNALA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "UVOD U ANALIZU I OBRADU SIGNALA"

Transcript

1 UVOD U ANALIZU I OBRADU SIGNALA Prof. dr. sc. Viktor Sučić Tehnički fakultet, Rijeka

2 . Uvod. Uvod

3 Signal: funkcija vremena kojom predstavljamo željenu fizikalnu varijablu promatranog sustava.. Uvod Signale klasificiramo na determinističke i slučajne. x(t) = A sin(2πf t + φ), t, A, f, φ const. Signal x(t) je deterministički signal modeliran kao kompletno definirana funkcija vremena; u svakom trenutku vremena t, x(t) je točno poznat. Slučajni imaju slučajne vrijednosti u promatranim trenucima vremena. Modeliramo ih statistički. Sinusoid with f = 5 Hz (in time) 2 Noisy sinusoid (5 Hz) in time (µ=,σ=.5) Amplitude.2.2 Amplitude time [s] time [s]

4 Sustav: proces koji rezultira transformacijom signala. Njime se ulaznom signalu (npr. x(t)) pridružuje odgovarajući izlazni signal (npr. y(t)).. Uvod 2 Noisy sinusoid (5 Hz) in time (µ=,σ=.5).5 Filtered noisy sinusoid.5 Amplitude Amplitude time [s] time Primarno ćemo se baviti linearnim sustavima. Mnogi sustavi od interesa mogu se modelirati kao linearni. Postojeće matematičke metode dozvoljavaju njihovu efikasnu analizu. Sustave obično predstavljamo blok-dijagramom: x(t) Sustav y(t)

5 Obrada signala u vremenskoj domeni. Uvod Linearan i vremenski-nepromjenjiv (LTI) sustav okarakteriziran je svojim impulsnim odzivom h(t). x(t) Sustav, h(t) y(t) Ulazno-izlazna relacija definirana je konvolucijskim integralom: y(t) = x(t) h(t) = x(τ)h(t τ)dτ

6 Obrada signala u frekvencijskoj domeni. Uvod Signal transformiramo u frekvencijsku domenu pomoću Fourierove transformacije. X(f) Sustav, H(f) Y (f) Funkcija H(f) je prijenosna funkcija sustava: H(f) = F{h(t)} = h(t)e j2πft dt Ulazno-izlazna relacija: Y (f) = X(f)H(f)

7 Primjer.. Niskopropusni filtar (sustav za uklanjanje šuma) u vremenu i frekvenciji. 2 Noisy sinusoid (5 Hz) in time (µ=,σ=.5). Lowpass filter with cutoff frequency of Hz (in time domain). Uvod.5.8 Amplitude.5 Amplitude time [s] time 7 Noisy sinusoid (5 Hz) in frequency (µ=,σ=.5) Lowpass filter with cutoff frequency of Hz Magnitude Magnitude frequency [Hz] frequency.5 Filtered noisy sinusoid.5 Amplitude time

8 . Uvod

9 Klasificiranje i osnovna svojstva signala. Uvod Prema prirodi varijable vremena (te prirodi amplitude) signale klasificiramo na: Vremenski-kontinuirane signale: funkcija vremenski-kontinuirane varijable najčešće je to vrijeme t (npr. govor, slika, radar,...) rect(t/t) T 2 T 2 t Vremenski-diskretne signale: definirani samo u diskretnim vrijednostima vremena vremenska varijabla je n (npr. mjesečna rata kredita, temperatura zraka mjerena svakih sat vremena,...). Za ostale vrijednosti vremena signal je nedefiniran. x(t) t t t t t t Digitalne signale: kvantiziran, vremenski-diskretan signal diskretan i u vremenu i u amplitudi (npr. računalni podaci).

10 . Uvod Signal x(t) je periodičan ako i samo ako postoji konstanta T > takva da je: x(t + T ) = x(t), < t <. T je period signala x(t). Signal koji ne zadovoljava ovo svojstvo je aperiodičan. x(t) Ae α t x(t) t T t (a) aperiodičan (b) periodičan

11 Singularne funkcije. Uvod Jedinična stepenica: u(t) t Jedinični impuls (delta funkcija, Dirac funkcija): δ(t) t

12 Signali energije i snage. Uvod Definicija 2.. Energija signala x(t) je: dok je srednja snaga signala: T E = lim T T x(t) 2 dt P = lim T 2T T T x(t) 2 dt Signale klasificiramo na: Signale energije: x(t) je signal energije ako je < E < (tako da je P = ). Signale snage: x(t) je signal snage ako je < P < (pa slijedi da je E = ).

13 . Uvod

14 Trigonometrijski oblik Fourierovog reda. Uvod Definicija 3.. Neka je x(t) periodičan signal s periodom T : x(t) = x(t + T ), t R. Trigonometrijski oblik Fourierovog reda signala x(t) definiran je na sljedeći način: x(t) = a + a cos(2πf t) + a 2 cos(4πf t) + + b sin(2πf t) + b 2 sin(4πf t) +, < t < x(t) = a + a n cos(2πnf t) + b n sin(2πnf t), < t < n= n= gdje je f = /T fundamentalna (osnovna) frekvencija signala x(t). a = T T x(t)dt a n = b n = 2 T 2 T T T x(t)cos(n2πf t)dt x(t)sin(n2πf t)dt

15 . Uvod Primjer 3.. Aproksimacija periodičnog niza pravokutnih impulsa pomoću Fourierovih koeficijenata. x(t) st harmonic t [s] x(t) rd harmonic t [s].2 2 harmonic.2 49 harmonic.8.8 x(t).6.4 x(t) t [s] t [s]

16 Eksponencijalni oblik Fourierovog reda. Uvod Definicija 3.2. Neka je x(t) periodičan signal: x(t) = x(t + T ), t R, f = /T. Eksponencijalni oblik Fourierovog reda ortogonalni je prikaz x(t): x(t) = X n e j2πnt/t. n= gdje su X n = T T kompleksne konstante koje zovemo Fourierovi koeficijenti. x(t) e j2πnt/t dt a = X a n = 2 Re{X n } b n = 2 Im{X n }. Ako je x(t) R: X n = X n, te je X n = X n i arg(x n ) = arg(x n ).

17 Linijski spektar signala. Uvod Periodičan signal grafički se predstavlja u frekvencijskoj domeni sa: Spektrom magnitude: prikaz magnitude komponenti kao funkcije frekvencije, Spektrom faze: prikaz faze komponenti kao funkcije frekvencije. Spektralne komponente (linije) prisutne su kod pozitivnih i negativnih frekvencija. Kada je signal realan, spektar magnitude je parna funkcija, a spektar faze neparna funkcija frekvencije. Primjer 3.2. Skicirati spektar signala x(t). x(t) k k t

18 . Uvod X n 2k π 2k 3π k 5π n π 2 arg(x n) n π 2

19 . Uvod

20 Definicija Fourierove transformacije. Uvod Fourierov red razlaže periodične signale na kompleksno-eksponencijalne funkcije. Ovaj rezultat generalizirao je J. B. Fourier i za neperiodične signale; tzv. Fourierova transformacija (FT) Fourierov red kada je period signala beskonačan. Fourierov red i Fourierova transformacija pružaju informacije o spektralnom sadržaju analiziranog signala. x(t) = X(f)e j2πft df, gdje je X(f) = X(f) zovemo Fourierova transformacija signala x(t). x(t)e j2πft dt U literaturi: x(t) = F {X(f)}, X(f) = F{x(t)} x(t) X(f)

21 Primjer 4.. Signal u vremenu i frekvenciji.. Uvod Amplitude Sinusoid with f = 5 Hz (in time) time [s] Magnitude Sinusoid with f = 5 Hz (in frequency) frequency [Hz] ECG model in time 25 ECG model in frequency Amplitude [mv] Magnitude time [s] frequency [Hz]

22 . Uvod Kao i Fourierovi koeficijenti, i Fourierova transformacija X(f) je općenito kompleksna veličina: X(f) = X(f) e jφ(f). Stoga kod grafičkog prikaza spektra razlikujemo: Magnitudni spektar: X(f) vs f, Energetski spektar: X(f) 2 vs f, Fazni spektar: φ(f) vs f.

23 Izravno računanje Fourierove transformacije. Uvod Delta funkcija: F{δ(t)} = X(f) = δ(t)e j2πft dt = e j2πf = Pravokutni impuls: F{rect(t/τ)} = X(f) = τ/2 τ/2 e j2πft dt = e j2πft j2πf = ejπfτ e jπfτ j2πf = τ sinc(fτ) τ/2 τ/2 = τ sin(πfτ) πfτ A(f) = X(f) = τ sinc(fτ) A( f) τ 3 τ 2 τ τ τ 2 τ 3 τ f

24 Spektar energije signala. Uvod Primjer 4.2. E = E = x(t) 2 dt = x(t) = e t u(t) x(t) 2 dt = X(f) 2 df + j2πf = X(f) e 2t dt = e 2t 2 = 2 E = X(f) 2 df df = + 4π 2 f 2 = 4π 2 tan (f 4π 2 ) = ( π 2π 2 + π ) = 2 2 [ dx ax 2 + b = tan ] (x a/b) ab

25 Matematičke operacije na signalu i Fourierova transformacija. Uvod Skaliranje vremenske varijable: x(at) a X ( ) f a xt () X( f) t f xat ( ) a < f X a a a < t f xat ( ) a > f X a a a > t f Ekspanzija u jednoj, kompresija u dualnoj domeni i obrnuto.

26 Linearnost:. Uvod x (t) X (f) x 2 (t) X 2 (f) ax (t) + bx 2 (t) ax (f) + bx 2 (f) Vremenski pomak: Frekvencijski pomak: Primjer 4.3. x(t t ) e j2πft X(f) x(t)e j2πf t X(f f ) x(t) cos(2πf t) = x(t) (ej2πf t + e j2πf t ) 2 X(f f ) + X(f + f ) 2

27 Fourierova transformacija signala snage. Uvod Fourierov integral ne konvergira za signale snage, te stoga njihovu Fourierovu transformaciju tražimo pomoću limesa. δ(f) Slijedi: K Kδ(f) F{e j2πf t } = F{ e j2πf t } = δ(f f ) F{cos(2πf t)} = 2 F { e j2πf t + e j2πf t } = 2 (δ(f f ) + δ(f + f )) F{sin(2πf t)} = 2j F { e j2πf t e j2πf t } = 2j (δ(f f ) δ(f + f ))

28 . Uvod

29 Otipkavanje signala. Uvod Neka je x a (t) vremenski-kontinuiran signal: X a (f) = x a (t) = x a (t)e j2πft dt X a (f)e j2πft df Periodično otipkavanje (engl. Periodic Sampling) metod dobivanja vremenski-diskretne forme, x(n), signala x a (t): x(n) = x a (t) t=nts = x a (nt s ), n Z, T s > T s period otipkavanja, f s = /T s frekvencija otipkavanja. Ovo je ulazno-izlazna relacija idealnog AD pretvornika.

30 . Uvod Primjer 5.. Neka je x(t) = cos(2πf t) + cos(2πf 2 t), gdje su f = 2Hz i f 2 = 5Hz. Na slici su prikazani analogni i vremenski-diskretni oblici signala x(t) kada je (a) f s = 5 Hz, (b) f s = 8 Hz, (c) f s = Hz i (d) f s = 5 Hz. Amplitude Time (s) 2 (a) Amplitude Time (s) 2 (b) Amplitude Amplitude Time (s) (c) Time (s) (d)

31 Proces otipkavanja:. Uvod modulator (niz impulsa): p(t) = n= δ(t nt s) pretvorba u vremenski-diskretan niz (sustav G). x a (t) p(t) x s (t) G x(n) = x a (nt s ) x a (t) n= δ(t nt s ) T s n= X a (f nf s ) Otipkavanje u vremenu Periodičnost u frekvenciji.

32 . Uvod Primjer 5.2. Na slici su prikazani (a) spektar analognog signala x a (t), (b) spektar funkcije otipkavanja p(t), (c) spektar otipkanog signala kada je f s > 2f B, i (d) spektar otipkanog signala kada je f s < 2f B. (a) X a(f) (b) f B T f B P(f) f 2 f f f s 2 f s s s f (c) T X s(f) f B f s f (d) T X s (f) f s f

33 Aliasing. Uvod Iz prethodnog primjera evidentno je da za : f s f B > f B tj. f s > 2f B (Nyquistov kriterij) kopije od X a (f) se ne preklapaju x a (t) možemo rekonstruirati iz x(n). Kada se kopije preklapaju (aliasing), rekonstruirani signal je deformirana verzija originala. Teorem 5.. (Teorem uzorkovanja (engl. Sampling Theorem)): Ako je x a (t) frekvencijski organičen na f B Hz, za potpunu rekonstrukciju x a (t) iz x(n) = x a (n/f s ), n, frekvencija otipkavanja f s mora biti veća od 2f B Hz. Pojasno-ograničeni signal x a (t) moguće je rekonstruirati iz x(n) pomoću nisko-propusnog filtra: X s (f) H(f) f f 2 f f B s s Frekvencijski pojas filtra H(f): f B B f s f B.

34 Rekonstrukcija signala. Uvod x s (t) h(t) x r(t) Kada je f s > 2f B : H(f) = { Ts, f f s /2, inače. x r (t) = h(t) = sinc(f s t). x a (nt s ) sinc(f s (t nt s )). n= Primjer 5.3. Rekonstrukcija signala sa sinc(.) funkcijama..8 Signal ANALOG SAMPLED.8 Interpolation.5 Reconstructed signal Amplitude.2.2 Amplitude.2.2 Amplitude time time time

35 Primjer 5.4. Utjecaj f s na rekonstrukciju signala x(t) = cos(2πf t) + cos(2πf 2 t), gdje f = 2Hz i f 2 = 5Hz. Rekonstruirani signal prikazan je punom crtom.. Uvod Amplitude Time (s) (a) f s = 5 Hz Amplitude Time (s) (b) f s = 8 Hz Amplitude Amplitude Time (s) Time (s) (c) f s = Hz (d) f s = 5 Hz

36 . Uvod diskretnih signala

37 Vremenski-diskretna Fourierova transformacija. Uvod Vremenski-diskretna Fourierova transformacija (engl. Discrete-Time Fourier Transform (DTFT)) signala x(n): F{x(n)} = X(f) = n= X(f) je kompleksna funkcija kontinuirane varijable f. X(f) je periodična funkcija s periodom : x(n)e j2πfn X(f + ) = n= x(n)e j2πfn e j2πn = X(f).

38 Diskretna Fourierova transformacija. Uvod DTFT konačnog signala (x(n) = za n < i n L) je: X(f) = L n= x(n) e j 2πfn, f <. Otipkavanjem X(f) sa N uzoraka (N L) dobiva se diskretna Fourierova transformacija (engl. Discrete Fourier Transform (DFT)) signala x(n): X(k) = N n= x(n)e j 2πkn/N, k N. U izrazu za X(k) zbrajanje je po n, gdje je n N zero padding (x(n) =, L n N ). Primjer 6.. Naći DFT signala x(n) koji ima vrijednost kada je n < L (inače je nula). X(f) = L n= e j 2πfn = sin(πfl) sin(πf) e j πf(l ). X(k) = sin(πkl/n) sin(πk/n) e j πk(l )/N, k N.

39 . Uvod Primjer 6.2. Usporedba DTFT i DFT diskretnog kosinusa. Amplitude Discrete signal cos(2π / n) Magnitude DTFT vs. DFT DTFT DFT n 2pi/2 pi 2pi frequency

40 . Uvod

41 Vremensko-frekvencijske distribucije (VFD). Uvod Fs=Hz N=4 Time res= Time (secs) Frequency (Hz) ρ z (t, f) = e j2πν(u t) g(τ, ν) z(u+ τ 2 )z (u τ 2 ) e j2πfτ dν du dτ ρ(t, f) dt df = E

42 VFD pružaju sljedeće informacije o signalu:. Uvod vremenske i frekvencijske varijacije u signalu, broj komponenti u signalu, amplitude i trajanja u vremenu i frekvenciji svake od komponenti. Fs=Hz N=52 Time res= 5 MBD Fs=Hz N=52 Time res= 5 MBD Time (secs) 3 25 Time (secs) Frequency (Hz) Frequency (Hz)

43 Primjer 7.. Kvadratne VFD višekomponentnih signala.. Uvod Fs=Hz N=28 Fs=Hz N=28 Time res= 2 Time res= 2 Time (secs) Time (secs) Frequency (Hz) Frequency (Hz) WVD (ROI ) MBD (ROI ) time time frequency frequency

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

Signali i sustavi - Zadaci za vježbu II. tjedan

Signali i sustavi - Zadaci za vježbu II. tjedan Signali i sustavi - Zadaci za vježbu II tjedan Periodičnost signala Koji su od sljedećih kontinuiranih signala periodički? Za one koji jesu, izračunajte temeljni period a cos ( t ), b cos( π μ(, c j t

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Fourierova transformacija kontinuiranog aperiodičnog signala. Fourierova transformacija. signala. x(t) aperiodični signal konačnog trajanja

Fourierova transformacija kontinuiranog aperiodičnog signala. Fourierova transformacija. signala. x(t) aperiodični signal konačnog trajanja Fourierova ransformacija koninuiranog aperiodičnog Fourierova ransformacija koninuiranog aperiodičnog x() aperiodični signal konačnog rajanja kreiramo periodični signal peiroda T p periodičnim ponavljanjem

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Signali i sustavi Zadaci za vježbu. III. tjedan

Signali i sustavi Zadaci za vježbu. III. tjedan Signali i sustavi Zadaci za vježbu III. tjedan 1. Neka je kontinuirani kompleksni eksponencijalni signal. Neka je diskretni eksponencijalni signal dobiven iz kontinuiranog signala uniformnim otipkavanjem

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Ψηφιακές Επικοινωνίες

Ψηφιακές Επικοινωνίες Ψηφιακές Επικοινωνίες Βασικές Έννοιες Θεωρία Σηµάτων: ανάλυση στο χρονικό και φασµατικό πεδίο Continuous Fourier Transform Σειρές Fourier Σήµατα βασικής ζώνης (Baseband) και ιέλευσης ζώνης (Bandpass) Θεωρία

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier 2.2: Μετασχηματισμός Fourier (Fourier Transform, FT) 2.3: Ιδιότητες του

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier 2.2: Μετασχηματισμός Fourier (Fourier Transform, FT) 2.3: Ιδιότητες του

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Poglavlje 7. Blok dijagrami diskretnih sistema

Poglavlje 7. Blok dijagrami diskretnih sistema Poglavlje 7 Blok dijagrami diskretnih sistema 95 96 Poglavlje 7. Blok dijagrami diskretnih sistema Stav 7.1 Strukturni dijagram diskretnog sistema u kome su sve veliqine prikazane svojim Laplasovim transformacijama

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Laplaceova transformacija

Laplaceova transformacija Laplaceova transformacija Laplaceova transformacija je integralna transformacija s brojnim primjenama u matematici, fizici, elektrotehnici, teoriji vjerojatnosti i drugdje. Koristi se za rješavanje diferencijalnih

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Signali i sustavi. Signal. Predstavljanje signala: mr. sc. Karmela Aleksić-Maslać dr. sc. Damir Seršić

Signali i sustavi. Signal. Predstavljanje signala: mr. sc. Karmela Aleksić-Maslać dr. sc. Damir Seršić Signali i susavi mr. sc. Karmela Aleksić-Maslać dr. sc. Damir Seršić FER-ZESOI Signal Funkcija koja sadrži informaciju o susavu. Funkcija - vremena (npr. zvučni signal), prosora (npr. slika - 2D signal),...

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

T 2 Tsinc2( ft e j2πf3t

T 2 Tsinc2( ft e j2πf3t ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Μετασχηµατισµός Fourier. Απλός

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

3 Populacija i uzorak

3 Populacija i uzorak 3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.

Διαβάστε περισσότερα

Spektralna analiza audio signala

Spektralna analiza audio signala Spektralna analiza audio signala 24. oktobar 2016 Isak Njutn je u slavnom eksperimentu pokazao da je moguće bijelu svjetlost razložiti na komponente različitih boja, odnosno, talasnih dužina, kao i da

Διαβάστε περισσότερα

Telekomunikacije. Filip Brqi - 2/ februar 2003.

Telekomunikacije. Filip Brqi - 2/ februar 2003. Telekomunikacije Filip Brqi - 2/99 14. februar 2003. Sadrжaj 1 Signali i spektri 2 1.1 Periodiqni signali...................... 2 1.1.1 Amplitudski i fazni spektri signala....... 2 1.1.2 Spektri najqex

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Osnove Fourierove analize

Osnove Fourierove analize Osnove Fourierove analize Franka Miriam Brückler Zadatak Kako izgleda graf funkcije zadane s f (x) = 2 cos(3πx)? Zadatak Kako izgleda graf funkcije zadane s f (x) = 2 cos(3πx)? Zadatak Za koji a će sin(ax)

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Prikaz sustava u prostoru stanja

Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja je jedan od načina prikaza matematičkog modela sustava (uz diferencijalnu jednadžbu, prijenosnu funkciju itd). Promatramo linearne sustave

Διαβάστε περισσότερα

Osnove Fourierove analize. Franka Miriam Brückler

Osnove Fourierove analize. Franka Miriam Brückler Osnove Fourierove analize Franka Miriam Brückler Trigonometrijski redovi Zadatak Kako izgleda graf funkcije zadane s f (x) = 2 cos(3x)? Trigonometrijski redovi Zadatak Kako izgleda graf funkcije zadane

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Slučajni procesi Prvi kolokvij travnja 2015.

Slučajni procesi Prvi kolokvij travnja 2015. Zadatak Prvi kolokvij - 20. travnja 205. (a) (3 boda) Neka je (Ω,F,P) vjerojatnosni prostor, neka je G σ-podalgebra od F te neka je X slučajna varijabla na (Ω,F,P) takva da je X 0 g.s. s konačnim očekivanjem.

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

Glava 8 VIŠEDIMENZIONALNI KONTINUALNI SIGNALI

Glava 8 VIŠEDIMENZIONALNI KONTINUALNI SIGNALI Glava 8 VIŠEDIMEZIOALI KOTIUALI SIGALI Višedimenzionani signali opisuju fizičke pojave koje zavise od dvije ili više nezavisnih varijabli. -dimenzionalni signal je matematička funkcija nezavisnih varijabli.

Διαβάστε περισσότερα

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI Sadrˇzaj Sadrˇzaj DVODIMENZIONALNI. DISKRETNI DVODIMENZIONALNI............................ KONTINUIRANI -dim tko želi znati više.............................. 5. KOVARIJANCA, KORELACIJA, PRAVCI REGRESIJE........

Διαβάστε περισσότερα

Glava 1. Z transformacija. 1.1 Pojam z transformacije

Glava 1. Z transformacija. 1.1 Pojam z transformacije Glava 1 Z transformacija 1.1 Pojam z transformacije U elektrotehnici se vrlo često susrećemo sa signalima koji su diskretnog tipa. To znači da je radimo sa signalima koji su zadati svoji vrednostima samo

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα» Εξεταστική Ιανουαρίου 27 Μάθηµα: «Σήµατα και Συστήµατα» Θέµα 1 ο (3%) Έστω δύο διακριτά σήµατα: x(n) = {1,,, -1} και h(n) = {1,, 1} µε το πρώτο δείγµα να αντιστοιχεί σε n= και για τα δύο. Υπολογίστε τα

Διαβάστε περισσότερα

Astronomija i astrofizika II

Astronomija i astrofizika II Astronomija i astrofizika II 1 Projektni zadatak 1: PULSACIJE I ODREĐIVANJE UDALJENOSTI 2 OPAŽANJA U ASTRONOMIJI 1. Opažanja u danom trenutku određivanje svojstava astronomskih objekata u danom trenutku

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων 4..2006 Φυλλάδιο Τυπολόγιο μετασχηματισμών ourier, Laplace και Z Σύμβολα Για έναν πραγματικό αριθμό x, συμβολίζουμε με x, x, [x], τον αμέσως

Διαβάστε περισσότερα

4 4 2 = 3 2 = = 1 2

4 4 2 = 3 2 = = 1 2 Πιθανότητες και Τυχαία Σήματα Μάθημα 3 ΑΣΚΗΣΗ Εστω ότι έχουμε δύο νομίσματα. Στο νόμισμα A η πιθανότητα να έρθει κεφαλή είναι. Στο νόμισμα B 4 3 η πιθανότητα να έρθει κεφαλή είναι. Δεν είστε σίγουροι ποιο

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Φωνής

Ψηφιακή Επεξεργασία Φωνής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time

Διαβάστε περισσότερα

Stationary Stochastic Processes Table of Formulas, 2017

Stationary Stochastic Processes Table of Formulas, 2017 Stationary Stochastic Processes, 07 Stationary Stochastic Processes Table of Formulas, 07 Basics of probability theory The following is valid for probabilities: P(Ω), where Ω is all possible outcomes 0

Διαβάστε περισσότερα

= 5 cos(2π500t π/2) + 9 cos(2π900t + π/3) cos(2π1400t) (9) H(f) = 4.5, αλλού

= 5 cos(2π500t π/2) + 9 cos(2π900t + π/3) cos(2π1400t) (9) H(f) = 4.5, αλλού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.5/10.0 Θέµα 1ο - 5

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

y(t) = x(t) + e x(2 t)

y(t) = x(t) + e x(2 t) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 5-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΞΕΤΑΣΗ ΠΡΟΟ ΟΥ - ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ιάρκεια : 3 ώρες

Διαβάστε περισσότερα

Tables in Signals and Systems

Tables in Signals and Systems ables in Signals and Systems Magnus Lundberg Revised October 999 Contents I Continuous-time Fourier series I-A Properties of Fourier series........................... I-B Fourier series table................................

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Nachrichtentechnik I WS 2005/2006

Nachrichtentechnik I WS 2005/2006 Nachrichtentechnik I WS 2005/2006 1 Signals & Systems wt 10/2005 1 Overview (Signals & Systems) Signals: definition & classification properties basic signals Signal transformations Fourier transformation

Διαβάστε περισσότερα

Tables of Transform Pairs

Tables of Transform Pairs Tble of Trnform Pir 005 by Mrc Stoecklin mrc toecklin.net http://www.toecklin.net/ December, 005 verion.5 Student nd engineer in communiction nd mthemtic re confronted with trnformtion uch the -Trnform,

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Funkcija prenosa. Funkcija prenosa se definiše kao količnik z transformacija odziva i pobude. Za LTI sistem: y n h k x n k.

Funkcija prenosa. Funkcija prenosa se definiše kao količnik z transformacija odziva i pobude. Za LTI sistem: y n h k x n k. OT3OS1 7.11.217. Definicije Funkcija prenosa Funkcija prenosa se definiše kao količnik z transformacija odziva i pobude. Za LTI sistem: y n h k x n k Y z X z k Z y n Z h n Z x n Y z H z X z H z H z n h

Διαβάστε περισσότερα

VEŽBA 3 Obrada signala u frekvencijskom domenu metodom overlap-add

VEŽBA 3 Obrada signala u frekvencijskom domenu metodom overlap-add VEŽBA 3 Obrada signala u frekvencijskom domenu metodom overlap-add Potrebno predznanje Poznavanje programskog jezika C Diskretna Furijeova transformacija Šta će biti naučeno tokom izrade vežbe Tokom izrade

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Μετασχηματισμός Furier Αθανάσιος Κανάτας

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

1 / 79 MATEMATIČKA ANALIZA II REDOVI

1 / 79 MATEMATIČKA ANALIZA II REDOVI / 79 MATEMATIČKA ANALIZA II REDOVI 6.. Definicija reda Promatrajmo niz Definicija reda ( ) n 2 :, 2 2 3 2 4 2,... Postupno zbrajajmo elemente niza: = + 2 2 = 5 4 + 2 2 + 3 2 = 49 36 + 2 2 + 3 2 + 4 2 =

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα