ΘΔΜΑΤΑ ΠΑΝΔΛΛΗΝΙΩΝ ΓΙΑΓΩΝΙΣΜΩΝ Δ.Μ.Δ.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΔΜΑΤΑ ΠΑΝΔΛΛΗΝΙΩΝ ΓΙΑΓΩΝΙΣΜΩΝ Δ.Μ.Δ."

Transcript

1 ΘΜΤ ΠΝΛΛΗΝΙΩΝ ΙΩΝΙΣΜΩΝ Μ ' ΥΜΝΣΙΟΥ - ΘΛΗΣ 1 Να βξείηε ην κηθξόηεξν θπζηθό αξηζκό λ πνπ είλαη πνιιαπιάζην ηνπ 1985 θαη αλ ην δηαηξέζνπκε κε ην 1981 δίλεη ππόινηπν 1 Πόζα ηξίγσλα έρνπκε ζην ζρήκα; Ηζόπιεπξν ηξίγσλν θαη ηεηξάγσλν έρνπλ ηελ ίδηα πεξίκεηξν Μπνξεί λα έρνπλ ην ίδην εκβαδόλ; Σην επίπεδν ζεσξνύκε ηξία ζεκεία,, Να βξεζεί ην ζύλνιν ησλ ζεκείσλ ηνπ επηπέδνπ γηα ηα νπνία ηζρύεη: Μ>Μ>Μ ίλεηαη ην πνιπώλπκν θ(x)=x 1 α) Να ιπζεί ε εμίζσζε: θ(0)+θ( 1)+θ(1)+θ( x)=x β) Nα ππνινγηζηεί ν αξηζκόο ι όηαλ είλαη γλσζηό όηη: ιθ( 1 ) θ( )= Σ' έλα ηζνζθειέο ηξίγσλν (κε =), θέξλνπκε ην ύςνο 1 50 ν 1 1 πί ηεο παίξλνπκε ζεκείν έηζη ώζηε = Φέξλνπκε θαη ην επζύγξακκν ηκήκα λ ˆ =50 o, λα ππνινγηζηνύλ νη γσλίεο ˆ, ˆ 1, ˆ, ˆ 1, ˆ, ˆ, ˆ 1, ˆ πνπ θαίλνληαη ζην ζρήκα

2 ΘΜΤ ΠΝΛΛΖΝΗΩΝ ΗΩΝΗΣΜΩΝ Μ ' ΥΜΝΣΗΟΥ α) λ α= 4 15 θαη β= 6 10 Να ππνινγίζεηε ηε δηαθνξά =α β Τη ζρέζε έρνπλ κεηαμύ ηνπο ηα α, β; β) λ α, β είλαη πξαγκαηηθνί αξηζκνί κε α β θαη α(β +1)=β(α +1) Να ππνινγίζεηε ην γηλόκελν α β 4 πό ηηο παξαθάησ ηέζζεξηο πξνηάζεηο κία είλαη ςεπδήο θαη νη ππόινηπεο είλαη αιεζείο (α) Ο ληώλεο είλαη κεγαιύηεξνο από ηνλ αζίιε (β) Ο αζίιεο είλαη κεγαιύηεξνο από ηε εσξγία (γ) Ζ εσξγία είλαη κεγαιύηεξε από ηνλ ληώλε (δ) Ζ ειηθία ηνπ αζίιε πξνζηηζέκελε ζηελ ειηθία ηεο εσξγίαο ηζνύηαη κε ην δηπιάζην ηεο ειηθίαο ηνπ ληώλε i) Nα βξείηε πνηα είλαη ε ςεπδήο πξόηαζε ii) Πνηνο είλαη ν κηθξόηεξνο θαη πνηνο ν κεγαιύηεξνο; Να απνδεηρηεί όηη α) < β) > 1 Οη εμσηεξηθέο γσλίεο ελόο ηξηγώλνπ είλαη αλάινγεο πξνο ηνπο αξηζκνύο,, 4 Να ππνινγηζηνύλ νη γσλίεο ηνπ ηξηγώλνπ Να απινπνηεζεί ε παξάζηαζε: = x x : x 4x 5 16x 40x 5 ίλεηαη έλα εκηθύθιην κε δηάκεηξν =50cm Έζησ έλα ζεκείν ηνπ εκηθπθιίνπ πνπ απέρεη από ην 40cm θαη ε πξνβνιή ηνπ ζηελ Πάλσ ζηελ θάζεηε επζεία από ην ζην επίπεδν ηνπ εκηθπθιίνπ λα πάξεηε ηκήκα = θαη λα θαηαζθεπάζεηε ην ηεηξάεδξν α) Να ππνινγηζηνύλ νη αθκέο ηνπ ηεηξαέδξνπ β) Πόζνο είλαη ν όγθνο απηνύ ηνπ ηεηξαέδξνπ; γ) Μπνξείηε λα ζπγθξίλεηε ην άζξνηζκα ησλ ηεηξαγώλσλ ησλ δύν απέλαληη αθκώλ κε ην άζξνηζκα ησλ ηεηξαγώλσλ ησλ δύν άιισλ απέλαληη αθκώλ (, θαη, θαη, ) λ ππνζέζνπκε όηη: β=, x=, y=, z= Να απνδεηρηεί όηη: y= xz x z

3 ΘΜΤ ΠΝΛΛΖΝΗΩΝ ΗΩΝΗΣΜΩΝ Μ ' ΥΜΝΣΗΟΥ 4 Οη πόιεηο θαη ζπλδένληαη κε γξακκή ιεσθνξείνπ πό θάζε πόιε μεθηλνύλ ιεσθνξεία θάζε κία ώξα, νιόθιεξν ην 4σξν θαη ην ηαμίδη αλάκεζα ζηηο δύν πόιεηο δηαξθεί 8 ώξεο αθξηβώο Έλα ιεσθνξείν πνπ μεθηλά από ηελ πόιε, πόζα ιεσθνξεία ηεο ίδηαο γξακκήο ζα ζπλαληήζεη κέρξη λα θηάζεη ζηελ πόιε ; Έζησ νξζνγώλην ηξίγσλν θαη ', ', ' ηα κέζα ησλ πιεπξώλ ηνπ,, αληίζηνηρα Να γξαθεί θύθινο πνπ πεξλά από ηα ', ' ' Να απνδεηρηεί όηη: α) Ο θύθινο ηέκλεη ηε θαη ζην ίρλνο Ζ ηνπ ύςνπο Ζ ηνπ β) Τα ηόμα '= ' γ) ' = ' ' α) Να αλαιπζεί ζε γηλόκελν ε παξάζηαζε =α α β) λ ν α είλαη θπζηθόο αξηζκόο λα δεηρηεί όηη ε παξάζηαζε είλαη πάληνηε κε ην 4 Υπάξρνπλ άλζξσπνη πάλσ ζηε ε πνπ έρνπλ γελλεζεί ην ίδην αθξηβώο ιεπηό; Να εμεηαζηεί αλ ηζρύεη ην ίδην θαη γηα ηνπο θαηνίθνπο ηεο ιιάδαο 4 Να παξαγνληνπνηεζνύλ ηα πνιπώλπκα: =x 4 x +16 θαη =x 4 7x Μέρος 1ο 1 Σην ζρήκα ε γσλία ˆ = α) 180 o α+γ, β) 180 o δ+γ, γ) 180 o β+γ, δ) β+δ, ε) α+δ Τα ηξίγσλα ζην ζρήκα είλαη α) 8, β) 1, γ) 16, δ) 0, ε) 4

4 ΘΜΤ ΠΝΛΛΖΝΗΩΝ ΗΩΝΗΣΜΩΝ Μ ' ΥΜΝΣΗΟΥ 4 λ α,β,γ,δ>0 θαη =, ηόηε α) 1 1 =, β) 1 1 =, γ) =, δ) =, ε) θαλέλα από ηα α δ 4 λ α, β, γ, δ αθέξαηνη ηέηνηνη ώζηε = 7, = 7, ηόηε α) αγ=βδ, β) α=, β=7, γ) α<γ, δ) α 0, ε) αβ=γδ 5 λ α,β,γ>0 θαη α 5 β 4 γ 1, ηόηε = = α) 1, β) αβγ, γ) 1 1, δ) 1, ε) 6 λ α>0 θαη (α+ 1 ) =7, ηόηε =(α + 1 )= α) 7, β) 4 7, γ) 7 7, δ) 7, ε) 67 7 Ο κέγηζηνο αξηζκόο ζεκείσλ ζηα νπνία ηέκλνληαη έλαο θύθινο θαη έλα νξζνγώλην είλαη α), β) 8, γ) 5, δ) 6, ε) 8 8 Έλα ηξηγσληθό γπαιί ΕΖ ηνπνζεηείηαη πάλσ από έλα νξζνγώλην ην νπνίν είλαη επίζεο θηηαγκέλν από γπαιί Πνην πνζνζηό ηεο θαιπκκέλεο κε γπαιί έθηαζεο είλαη δηπινθαιπκκέλε ; α) 5%, β) 100 %, γ) 6%, δ) , ε) 45 9 λ ν αξηζκόο λ+18 δηαηξεί ηνλ αξηζκό λ+5, λ θπζηθόο, ηόηε λ= α), β) 7, γ) 8, δ) 1, ε) θαλέλα από ηα α δ 10 λ ν πεληαςήθηνο αξηζκόο 1αβ δηαηξείηαη κε ηνπο αξηζκνύο 4 θαη 9, ε κηθξόηεξε ηηκή ηνπ ςεθίνπ α είλαη α) 0, β) 1, γ), δ) 8, ε) 9 Μέρος ο 1 Aλ α, β ζεηηθνί αθέξαηνη θαη α+4β=10, λα απνδείμεηε όηη 0<α+β<40 ίλαη δπλαηό έλα νξζνγώλην παξαιιειόγξακκν κε δηαζηάζεηο 9cm θαη 1cm λα δηαηξεζεί: α) Σε δύν ηεηξάγσλα κε πιεπξά cm, έλα ηεηξάγσλν κε πιεπξά cm, έλα ηεηξάγσλν κε πιεπξά 6cm, έλα ηεηξάγσλν κε πιεπξά 7cm έλα νξζνγώλην κε πιεπξέο cm θαη 5cm β) Σε έλα ηεηξάγσλν κε πιεπξά cm, θαη

5 ΘΜΤ ΠΝΛΛΖΝΗΩΝ ΗΩΝΗΣΜΩΝ Μ ' ΥΜΝΣΗΟΥ 5 έλα ηεηξάγσλν κε πιεπξά cm, έλα ηεηξάγσλν κε πιεπξά 4cm, έλα ηεηξάγσλν κε πιεπξά 5cm θαη έλα ηεηξάγσλν κε πιεπξά 8cm Οη αξηζκνί 1,,, 4, 5 ρσξίδνληαη ζε δύν νκάδεο, ίλαη αιεζέο όηη ππάξρνπλ δύν αξηζκνί πάληα πνπ αλήθνπλ ζηελ ίδηα νκάδα θαη ε δηαθνξά ηνπο αλήθεη ζηελ ίδηα νκάδα; ύν καζεηέο, ρξεζηκνπνηνύλ έλα πίλαθα x, όπσο ζην ζρήκα, γηα λα παίμνπλ "ηξίιηδα" Καζέλαο γξάθεη ζ' έλα ηεηξαγσλάθη ηεο εθινγήο ηνπ έλα ζηαπξό ή έλαλ θύθιν (Καη νη δύν έρνπλ δπλαηόηεηα λα ρξεζηκνπνηήζνπλ θαη ην ζηαπξό θαη ηνλ θύθιν όπνην ζέινπλ ζε θάζε ηνπ θίλεζε αλεμάξηεηα κε ηη ρξεζηκνπνίεζαλ λσξίηεξα) Θα ληθήζεη απηόο, ν νπνίνο πξώηνο γξάθεη έλα ζύκβνιν πνπ είλαη ην ίδην ζηα ηξία ηεηξάγσλα κηαο γξακκήο ή κηαο ζηήιεο ή κηαο δηαγσλίνπ ηνπ πίλαθα ηα πνηνλ παίθηε ππάξρεη ζίγνπξε ζηξαηεγηθή λα θεξδίζεη θαη πνηα είλαη απηή ; Σε πόζεο θηλήζεηο θεξδίδεη; Να βξεζεί ην πιήζνο ησλ αξηζκώλ ηνπ ζπλόινπ ={1, 11, 111, 1111,, 11 1 }, νη νπνίνη είλαη πνιιαπιάζηα ηνπ Έζησ ηξίγσλν κε εκβαδόλ ηα ηα κήθε ησλ πιεπξώλ ηνπ ηζρύεη: α β γ Να δεηρηεί όηη β Πόηε ηζρύεη ην ίζνλ; 4 Να ππνινγηζηνύλ νη αξηζκνί α, β, γ γηα ηνπο νπνίνπο ηζρύεη: α +β +γ α 4β 6γ+14= Έζησ = : +8 : 1 Να ππνινγηζηεί ε ηηκή ηνπ =( 1) +( 1) +1 Έζησ παξαιιειόγξακκν θαη από ηελ θνξπθή θέξλνπκε κηα ηπρνύζα επζεία πνπ ηέκλεη ηελ ζην πό ην θέξλνπκε κηα επζεία παξάιιειε πξνο ηελ θαη επ' απηήο παίξλνπκε έλα ζεκείν Ε

6 ΘΜΤ ΠΝΛΛΖΝΗΩΝ ΗΩΝΗΣΜΩΝ Μ ' ΥΜΝΣΗΟΥ 6 Να δεηρηεί όηη ην παξαιιειόγξακκν κε πιεπξέο θαη Ε έρεη εκβαδόλ ίζν κε ην εκβαδόλ ηνπ παξαιιεινγξάκκνπ Να δεηρηεί όηη δεν ππάξρεη αθέξαηνο λ πνπ λα ηθαλνπνηεί ηε ζρέζε: λ(λ 1)+(λ 1)(λ+1)+λ(λ+1)+λ 5 = Ζ Άλλα έρεη 48 ζπίξηα θαη ηα ρώξηζε ζε ζσξνύο Μεηά πήξε ηόζα ζπίξηα από ηνλ πξώην ζσξό όζα ππήξραλ ζηνλ δεύηεξν θαη ηα έβαιε ζηνλ δεύηεξν Καηόπηλ πήξε ηόζα ζπίξηα από ηνλ δεύηεξν ζσξό όζα ππήξραλ ζηνλ η ξίην θαη ηα έβαιε ζηνλ ηξίην Τέινο πήξε ηόζα ζπίξηα από ηνλ ηξίην ζσξό όζα ππήξραλ ζηνλ πξώην θαη ηα έβαιε ζηνλ πξώην Τόηε παξαηήξεζε όηη νη ηξεηο ζσξνί είραλ ίζν αξηζκό ζπίξησλ Πόζα ζπίξηα είρε αξρηθά ν θάζε ζσξόο; ηα ηνπο κε κεδεληθνύο αξηζκνύο α, β, x, y ηζρύεη αx=βy Nα ππνινγηζηεί ε ηηκή ηεο παξάζηαζεο = x x y + Έζησ ΕΖΘ θύβνο κε αθκή α Να ππνινγίζεηε ηνλ όγθν ηεο ππξακίδαο ΕΘ Έζησ ηξίγσλν κε κήθε πιεπξώλ α=6 400, β=8 00 θαη γ κηθξόηεξν από ην κεγαιύηεξν ησλ α, β Να πξνζδηνξηζηεί ην γ, ώζηε ην ηξίγσλν λα είλαη νξζνγώλην 4 Σην ηέινο ηνπ ' Παγθόζκηνπ Πνιέκνπ ζε έλα ζηξαηόπεδν βξίζθνληαη 1997 αηρκάισηνη: 998 Ηηαινί θαη 999 εξκαλνί Ο δηνηθεηήο ηνπ ζηξαηνπέδνπ απνθαζίδεη λα απειεπζεξώζεη ζηαδηαθά ηνπο θξαηνύκελνπο, εθηόο από έλαλ ηνλ νπνίν ζα θξαηήζεη γηα ιίγν θαηξό αθόκα ζην ζηξαηόπεδν Ζ δηαδηθαζία απόιπζεο ησλ θξαηνπκέλσλ είλαη ε εμήο: πηιέγνληαη ηπραία ηξεηο θξαηνύκελνπο θαη θεύγνπλ νη δύν λ θαη νη ηξεηο είλαη ηεο ίδηαο εζληθόηεηαο, ν έλαο από απηνύο επηζηξέθεη, ελώ αλ είλαη δηαθνξεηηθήο εζληθόηεηαο επηζηξέθεη απηόο πνπ έρεη δηαθνξεηηθή εζληθόηεηα από ηνπο άιινπο δύν Πνηαο εζληθόηεηαο ζα είλαη ν ''άηπρνο'' θξαηνύκελνο; Έλα νξζνγώλην παξαιιειόγξακκν δηαηξείηαη ζε 4 κηθξόηεξα νξζνγώληα παξαιιειόγξακκα κε δύν επζείεο παξάιιειεο πξνο ηηο πιεπξέο ηνπ Τα ηξία απ' απηά ηα ηέζζεξα νξζνγώληα έρνπλ εκβαδά 10, 18, 5 cm

7 ΘΜΤ ΠΝΛΛΖΝΗΩΝ ΗΩΝΗΣΜΩΝ Μ ' ΥΜΝΣΗΟΥ 7 αληίζηνηρα Να βξεζεί ην εκβαδόλ ηνπ ηέηαξηνπ νξζνγσλίνπ Να απνδεηρηεί όηη ν αξηζκόο = είλαη αθέξαηνο θαη λα βξεζεί ν αθέξαηνο απηόο ηαζέηνπκε 1Κ, Μ θαη Π βώινπο Με πόζνπο ηξόπνπο κπνξνύκε λα ηηο ηνπνζεηήζνπκε ζε 6 ηξύπεο πνπ βξίζθνληαη ζε επζεία γξακκή θαη ηζαπέρνπλ; 4 Με πόζνπο δηαθνξεηηθνύο ηξόπνπο κπνξεί λα γξαθεί ν αξηζκόο 105 σο άζξνηζκα ηνπιάρηζηνλ δύν ζεηηθώλ δηαδνρηθώλ αθεξαίσλ; Σην ζρήκα έρνπκε: 1) //, ) ˆ =90 ν, ) ˆ = ˆ =45 ν, 4) =α, =α Να ππνινγηζηεί ην κήθνο ηνπ Σην ζρήκα ην είλαη ηεηξάγσλν θαη ην Ε νξζνγώλην Να ππνινγίζεηε ην ιόγν ησλ εκβαδώλ ( ( ) ) ( ) ( ) Έζησ =, =, λ * Να βξεζεί πνηνο από ηνπο αξηζκνύο, είλαη κεγαιύηεξνο 4 Να βξείηε πόζνη από ηνπο αξηζκνύο 1,,,, 1999 δε δηαηξνύληαη νύηε κε ην 5 νύηε κε ην ίλνληαη νη παξαζηάζεηο: =( 5) ( ) ( 1 ) +( 1) 1000 =[( 5) ( ) 1] [( 1 ) ] Να βξείηε ηνπο αξηζκνύο, θαη λα ζπγθξίλεηε ηνπο αξηζκνύο, 5

8 ΘΜΤ ΠΝΛΛΖΝΗΩΝ ΗΩΝΗΣΜΩΝ Μ ' ΥΜΝΣΗΟΥ 8 Σην ζρήκα δίλνληαη (α) (ε 1 )//(ε ) Να βξείηε: 1) Τν ιόγν (β) ην ηξίγσλν είλαη ηζόπιεπξν πιεπξάο α (γ) θαη (δ) =α ) Τν εκβαδόλ ηνπ ηξαπεδίνπ Ο ζεηηθόο αθέξαηνο α είλαη άξηηνο θαη όηαλ δηαηξείηαη κε ην 7 δίλεη ππόινηπν Να βξεζεί ν αξηζκόο α, αλ είλαη κεηαμύ ησλ αξηζκώλ 51 θαη 51 4 Σε κηα αιθαληθή ζπλάληεζε Νέσλ ζπκκεηείραλ 199 παηδηά από 9 δηαθνξεηηθέο ρώξεο Να απνδείμεηε όηη κία ηνπιάρηζηνλ ρώξα είρε ζηελ απνζηνιή ηεο 1 ηνπιάρηζηνλ παηδηά ηνπ ίδηνπ θύινπ λ λ ζεηηθόο αθέξαηνο λα ππνινγίζεηε ηηο παξαζηάζεηο: =[( 1) λ +( 1) λ+1 ] ( ), 4 =( ) ( ) 1 + ( ) ( ) ( 4) Τξίγσλν έρεη πιεπξέο =ι, =ι+, =10 θαη ηζρύεη: (ι+) ι =8 Να δεηρηεί όηη ην ηξίγσλν είλαη νξζνγώλην κε A =90 ν Σην εζσηεξηθό ηεηξαγώλνπ πιεπξάο α θαηαζθεπάδνπκε ηζόπιεπξν ηξίγσλν 1) Να απνδείμεηε όηη ηα ηξίγσλα θαη είλαη ίζα ) Να ππνινγίζεηε ηα εκβαδά ησλ ηξηγώλσλ, θαη 4 Να πξνζδηνξίζεηε ηελ ειάρηζηε ηηκή ηεο παξάζηαζεο =α 10αβ+7β 8β+8 ηα πνηεο ηηκέο ησλ α, β ιακβάλεηαη ε ειάρηζηε ηηκή ηεο παξάζηαζεο ;

9 ΘΜΤ ΠΝΛΛΖΝΗΩΝ ΗΩΝΗΣΜΩΝ Μ ' ΥΜΝΣΗΟΥ λ α= θαη β= λα βξείηε ηελ ηηκή ηεο παξάζηαζεο: Κ=α (1+α) +4( + 1 ) 1 +[( 004) 004 ] 0 Σην ζρήκα ππάξρνπλ 10 ίζα ηεηξάγσλα κεηαμύ ησλ νξζνγσλίσλ θαη Θ Ζ Ε ΕΖΘ Να ππνινγίζεηε ηελ πιεπξά ησλ ηεηξαγώλσλ, αλ είλαη γλσζηό όηη ην άζξνηζκά ησλ εκβαδώλ ηνπο ηζνύηαη αξηζκεηηθά κε ην άζξνηζκα ησλ πεξηκέηξσλ ησλ νξζνγσλίσλ θαη ΕΖΘ Σε κηα δηνξγάλσζε ζθαθηνύ κέζσ δηαδηθηύνπ ζπκκεηείραλ 1119 αγόξηα θαη θνξίηζηα Τν πξώην θνξίηζη έπαημε κε 0 αγόξηα, ην δεύηεξν θνξίηζη έπαημε κε 1 αγόξηα, ην ηξίην θνξίηζη έπαημε κε αγόξηα θνθ κέρξη ην ηειεπηαίν θνξίηζη πνπ έπαημε κε όια ηα αγόξηα Να βξείηε πόζα ήηαλ ηα αγόξηα θαη πόζα ήηαλ ηα θνξίηζηα 4 Σην ζρήκα ε είλαη δηάκεηξνο ηνπ θύθινπ (Ο,R), ε γσλία ˆ =σ είλαη ηξηπιάζηα ηεο γσλίαο ˆ =θ θαη ην εκβαδόλ ηνπ θπθιηθνύ ηνκέα Ζ Ε φ Ο ω (Ο)= 1 πr 1) Να βξείηε ηηο γσλίεο σ, θ ( ) Να βξείηε ην ιόγν ( Ζ ) ) ησλ εκβαδώλ ησλ θπθιηθώλ ηκεκάησλ Ε θαη Να ππνινγίζεηε ηελ ηηκή ηεο παξάζηαζεο 6 10x (4x y ) =00 (x+ 1 ) y (x z) (y z) αλ x+y=00 Οη αξηζκνί x θαη y είλαη αλάινγνη πξνο ηνλ αξηζκεηή θαη ηνλ παξνλνκαζηή, αληίζηνηρα, ηνπ θιάζκαηνο πνπ πξνθύπηεη από ηε κεηαηξνπή ζε θιαζκαηηθή

10 ΘΜΤ ΠΝΛΛΖΝΗΩΝ ΗΩΝΗΣΜΩΝ Μ ' ΥΜΝΣΗΟΥ 10 κνξθή ηνπ δεθαδηθνύ αξηζκνύ α=4, 6x Να ππνινγίζεηε ηελ ηηκή ηεο παξάζηαζεο = 6x 5y 5y 1 1 ίλεηαη ηζνζθειέο ηξίγσλν (=) Με δηάκεηξν ηελ πιεπξά γξάθνπκε θύθιν πνπ ηέκλεη ηελ πιεπξά ζην Φέξνπκε αθόκα ηελ x x πνπ ηέκλεη ηνλ θύθιν ζην 1) Να απνδείμεηε όηη ην είλαη ύςνο ηνπ ηξηγώλνπ ) Να ζπγθξίλεηαη ην εκβαδόλ ηνπ ηξηγώλνπ πξνο ην εκβαδόλ ηνπ ηεηξαπιεύξνπ 4 Σην ζρήκα ην ηεηξάγσλν έρεη πιεπξά =4α θαη =Ε=Ζ=Θ=α Η Μ Κ Θ Λ Ζ Ε Τν ηεηξάπιεπξν ΗΚΛΜ είλαη ηεηξάγσλν Να ππνινγίζεηε: 1) Τελ Ζ σο ζπλάξηεζε ηνπ α ) Τν εκβαδόλ ηνπ ηεηξαγώλνπ ΗΚΛΜ σο ζπλάξηεζε ηνπ α ίλνληαη νη παξαζηάζεηο = ( 5 1 [ ) ( 5 1) λ =6, λα πξνζδηνξίζεηε ηελ ηηκή ηνπ x ] x (, = ) ( 9 1) + x Σην ζρήκα ε επζεία ΜΛ είλαη κεζνθάζεηε ηεο πιεπξάο πηπιένλ δίλνληαη: Μ ˆ =45 ν, ˆ Λ=0 ν θαη Λ=θ Λ 045 Μ κ Να βξείηε: α) Τηο γσλίεο ˆ, ˆ, ˆ ηνπ ηξηγώλνπ

11 ΘΜΤ ΠΝΛΛΖΝΗΩΝ ΗΩΝΗΣΜΩΝ Μ ' ΥΜΝΣΗΟΥ 11 β) Τηο πιεπξέο,, ζπλαξηήζεη ηνπ θ γ) Τν εκβαδόλ ηνπ ηξηγώλνπ Μηα εηαηξεία ρξεζηκνπνηεί 0 εξγάηεο επί 6 κήλεο, εξγαδόκελνπο 8 ώξεο ην 4σξν, γηα λα ηειεηώζεη ην κηζό ελόο έξγνπ πεηδή ην ππόινηπν ηνπ έξγνπ πξέπεη λα ηειεηώζεη ζε κήλεο ε εηαηξεία απνθάζηζε λα πξνζιάβεη θαη άιινπο εξγάηεο, ηεο ηδίαο απόδνζεο αλά ώξα, νη νπνίνη ζα δνπιεύνπλ δεύηεξε βάξδηα επί 10 ώξεο ην 4σξν, ελώ νη ππάξρνληεο εξγάηεο ζα δνπιεύνπλ όπσο θαη πξηλ Πόζνπο επί πιένλ εξγάηεο πξέπεη λα πξνζιάβεη ε εηαηξεία ώζηε λα ηειεηώζεη ην έξγν αθξηβώο ζε δύν κήλεο; 4 Σην ζρήκα δίλεηαη νξζνγώλην κε ==α, ηα κέζα θαη Ε ησλ θαη αληίζηνηρα, θαη νη ηξεηο θύθινη κε θέληξα, θαη θαη αθηίλαο α, πνπ ηέκλνληαη κέζα ζην νξζνγώλην ζηα ζεκεία Κ θαη Λ Κ Ε Λ α Μ Ν Να βξείηε: α) Τν εκβαδόλ ηνπ ηξηγώλνπ Κ β) Τν εκβαδόλ ηνπ ηεηξαπιεύξνπ ΚΛΝΜ, όπνπ Μ κέζνλ ηεο θαη Ν κέζνλ ηεο γ) Τν εκβαδόλ ηνπ θακππιόγξακκνπ γξακκνζθηαζκέλνπ ηξηγώλνπ ΚΛ Έζησ α=β+005 Να βξείηε ηελ αξηζκεηηθή ηηκή ηεο παξάζηαζεο: = [(α+β) (β α) 4β]+19(α β) Να βξείηε ην κηθξόηεξν ζεηηθό πνιιαπιάζην ηνπ 005, ην νπνίν δηαηξνύκελν δηα ηνπ 001 αθήλεη ππόινηπν 1 Να βξεζεί ν κηθξόηεξνο ζεηηθόο ξεηόο αξηζκόο ηνπ νπνίνπ ην % θαζώο θαη ην 15% είλαη αθέξαηνο 4 ίλαη δπλαηόλ λα ππάξρνπλ ζην εζσηεξηθό ελόο θπξηνύ ηεηξαπιεύξνπ δύν δηαθνξεηηθά ζεκεία από ην θαζέλα από ηα νπνία όιεο νη πιεπξέο ηνπ ηεηξαπιεύξνπ λα θαίλνληαη από ίζεο γσλίεο; ηθαηνινγείζηε ηελ απάληεζή ζαο

12 ΘΜΤ ΠΝΛΛΖΝΗΩΝ ΗΩΝΗΣΜΩΝ Μ ' ΥΜΝΣΗΟΥ Σην παξαθάησ ζρήκα λα ππνινγίζεηε ην x ζε κνίξεο 5x x 4x x 6x Ε Ζ ηα ηνπο αξηζκνύο α, β, γ ηζρύνπλ α+β+ =0 θαη αβγ=10 Να ππνινγηζηεί ε ηηκή ηεο παξάζηαζεο =α (α+ ) (α+β) Ο αξηζκόο p είλαη πξώηνο Να απνδείμεηε όηη ν αξηζκόο =7p+1 είλαη ζύλζεηνο 4 Να εμεηάζεηε αλ ππάξρνπλ πξαγκαηηθνί αξηζκνί α, β δηάθνξνη ηνπ κεδελόο, ηέηνηνη ώζηε αβ α 1 β= Να ππνινγίζεηε ηε ηηκή ησλ παξαζηάζεσλ = [( ) 8 ( 4) +( 4) ] ( ) 4, = (x ) (y 4) [x(y ) y(x+)] ηα πνηεο ηηκέο ηνπ x αιεζεύεη ε αληζόηεηα >; Σην ζρήκα ην ηξίγσλν είλαη ηζνζθειέο (=) κε ˆ =40 ν (ε) 40 (δ ) Ε Κ x Ζ επζεία (ε)// θαη ε επζεία (δ) είλαη κεζνθάζεηε ηεο 1) Να ππνινγηζηεί ε γσλία Ε ˆ x ) Να απνδείμεηε όηη Κ=Ε Να απνδείμεηε όηη, αλ έλαο αξηζκόο είλαη ηεηξάγσλν θπζηθνύ αξηζκνύ, ηόηε ην ηειεπηαίν ηνπ ςεθίν αλήθεη ζην ζύλνιν Σ={0, 1, 4, 5, 6, 9} Να βξεζεί, αλ ππάξρεη, πεληαςήθηνο θπζηθόο αξηζκόο ηεο κνξθήο

13 ΘΜΤ ΠΝΛΛΖΝΗΩΝ ΗΩΝΗΣΜΩΝ Μ ' ΥΜΝΣΗΟΥ 1 =αααββ, όπνπ α, β ςεθία κε α 0, ν νπνίνο είλαη ηεηξάγσλν θπζηθνύ αξηζκνύ, πεξηηηόο θαη δηαηξείηαη κε ην 9 4 Σην ζρήκα ην ηξίγσλν είλαη ηζνζθειέο (=) κε ˆ =0 ν, =α, 0 Ο α Μ εγγεγξακκέλν ζε θύθιν (Ο,R) Ζ // θαη Ο 1) Να ππνινγίζεηε ην εκβαδόλ ηνπ θπθιηθνύ ηνκέα Ο ζπλαξηήζεη ηνπ α ) Να ππνινγίζεηε ην εκβαδόλ ηνπ ηξηγώλνπ ζπλαξηήζεη ηνπ α ) Να απνδείμεηε όηη ην ηξίγσλν είλαη ηζνζθειέο

x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12

x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12 ΑΚΖΔΗ ΤΜΝΑΗΟΤ - ΚΤΚΛΟ ΠΡΩΣΟ - - ηα πνηεο ηηκέο ηνπ ηα παξαθάησ θιάζκαηα δελ νξίδνληαη ; (Τπόδεημε : έλα θιάζκα νξίδεηαη αλ ν παξνλνκαζηήο είλαη δηάθνξνο ηνπ κεδελόο) - (-) - (-) - Να απινπνηεζνύλ ηα θιάζκαηα

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ Α ΛΤΚΔΙΟΤ Ζμεπομηνία: 18/12/10 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤ ΕΙ 1. Δίλεηαη ην πνιπώλπκν Αλ θαη., λα βξείηε ην ηειεπηαίν ςεθίν ηνπ αξηζκνύ έρνπκε:

Διαβάστε περισσότερα

=90º ) κε πιεπξέο α, β, γ. Να βξεζεί ην είδνο ηνπ ηξηγώλνπ πνπ έρεη πιεπξέο (i) θα, θβ, θγ θαη (ii) 4α, 4β, 3γ.

=90º ) κε πιεπξέο α, β, γ. Να βξεζεί ην είδνο ηνπ ηξηγώλνπ πνπ έρεη πιεπξέο (i) θα, θβ, θγ θαη (ii) 4α, 4β, 3γ. ΣΗΜΕΙΩΣΕΙΣ ΕΥΚΛΕΙΔΕΙΑΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ - 1 ΓΔΝΗΚΔ ΔΠΑΝΑΛΖΠΣΗΚΔ ΑΚΖΔΗ 1 Γίλεηαη νξζνγώλην ηξίγσλν ΑΒΓ ( =90º ) κε πιεπξέο α, β, γ Να βξεζεί ην είδνο ηνπ ηξηγώλνπ πνπ έρεη πιεπξέο (i) θα, θβ, θγ θαη

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ Πρόβλημα 1: α) Να δείμεηε όηη αλ ζεηηθνί πξαγκαηηθνί αξηζκνί ηζρύεη: β) Αλ είλαη

Διαβάστε περισσότερα

ΔΠΙΣΡΟΠΗ ΓΙΑΓΩΝΙΜΩΝ 74 ος ΠΑΝΔΛΛΗΝΙΟ ΜΑΘΗΣΙΚΟ ΓΙΑΓΩΝΙΜΟ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Ο ΘΑΛΗ 19 Οκηωβρίοσ Δνδεικηικές λύζεις

ΔΠΙΣΡΟΠΗ ΓΙΑΓΩΝΙΜΩΝ 74 ος ΠΑΝΔΛΛΗΝΙΟ ΜΑΘΗΣΙΚΟ ΓΙΑΓΩΝΙΜΟ ΣΑ ΜΑΘΗΜΑΣΙΚΑ Ο ΘΑΛΗ 19 Οκηωβρίοσ Δνδεικηικές λύζεις ΔΛΛΗΝΙΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ Παλεπηζηεκίνπ (Διεπζεξίνπ Βεληδέινπ) 34 06 79 ΑΘΖΝΑ Τει. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Δleftheriou

Διαβάστε περισσότερα

Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14

Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 .1.10 ζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 Ερωηήζεις Καηανόηζης 1. ύν δηαθνξεηηθέο επζείεο κπνξεί λα έρνπλ θαλέλα θνηλό ζεκείν Έλα θνηλό ζεκείν i ύν θνηλά ζεκεία iλ) Άπεηξα θνηλά ζεκεία ηηηνινγήζηε ηελ απάληεζε

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΠΡΟΒΛΗΜΑ Σε έλα ηνπξλνπά βόιετ δήισζαλ ζπκκεηνρή νκάδεο Γπκλαζίσλ ηεο Κύπξνπ.

Διαβάστε περισσότερα

όπου R η ακηίνα ηου περιγεγραμμένου κύκλου ηου ηριγώνου.

όπου R η ακηίνα ηου περιγεγραμμένου κύκλου ηου ηριγώνου. ΕΩΜΕΤΡΙ ΛΥΚΕΙΟΥ - ΕΜΔ ΝΩΣΕΙΣ ΘΕΩΡΙΣ Ι ΤΗΝ ΛΥΣΗ ΣΚΗΣΕΩΝ ΕΜΔ Πρόηζε Ίζ πολυγωνικά χωρί έχουν ίζ εμβδά Το νηίζηροθο δεν ιζχύει ηλδή δύο ιζοεμβδικά χωρί δεν είνι κηά νάγκη ίζ Εκβδόλ ηεηργώλοσ πιεσράς Εκβδόλ

Διαβάστε περισσότερα

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ

ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ ΒΑΓΓΔΛΗ ΦΤΥΑ 2009 ελίδα 2 από 9 ΔΤΘΔΙΔ SIMSON 1 ΒΑΙΚΔ ΠΡΟΣΑΔΙ 1.1 ΔΤΘΔΙΑ SIMSON Γίλεηαη ηξίγσλν AB θαη ηπρόλ ζεκείν ηνπ πεξηγεγξακκέλνπ θύθινπ ηνπ. Αλ 1, 1 θαη 1 είλαη νη πξνβνιέο ηνπ ζηηο επζείεο πνπ

Διαβάστε περισσότερα

ΓΕΩΜΕΣΡΙΑ Α ΛΤΚΕΙΟΤ ΠΑΡΑΛΛΗΛΕ ΕΤΘΕΙΕ

ΓΕΩΜΕΣΡΙΑ Α ΛΤΚΕΙΟΤ ΠΑΡΑΛΛΗΛΕ ΕΤΘΕΙΕ ΓΕΩΜΕΣΡΙΑ Α ΛΤΚΕΙΟΤ ΠΑΡΑΛΛΗΛΕ ΕΤΘΕΙΕ ΦΕΒΡΟΥΑΡΙΟΣ 9 Επιμέλεια: Χατζόπουλος Μάκης Μαθηματικός Ρόδος ΕΠΑ.Λ Παραδεισίου ΑΝΑΚΕΦΑΛΑΙΩΣΗ ΚΕΦΑΛΑΙΟΥ 4 Παπάλληλερ εςθείερ Αίηημα παπαλληλίαρ Γύν επζείεο (ε 1 ),(ε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ() ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΘΔΜΑ : Αλ ηζρύεη 3 3, λα δείμεηε όηη ηα ζεκεία Μ, Ν ηαπηίδνληαη. ΘΔΜΑ : Α Β Μ Γ Σην παξαπάλσ ζρήκα είλαη 3. α) Γείμηε όηη

Διαβάστε περισσότερα

3. Τα ΑΒΓΓ θαη ΔΒΕΖ είλαη ηεηξάγσλα, ΑΔ=2cm θαη ΔΒ=5cm. Τν εκβαδόλ ηνπ γξακκνζθηαζκέλνπ ζρήκαηνο είλαη: είλαη: (Γ) 10

3. Τα ΑΒΓΓ θαη ΔΒΕΖ είλαη ηεηξάγσλα, ΑΔ=2cm θαη ΔΒ=5cm. Τν εκβαδόλ ηνπ γξακκνζθηαζκέλνπ ζρήκαηνο είλαη: είλαη: (Γ) 10 Α, υμναςίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιοσ 0. Πνηνο από ηνπο πην θάησ αξηζκνύο είλαη ν κεγαιύηεξνο; (Α) 0 0 () 00 () ( 0) ( 0) () 0 0 () ( 0) ( 0). Σην πην θάησ ζρήκα νη επζείεο ε θαη ε είλαη

Διαβάστε περισσότερα

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :

ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο : ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ Ον/μο:.. Γ Λσκείοσ Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη. 11-1-11 Εήηημα 1 ο : Α. Γηα ηελ ζπλάξηεζε f, λα βξείηε ην δηάζηεκα ζην νπνίν είλαη παξαγσγίζηκε θαζώο θαη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ Γείμηε όηη : ΡΑ ΡΒ ΡΓ 2 ΒΑ.

ΚΕΦΑΛΑΙΟ Γείμηε όηη : ΡΑ ΡΒ ΡΓ 2 ΒΑ. ΚΕΦΑΛΑΙΟ 1 1. Θεσξνύκε ηα κε ζπλεπζεηαθά ζεκεία Α, Β, Γ, Γ. Γείμηε όηη αλ ππάξρεη ζεκείν Ρ ηέηνην ώζηε ΡΑ ΡΓ ΡΒ ΡΓ, ηόηε ην ΑΒΓΓ είλαη παξαιιειόγξακκν.. *Αλ ΑΒΓΓ είλαη παξαιιειόγξακκν θαη Ρ έλα ζεκείν

Διαβάστε περισσότερα

Γεωμεηρία Α Λσκείοσ Κεθάλαιο 4ο Παράλληλες εσθείες

Γεωμεηρία Α Λσκείοσ Κεθάλαιο 4ο Παράλληλες εσθείες Γεωμεηρία Α Λσκείοσ Κεθάλαιο 4ο Παράλληλες εσθείες Ανακεθαλαίωζη θεωρίας Ομαδοποιημένες έννοιες θεωρίας 5 άλσηες αζκήζεις Θέμαηα πολλαπλής επιλογής ΕΑΚΤΝΘΟ 010 11 ΑΝΑΚΕΦΑΛΑΙΩΣΗ ΚΕΦΑΛΑΙΟΥ 4 Γύν επζείεο

Διαβάστε περισσότερα

ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ

ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ ΚΕΦ..3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ Οπιζμόρ απόλςηηρ ηιμήρ: Σηνλ άμνλα ησλ πξαγκαηηθώλ αξηζκώλ ζεσξνύκε έλαλ αξηζκό α πνπ ζπκβνιίδεηαη κε ην ζεκείν Α. Η απόζηαζε ηνπ ζεκείνπ Α από ηελ αξρή Ο, δειαδή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ο ΥΗΜΑΣΑ ΕΓΓΕΓΡΑΜΜΕΝΑ Ε ΚΤΚΛΟ ΕΓΓΕΓΡΑΜΜΕΝΕ ΓΧΝΙΕ

ΚΕΦΑΛΑΙΟ 6 ο ΥΗΜΑΣΑ ΕΓΓΕΓΡΑΜΜΕΝΑ Ε ΚΤΚΛΟ ΕΓΓΕΓΡΑΜΜΕΝΕ ΓΧΝΙΕ 1 ΣΟΚΝ ΠΝΙΧΣΗ ΜΘΗΜΣΙΚΟ ΚΕΦΛΙΟ 6 ο ΥΗΜΣ ΕΕΡΜΜΕΝ Ε ΚΤΚΛΟ ΕΕΡΜΜΕΝΕ ΧΝΙΕ ΟΡΙΜΟ: Εγγεγπαμμένη γσλία νλνκάδεηαη ε γσλία ηεο νπνίαο ε θνξπθή είλαη ζεκείν ηνπ θύθινπ θαη νη πιεπξέο ηεο ηέκλνπλ ηνλ θύθιν. Τν ηόμν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. ηνπ επηπέδνπ. Να απνδείμεηε όηη νπνηνδήπνηε δηάλπζκα r

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. ηνπ επηπέδνπ. Να απνδείμεηε όηη νπνηνδήπνηε δηάλπζκα r 1. Γίλνληαη δύν κε ζπγγξακκηθά δηαλύζκαηα και β ηνπ επηπέδνπ. Να απνδείμεηε όηη νπνηνδήπνηε δηάλπζκα r ηνπ επηπέδνπ απηνύ κπνξεί λα εθθξαζηεί ζαλ γξακκηθόο ζπλδπαζκόο ησλ και β ά κνλαδηθό ηξόπν.. Γίλνληαη

Διαβάστε περισσότερα

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη

iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο

Διαβάστε περισσότερα

ΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ

ΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ ΚΔΦ.. ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ Οξηζκόο ηεηξαγσληθήο ξίδαο: Αλ 0 ηόηε νλνκάδνπκε ηεηξαγσληθή ξίδα ηνπ ηελ κε αξλεηηθή ιύζε ηεο εμίζσζεο:. Γειαδή ηεηξαγσληθή ξίδα ηνπ 0 ιέγεηαη ν αξηζκόο 0 πνπ όηαλ πςσζεί

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟ ΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΤΑΞΗ: Β ΛΥΚΕΙΟΥ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟ ΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΤΑΞΗ: Β ΛΥΚΕΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟ ΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 011 ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΤΑΞΗ: Β ΛΥΚΕΙΟΥ Θέμα 1o Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το άθροισμα των τετραγώνων των καθέτων πλευρών του είναι

Διαβάστε περισσότερα

ΑΛΥΤΔΣ ΑΣΚΗΣΔΙΣ ΜΙΓΑΓΙΚΟΙ ΟΜΑΓΑ Α

ΑΛΥΤΔΣ ΑΣΚΗΣΔΙΣ ΜΙΓΑΓΙΚΟΙ ΟΜΑΓΑ Α ΑΛΥΤΔΣ ΑΣΚΗΣΔΙΣ ΜΙΓΑΓΙΚΟΙ ΟΜΑΓΑ Α Ππάξειρ μιγαδικών ). Γίλνληαη νη κηγαδηθνί αξηζκνί = x x 9 θαη w = y, x, y R. α). Να βξείηε ηνπο x, y ώζηε = w. β) Να βξείηε ηνλ. ). Γίλεηαη ν κηγαδηθόο = 6 (3 4 ) x 3

Διαβάστε περισσότερα

H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ

H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ Φξεζηκόηεηα καζεκαηηθώλ Αξρή θαηακέηξεζεο Όζα έδσζαλ νη Έιιελεο... Τξίγσλνη αξηζκνί Τεηξάγσλνη αξηζκνί Δπηκήθεηο αξηζκνί Πξώηνη αξηζκνί Αξηζκνί κε μερσξηζηέο ηδηόηεηεο Γίδπκνη πξώηνη

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii)

ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii) . Να ιπζνύλ ηα ζπζηήκαηα.,, 6 4 4 4 5( ) 6( ). Να ιπζνύλ ηα ζπζηήκαηα.,,,6 7. Να ιπζνύλ ηα ζπζηήκαηα. 5 ( )( ) ( ) 4. Να ιπζνύλ ηα ζπζηήκαηα. 5 4 6 7 4. 5. Να ιπζνύλ ηα ζπζηήκαηα. 59 ( )( ) ()( 5) 7 6.

Διαβάστε περισσότερα

ΜΔΣΡΙΚΔ ΥΔΔΙ ΣΑ ΟΡΘΟΓΩΝΙΑ ΣΡΙΓΩΝΑ

ΜΔΣΡΙΚΔ ΥΔΔΙ ΣΑ ΟΡΘΟΓΩΝΙΑ ΣΡΙΓΩΝΑ 1 ν ΔΛ ΠΤΟΛΔΜΪΣ / users.flo.sch.gr/nikpol 1 ΜΔΣΡΙΚΔ ΥΔΔΙ Σ ΟΡΘΟΩΝΙ ΣΡΙΩΝ = 90 ν Τν ηεηξάγσλν κηο θάζεηεο πιεπξάο είλη ίζν κε ηελ ππνηείλνπζ επί ηελ πξννιή ηεο πιεπξάο ζηελ ππνηείλνπζ. = ή = Σε θάζε νξζνγώλην

Διαβάστε περισσότερα

Γεσκεηξία Α Λπθείνπ Καζεγεηήο: Υαηδόπνπινο Μάθεο Δπαλαιεπηηθά θύιια εξγαζίαο

Γεσκεηξία Α Λπθείνπ Καζεγεηήο: Υαηδόπνπινο Μάθεο Δπαλαιεπηηθά θύιια εξγαζίαο Δπιμέλεια: Υαηδόπνπινο Μάθεο Καζεγεηήο Μαζεκαηηθώλ 1ν Λύθεην Εαθύλζνπ 28+ Επαναληπτικά Θέματα Γεωμετρίας Α Λυκείου Υποψήφια θέματα εξετάσεων Μαΐου - Ιουνίου Κατηγορίες ασκήσεων Κατηγορία Α: Θεωρία / Σωστό

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο

Διαβάστε περισσότερα

ΓΡΑΠΣΔ ΠΡΟΑΓΩΓΗΚΔ ΔΞΔΣΑΔΗ ΜΑΪΟΤ Θέμα Α ( Α1 =10, Α2 = 15 ) 1) Υαξαθηεξίζηε ηηο παξαθάησ πξνηάζεηο κε - Λ

ΓΡΑΠΣΔ ΠΡΟΑΓΩΓΗΚΔ ΔΞΔΣΑΔΗ ΜΑΪΟΤ Θέμα Α ( Α1 =10, Α2 = 15 ) 1) Υαξαθηεξίζηε ηηο παξαθάησ πξνηάζεηο κε - Λ ΓΡΑΠΣΔ ΠΡΟΑΓΩΓΗΚΔ ΔΞΔΣΑΔΗ ΜΑΪΟΤ 06 ΣΑΞΖ : Β ΖΜ/ ΝΗΑ : 9 05 06 ΜΑΘΖΜΑ : Μαζεκαηηθά Καηεύζπλζεο Θέμα Α ( Α =0, Α = 5 ) ) Υαξαθηεξίζηε ηηο παξαθάησ πξνηάζεηο κε - Λ i. Αλ ηόηε ii. iii. Οη επζείεο x x, y y

Διαβάστε περισσότερα

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)

ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις) ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα Ηουνίου 08 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α. Απόδεημε ζεωξήκαηνο ζει. 99 ζρνιηθνύ βηβιίνπ. Α. α.

Διαβάστε περισσότερα

ΘΔΜΑ 1 ο Μονάδες 5,10,10

ΘΔΜΑ 1 ο Μονάδες 5,10,10 ΟΝΟΜΑΣΔΠΩΝΤΜΟ ΗΜΔΡΟΜΗΝΙΑ ΘΔΜΑ 1 ο Μονάδες 5,1,1 ΓΙΑΓΩΝΙΜΑ 1 ου ΜΔΡΟΤ ΣΗ ΑΝΑΛΤΗ Α Γώζηε ηνλ νξηζκό ηεο αληίζηξνθεο ζπλάξηεζεο Β Γείμηε όηη αλ κηα ζπλάξηεζε είλαη αληηζηξέςηκε ηόηε νη γξαθηθέο παξαζηάζεηο

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ΥΟΛΕΙΟ..

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ΥΟΛΕΙΟ.. ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Γ Γυμνασίου ιήμεο 11.00 Κάπνηνο άξρηζε λα δηαβάδεη έλα βηβιίν ηελ 1 ε Δεθεκβξίνπ. Κάζε κέξα δηάβαδε ηνλ ίδην αξηζκό ζειίδσλ

Διαβάστε περισσότερα

ΓΔΧΜΔΣΡΗΑ ΓΗΑ ΟΛΤΜΠΗΑΓΔ

ΓΔΧΜΔΣΡΗΑ ΓΗΑ ΟΛΤΜΠΗΑΓΔ ΒΑΓΓΔΛΖ ΦΤΥΑ 011 1 ΒΑΗΚΟΗ ΟΡΗΜΟΗ 11 ΓΤΝΑΜΖ ΖΜΔΗΟΤ Έζησ P ηπρόλ ζεκείν ηνπ επηπέδνπ θύθινπ C (O,R ) (πνπ βξίζθεηαη εθηόο ηνπ θπθιηθνύ δίζθνπ C (O,R ) ) θαη PT ε εθαπηνκέλε από ην P (T ην ζεκείν επαθήο )

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ: έζησ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ: έζησ ΜΙΓΑΔΙΚΙ ΑΡΙΘΜΙ: έζησ έλαο κηγαδηθόο αξηζκόο. αληίζηξνθνο ηνπ κηγαδηθνύ αξηζκνύ a b είλαη ν αξηζκόο Παπάδειγμα: έζησ.αληίζηξνθνο ηνπ αξηζκνύ : Μέηπο μιγαδικού απιθμού: αλ κέηξν δηαλύζκαηνο OM. b ή απόιπηε

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ. Α. Πρωτοβάθμιεσ Εξιςώςεισ. Β. Διερεφνηςη Εξιςώςεων. 1x είναι αδφνατθ. x 1 x 1. Άλγεβρα Α Λυκείου

ΕΞΙΣΩΣΕΙΣ. Α. Πρωτοβάθμιεσ Εξιςώςεισ. Β. Διερεφνηςη Εξιςώςεων. 1x είναι αδφνατθ. x 1 x 1. Άλγεβρα Α Λυκείου ΕΞΙΣΩΣΕΙΣ Α. Πρωτοβάθμιεσ Εξιςώςεισ. 1. Να λυκεί θ εξίςωςθ (x - 4) (x +5) x -5 5(x +1) - - = - - x 4 6. Να λυκεί θ εξίςωςθ x (x+1)+x(x+1)+x+1=0. Να λυκεί θ εξίςωςθ x(x -4)-x +x =0 4. Να λυκεί θ εξίςωςθ

Διαβάστε περισσότερα

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΠΑΓΚΤΠΡΙΟ ΔΙΑΓΩΝΙΜΟ

ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΠΑΓΚΤΠΡΙΟ ΔΙΑΓΩΝΙΜΟ ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΠΑΓΚΤΠΡΙΟ ΔΙΑΓΩΝΙΜΟ Α ΓΤΜΝΑΙΟΤ Ημεπομηνία: 18/1/010 Ώπα εξέτασηρ: 09:30-1:30 Προτεινόμενες λύσεις 1 Σε κηα θαηαζθήλσζε ππάξρνπλ 18 παηδηά θαη έρνπλ ηξόθηκα γηα 9 κέξεο Μεηά

Διαβάστε περισσότερα

ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) =

ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) = ΘΔΜΑΣΑ Α επηέκβξηνο 9. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(,y) = y.. Να ππνινγηζηνύλ ηα νινθιεξώκαηα: a) ln b) a) 3cos b) e sin 4. Να ππνινγηζηεί ην νινθιήξσκα: S ( y) 3

Διαβάστε περισσότερα

Χαξαθηήξεο δηαηξεηόηεηαο ΜΚΓ ΔΚΠ Αλάιπζε αξηζκνύ ζε γηλόκελν πξώησλ παξαγόλησλ

Χαξαθηήξεο δηαηξεηόηεηαο ΜΚΓ ΔΚΠ Αλάιπζε αξηζκνύ ζε γηλόκελν πξώησλ παξαγόλησλ Χαξαθηήξεο δηαηξεηόηεηαο ΜΚΓ ΔΚΠ Αλάιπζε αξηζκνύ ζε γηλόκελν πξώησλ παξαγόλησλ Πνιιαπιάζηα ελόο θπζηθνύ αξηζκνύ α είλαη νη αξηζκνί πνπ πξνθύπηνπλ από ηνλ πνιιαπιαζηαζκό ηνπ α κε όινπο ηνπο θπζηθνύο αξηζκνύο.

Διαβάστε περισσότερα

α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο

α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο Έξγν ελέξγεηα 3 (Λύζε) Σώκα κάδαο m = 4Kg εξεκεί ζηε βάζε θεθιηκέλνπ επηπέδνπ γσλίαο θιίζεο ζ κε εκζ = 0,6 θαη ζπλζ = 0,8. Τν ζώκα αξρίδεη λα δέρεηαη νξηδόληηα δύλακε θαη μεθηλά λα αλεβαίλεη ζην θεθιηκέλν

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ. (iv) (ii) (ii) (ii) 5. Γηα ηηο δηάθνξεο ηηκέο ηνπ ι λα ιπζνύλ νη εμηζώζεηο : x 6 3 9x

ΕΞΙΣΩΣΕΙΣ. (iv) (ii) (ii) (ii) 5. Γηα ηηο δηάθνξεο ηηκέο ηνπ ι λα ιπζνύλ νη εμηζώζεηο : x 6 3 9x Να ιπζνύλ νη εμηζώζεηο : ( ) 4 ( ) 7 ( )( ) (ii) 5 7 9 4 (iv) 5 6 4 9 6 0 9 6 8 Να ιπζνύλ νη εμηζώζεηο : 7 5 8 (ii) 4 6 8 5 8 ( 6) 4 4 5 (iv) 7 5 4 7 0 7 ( ) 4 8 4 5 8 Να ιπζνύλ νη εμηζώζεηο : ( ) 0 5

Διαβάστε περισσότερα

Επωηήζειρ Σωζηού Λάθοςρ ηων πανελλαδικών εξεηάζεων Σςναπηήζειρ

Επωηήζειρ Σωζηού Λάθοςρ ηων πανελλαδικών εξεηάζεων Σςναπηήζειρ Επωηήζειρ Σωζηού Λάθοςρ ηων πνελλδικών εξεηάζεων 2-27 Σςνπηήζειρ Η γξθηθή πξάζηζε ηεο ζπλάξηεζεο f είλη ζπκκεηξηθή, σο πξνο ηνλ άμνλ, ηεο γξθηθήο πξάζηζεο ηεο f 2 Αλ f, g είλη δύν ζπλξηήζεηο κε πεδί νξηζκνύ

Διαβάστε περισσότερα

ΣΑΞΗ Α - ΜΑΘΗΜΑΣΙΚΑ ΘΕΜΑΣΑ ΘΕΩΡΙΑ (ΓΙΑ ΣΗΝ ΣΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΣΑΞΗ Α - ΜΑΘΗΜΑΣΙΚΑ ΘΕΜΑΣΑ ΘΕΩΡΙΑ (ΓΙΑ ΣΗΝ ΣΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) ΣΑΞΗ Α - ΜΑΘΗΜΑΣΙΚΑ ΘΕΜΑΣΑ ΘΕΩΡΙΑ (ΓΙΑ ΣΗΝ ΣΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟ- ΑΛΓΕΒΡΑ ΕΡΩΣΗΗ 1 Πνηνη αξηζκνί νλνκάδνληαη πξώηνη θαη πνηνη ζύλζεηνη; Να δώζεηε παξαδείγκαηα. ΑΠΑΝΣΗΗ 1 Όηαλ έλαο αξηζκόο δηαηξείηαη

Διαβάστε περισσότερα

ΓΙΑΙΡΔΣΟΣΗΣΑ. Οπιζμόρ 1: Έζηω d,n. Λέκε όηη ν d δηαηξεί ηνλ n (ζπκβνιηζκόο: dn) αλ. ππάξρεη c ηέηνην ώζηε n. Θεώπημα 2: Γηα d,n,m,α,b ηζρύνπλ:

ΓΙΑΙΡΔΣΟΣΗΣΑ. Οπιζμόρ 1: Έζηω d,n. Λέκε όηη ν d δηαηξεί ηνλ n (ζπκβνιηζκόο: dn) αλ. ππάξρεη c ηέηνην ώζηε n. Θεώπημα 2: Γηα d,n,m,α,b ηζρύνπλ: ΓΙΑΙΡΔΣΟΣΗΣΑ Οπιζμόρ 1: Έζηω,. Λέκε όηη ν δηαηξεί ηνλ (ζπκβνιηζκόο: ) αλ ππάξρεη c ηέηνην ώζηε c. Θεώπημα : Γηα,,m,α,b ηζρύνπλ: i), (άξα ) ii) 1, 1 iii) 0 iv) 0 0 v) m m m vi) α bm vii) α (άξα ) viii)

Διαβάστε περισσότερα

ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ

ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ. Μία αθηίλα θωηόο πξνζπίπηεη κε κία γωλία ζ ζηε επάλω επηθάλεηα ελόο θύβνπ από πνιπεζηέξα ν νπνίνο έρεη δείθηε δηάζιαζεο ε =,49 (ζρήκα ). Βξείηε πνηα ζα είλαη ε κέγηζηε γωλία

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Είμαζηε ηυχεροί που είμαζηε δάζκαλοι Ον/μο:.. A Λσκείοσ Ύλη: Εσθύγραμμη Κίνηζη 8-11-2015 Θέμα 1 ο : 1. Η εμίζωζε θίλεζεο ελόο θηλεηνύ πνπ θηλείηαη επζύγξακκα είλαη ε x = 5t. Πνηα

Διαβάστε περισσότερα

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ

ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ ΠΑΡΑΡΣΗΜΑ Δ. ΔΤΡΔΗ ΣΟΤ ΜΔΣΑΥΗΜΑΣΙΜΟΤ FOURIER ΓΙΑΦΟΡΩΝ ΗΜΑΣΩΝ Εδώ ζα ππνινγίζνπκε ην κεηαζρεκαηηζκό Fourier κεξηθώλ αθόκα ζεκάησλ, πξνζπαζώληαο λα μεθηλήζνπκε από ην κεηαζρεκαηηζκό Fourier γλσζηώλ ζεκάησλ

Διαβάστε περισσότερα

Δξγαζηεξηαθή άζθεζε 03. Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf

Δξγαζηεξηαθή άζθεζε 03. Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf Δξγαζηεξηαθή άζθεζε 03 Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf Ζιίαο Χαηδεζενδσξίδεο Οθηώβξηνο / Ννέκβξηνο 2004 Τη είλαη ην δίθηπν Wulf Δπίπεδν ζην νπνίν κπνξνύκε λα αλαπαξαζηήζνπκε ηξηζδηάζηαηα ζρήκαηα,

Διαβάστε περισσότερα

Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α

Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano). Να δηαηππώζεηε ην Θ.Bolzano. 5 ΘΔΜΑ Α μονάδες A. Να απνδείμεηε όηη γηα θάζε πνιπωλπκηθή

Διαβάστε περισσότερα

ΔΥΚΛΔΙΓΗΣ 2008 ΛΥΣΔΙΣ ΘΔΜΑΤΩΝ

ΔΥΚΛΔΙΓΗΣ 2008 ΛΥΣΔΙΣ ΘΔΜΑΤΩΝ 1 ΔΥΚΛΔΙΓΗΣ 008 ΛΥΣΔΙΣ ΘΔΜΑΤΩΝ Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Αλ ηζρύεη όηη 8x10y 1, λα βξείηε ηελ ηηκή ηεο παξάζηαζεο 008 x 5y 8x 60 y. (1 ος τρόπος) 008 x 5y 8x 60y x y x y x y x y 008 5 6 8 10 008 8 10 6 8

Διαβάστε περισσότερα

ΘΕΜΑΣΑ ΠΑΝΕΛΛΗΝΙΩΝ ΔΙΑΓΩΝΙΜΩΝ Ε.Μ.Ε.

ΘΕΜΑΣΑ ΠΑΝΕΛΛΗΝΙΩΝ ΔΙΑΓΩΝΙΜΩΝ Ε.Μ.Ε. 994-995 ΘΕΜΑΣΑ ΠΑΝΕΛΛΗΝΙΩΝ ΔΙΑΓΩΝΙΜΩΝ Ε.Μ.Ε. ΑΡΧΙΜΗΔΗ - ΜΙΚΡΟΙ. Θεσξνύκε ηνπο αξηζκνύο Α=( 0 +8 :6 5 +6 7 0 :8 7 ) 63 Β=( 5 : 5 +) 54. Πνηνο είλαη κεγαιύηεξνο;. Θεσξνύκε 6 δηαδνρηθνύο θπζηθνύο αξηζκνύο.

Διαβάστε περισσότερα

f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)

f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x) ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 54 Υλη: Παράγωγοι Γ Λσκείοσ Ον/μο:.. 6--4 Θεη-Τετν. ΘΔΜΑ Α.. Αλ f, g, h ηξεηο παξαγωγίζηκεο ζπλαξηήζεηο ζην λα απνδείμεηε όηη : f () g() h() ' f '()g()h() g'()f ()h() h'() f ()g()

Διαβάστε περισσότερα

ΘΔΜΑΤΑ ΠΑΝΔΛΛΗΝΙΩΝ ΓΙΑΓΩΝΙΣΜΩΝ Δ.Μ.Δ.

ΘΔΜΑΤΑ ΠΑΝΔΛΛΗΝΙΩΝ ΓΙΑΓΩΝΙΣΜΩΝ Δ.Μ.Δ. ΘΔΜΑΤΑ ΠΑΝΔΛΛΗΝΙΩΝ ΙΑΩΝΙΣΜΩΝ Δ.Μ.Δ. Β' ΥΜΝΑΣΙΟΥ - ΘΑΛΗΣ 995-996. Να ραξάμεηε θύθιν (Κ,3cm). Με θέληξν ην ζεκείν Λ ηνπ θύθινπ λα ραξάμεηε δεύηεξν θύθιν (Λ,3cm). Ζ δηάθεληξνο ΚΛ ηέκλεη ηνλ Κ ζην Α θαη ηνλ

Διαβάστε περισσότερα

Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1.

Master Class 3. Ο Ν.Ζανταρίδης προτείνει θέματα Μαθηματικών Γ Λσκειοσ ΘΕΜΑ 1. ΘΕΜΑ. Γηα ηελ ζπλάξηεζε f : IR IR ηζρύεη + f() f(- ) = γηα θάζε IR. Να δείμεηε όηη f() =, ΙR. Να βξείηε ηελ εθαπηόκελε (ε) ηεο C f πνπ δηέξρεηαη από ην ζεκείν (-,-) 3. Να βξείηε ην εκβαδόλ Δ(α) ηνπ ρωξίνπ

Διαβάστε περισσότερα

Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12

Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12 Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 11-12 Project 6: Ταμίδη κε ηε Μεραλή ηνπ Φξόλνπ Υπεύζπλνη Καζεγεηέο: Ε. Μπηιαλάθε Φ. Αλησλάηνο Δρώηηζη 3: Πνηα από ηα παξαθάησ ΜΜΕ ηεξαξρείηε από πιεπξάο ζεκαζίαο;

Διαβάστε περισσότερα

Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Εθπαίδεπζεο Τζηάξα δηαλέκεηαη δσξεάλ απνθιεηζηηθά από ηνλ ςεθηαθό ηόπν ηνπ schooltime.gr

Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Εθπαίδεπζεο Τζηάξα δηαλέκεηαη δσξεάλ απνθιεηζηηθά από ηνλ ςεθηαθό ηόπν ηνπ schooltime.gr Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Εθπαίδεπζεο Τζηάξα δηαλέκεηαη δσξεάλ απνθιεηζηηθά από ηνλ ςεθηαθό ηόπν ηνπ schooltime.gr Η λέα ηζηνζειίδα καο : www. Μ ΑΘΗΜ ΑΤΙΚΑ α x +β< 0 Γ ΓΥΜΝΑΣΙΟΥ α.(β +γ

Διαβάστε περισσότερα

ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000.

ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000. ΔΕΟ 13 Ποσοτικές Μέθοδοι Σσνάρηηζη Κόζηοσς C(), μέζο κόζηος C()/. Παράδειγμα 1 Μηα εηαηξεία δαπαλά γηα θάζε πξντόλ Α πνπ παξάγεη 0.0 λ.κ. Τα πάγηα έμνδα ηεο εηαηξείαο είλαη 800 λ.κ. Ζεηείηαη 1) Να πεξηγξάςεηε

Διαβάστε περισσότερα

Τράπεζα Θεμάτωμ Γεωμετρία Α Λσκείοσ

Τράπεζα Θεμάτωμ Γεωμετρία Α Λσκείοσ Τράπεζα Θεμάτωμ Γεωμετρία Α Λσκείοσ Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς www.askisopolis.gr Οη αζθήζεης ηες ηράπεδας ζεμάηωκ απαιιαγμέκες από ηα ζτήμαηα (όποσ ήηακ δσκαηόκ) β έθδοζε 0/11/015 ΗΡΖΣΕΡΖΑ

Διαβάστε περισσότερα

ΓΗΑΓΩΝΗΜΑ ΣΖ ΓΔΩΜΔΣΡΗΑ 38. Ύλη: Σρίγωνα, Παράλληλες εσθείες, Παραλληλόγραμμα-Σραπέζια

ΓΗΑΓΩΝΗΜΑ ΣΖ ΓΔΩΜΔΣΡΗΑ 38. Ύλη: Σρίγωνα, Παράλληλες εσθείες, Παραλληλόγραμμα-Σραπέζια ΓΗΑΓΩΝΗΜΑ ΣΖ ΓΔΩΜΔΣΡΗΑ 8 Ον/μο:.. Α Λσκείοσ Ύλη: Σρίγωνα, Παράλληλες εσθείες, 0-0-14 Παραλληλόγραμμα-Σραπέζια Θέμα 1 ο : Α.Τη νλνκάδνπκε βαξύθεληξν ελόο ηξηγώλνπ θαη πνηα ηδηόηεηα έρεη; (6 μον.) Β. Να

Διαβάστε περισσότερα

3ο Δπαναληπηικό διαγώνιζμα ζηα Μαθημαηικά καηεύθσνζης ηης Γ Λσκείοσ Θέμα A Α1. Έζησ f κηα ζπλερήο ζπλάξηεζε ζ έλα δηάζηεκα

3ο Δπαναληπηικό διαγώνιζμα ζηα Μαθημαηικά καηεύθσνζης ηης Γ Λσκείοσ Θέμα A Α1. Έζησ f κηα ζπλερήο ζπλάξηεζε ζ έλα δηάζηεκα wwwaskisopolisgr 3ο Δπνληπηικό διγώνιζμ ζη Μθημηικά κηεύθσνζης ηης Γ Λσκείοσ 17-18 Θέμ A Α1 Έζησ κη ζπλερήο ζπλάξηεζε ζ έλ δηάζηεκ β λ πνδείμεηε όηη: t dt G β G Α Πόηε κη ζπλάξηεζε ιέγεηη 1-1; Α3 Πόηε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. z2. Να απνδεηρζεί όηη:

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. z2. Να απνδεηρζεί όηη: ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΑΚΖΖ Γύν κηθξέο κύγεο Α θαη Β θηλνύληαη πάλω ζην κηγαδηθό επίπεδν θαη είλαη εηθόλεο ηωλ κηγαδηθώλ θαη αληίζηνηρα, ώζηε λα ηζρύεη ζπλερώο 4. Να απνδεηρζεί όηη: 5 α).

Διαβάστε περισσότερα

Ενδεικτικά Θέματα Στατιστικής ΙΙ

Ενδεικτικά Θέματα Στατιστικής ΙΙ Ενδεικτικά Θέματα Στατιστικής ΙΙ Θέματα. Έζησ όηη ζε δείγκα 35 θαηνηθηώλ πνπ ελνηθηάδνληαη ζε θνηηεηέο ζηελ Κνδάλε βξέζεθε ην κέζν κεληαίν κίζζσκα ζηα 5 επξώ, ελώ ζην Ζξάθιεην ην κέζν κεληαίν κίζζσκα ζε

Διαβάστε περισσότερα

Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα!

Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα! Cpyright 2013 Λόγος & Επικοινωνία // All rights Reserved Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα! Αυηό ηο παιχνίδι έχει ζηόχους: 1. ηελ εθγύκλαζε ηεο αθνπζηηθήο κλήκεο ησλ παηδηώλ 2. ηελ εμάζθεζε ζηελ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. καινούργιο σχολ. σελ 35 / παλιό σχολ. 53 Α. Ψευδής, σελ.99 / παλιό σχολ. σελ. 7 αντιπαράδειγμά, f ( ) Α3. σελ 73, παλιό σχολ. σελ. 9 Α. α) Λάθος β)

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ

ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ ΑΠΑΝΤΗΣΔΙΣ ΓΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ II ΔΠΑΛ ΘΔΜΑ Α Α1. α. Σ β. Σ γ. Λ δ. Λ ε. Λ ζη. Σ Α2. Γ Α3. 1. γ 2. ε 3. δ 4. α Β1. ΘΔΜΑ Β Οη ηειηθνί ππνινγηζηέο παίξλνπλ απνθάζεηο δξνκνιόγεζεο κόλν γηα ηα δηθά ηνπο απηνδύλακα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΚΦΩΝΗΣΕΙΣ. Διάρκεια: 3 ώρες Ημερομηνία: 12/5/2019 Έκδοση: 1 η. Τα sites blogs που συμμετέχουν (σε αλφαβητική σειρά):

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΚΦΩΝΗΣΕΙΣ. Διάρκεια: 3 ώρες Ημερομηνία: 12/5/2019 Έκδοση: 1 η. Τα sites blogs που συμμετέχουν (σε αλφαβητική σειρά): Τα sites blogs που συμμετέχουν (σε αλφαβητική σειρά): blogsschgr/iordaniskos/ Επιμελητής: Ιορδάνης Κόσογλου blogsschgr/pavtryfon/ Επιμελητής: Παύλος Τρύφων eisatoponblogspotgr/ Επιμελητής: Σωκράτης Ρωμανίδης

Διαβάστε περισσότερα

Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2

Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2 ΣΡΙΓΩΝΟΜΔΣΡΙΚΔ EΞΙΩΔΙ Πνηα παξαδείγκαηα εμηζώζεσλ ή θαη πξνβιεκάησλ πηζηεύεηαη όηη είλαη θαηάιιεια γηα ηελ επίιπζε ηνπο θαηά ηελ δηάξθεηα ηεο δηδαθηηθήο δηαδηθαζίαο κέζα ζηελ ηάμε; 1 ε ΓΙΓΑΚΣΙΚΗ ΩΡΑ Α.

Διαβάστε περισσότερα

ΘΔΜΑΣΑ ΠΑΝΔΛΛΗΝΙΩΝ ΓΙΑΓΩΝΙΜΩΝ Δ.Μ.Δ.

ΘΔΜΑΣΑ ΠΑΝΔΛΛΗΝΙΩΝ ΓΙΑΓΩΝΙΜΩΝ Δ.Μ.Δ. ΘΔΜΑΣΑ ΠΑΝΔΛΛΗΝΙΩΝ ΓΙΑΓΩΝΙΜΩΝ Δ.Μ.Δ. Β' ΛΤΚΔΙΟΤ - ΔΤΚΛΔΙΓΗ 99-994 ΜΔΡΟ Α. Γύν ίζα ηεηξάγσλα ΑΒΓΓ θαη ΔΕΖΘ πιεπξάο 0 ηνπνζεηνύληαη έηζη ώζηε ε θνξπθή Δ λα βξίζθεηαη ζην θέληξν ηνπ ηεηξαγώλνπ ΑΒΓΓ. Σν εκβαδόλ

Διαβάστε περισσότερα

Θέμα 3 ο v. Θέμα 5 ο Να βξεζεί ν γεσκεηξηθόο ηόπνο ησλ εηθόλσλ ησλ κηγαδηθώλ z γηα ηνπο νπνίνπο

Θέμα 3 ο v. Θέμα 5 ο Να βξεζεί ν γεσκεηξηθόο ηόπνο ησλ εηθόλσλ ησλ κηγαδηθώλ z γηα ηνπο νπνίνπο ΜΑΘΗΜΑΣΙΚΑ Γ ΛΤΚΕΙΟΤ ΘΔΤΙΚΗ & ΤΔΦΝΟΛΟΓΙΚΗ ΚΑΤΔΥΘΥΝΣΗ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Δπαλαιεπηηθέο αζθήζεηο θαη ζύλζεηα ζέκαηα Δπηκέιεηα: Άιθεο Τδειέπεο Αζήλα 0 Θέμα ο Έζησ νη α, β R. Να δείμεηε όηη ν κηγαδηθόο αξηζκόο

Διαβάστε περισσότερα

Κόληξα πιαθέ ζαιάζζεο κε δηαζηάζεηο 40Υ40 εθ. Καξθηά 3 θηιά πεξίπνπ κε κήθνο ηξηπιάζην από ην πάρνο ηνπ μύινπ θπξί κεγάιν θαη ππνκνλή

Κόληξα πιαθέ ζαιάζζεο κε δηαζηάζεηο 40Υ40 εθ. Καξθηά 3 θηιά πεξίπνπ κε κήθνο ηξηπιάζην από ην πάρνο ηνπ μύινπ θπξί κεγάιν θαη ππνκνλή Δξγαιεία Καηαζθεπέο 1 Δ.Κ.Φ.Δ. ΥΑΝΙΩΝ ΠΡΩΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ ΔΝΟΣΗΣΑ 10 ε : ΜΗΥΑΝΙΚΗ ΜΔΡΟ Β ΠΙΔΗ ΔΡΓΑΛΔΙΑ ΚΑΣΑΚΔΤΔ Καηαζθεπή 1: Καξέθια θαθίξε Όξγαλα Τιηθά Κόληξα πιαθέ ζαιάζζεο κε δηαζηάζεηο 40Υ40 εθ.

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο 1 ε Δξαζηεξηόηεηα Αλνίμηε ην αξρείν «Μεηαηόπηζε παξαβνιήο.ggb». Με ηε καύξε γξακκή παξηζηάλεηαη ε γξαθηθή παξάζηαζε ηεο f(x)=αx 2 πνπ ζα ηελ

Διαβάστε περισσότερα

ΓΙΑΙΡΔΣΔ ΦΤΙΚΟΤ ΑΡΙΘΜΟΤ Μ.Κ.Γ. ΦΤΙΚΏΝ ΑΡΙΘΜΏΝ

ΓΙΑΙΡΔΣΔ ΦΤΙΚΟΤ ΑΡΙΘΜΟΤ Μ.Κ.Γ. ΦΤΙΚΏΝ ΑΡΙΘΜΏΝ ΓΙΑΙΡΔΣΔ ΦΤΙΚΟΤ ΑΡΙΘΜΟΤ Γηαηξέηεο ελόο θπζηθνύ αξηζκνύ α είλαη νη θπζηθνί αξηζκνί πνπ όηαλ δηαηξεζνύλ κε ην α δίλνπλ αθέξαην πειίθν θαη ππόινηπν 0. Οη παξάγνληεο ελόο αξηζκνύ είλαη θαη δηαηξέηεο ηνπ. Ππώηοι

Διαβάστε περισσότερα

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013

ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013 ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 7 ΜΑΪΟΥ 13 ΘΔΜΑ Α : (Α1) Σρνιηθό βηβιίν ζειίδα 33-335 (Α) Σρνιηθό βηβιίν ζειίδα 6 (Α3) Σρνιηθό βηβιίν ζειίδα (Α) α) Λάζνο β) Σωζηό γ) Σωζηό

Διαβάστε περισσότερα

Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο:

Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Σύνθεζη ηαλανηώζεων Α. Σύλζεζε δύν α.α.η ηεο ίδιας ζστνόηηηας Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Η απνκάθξπλζε

Διαβάστε περισσότερα

Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαλέκεηαη δσξεάλ απνθιεηζηηθά από ηνλ ςεθηαθό ηόπν ηνπ schooltime.gr

Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαλέκεηαη δσξεάλ απνθιεηζηηθά από ηνλ ςεθηαθό ηόπν ηνπ schooltime.gr Τν εθπαηδεπηηθό πιηθό ηεο Φξνηηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαέκεηαη δσξεά απνθιεηζηηθά από ην ςεθηαθό ηόπν ηνπ schooltime.gr Η έα ηζηνζειίδα καο : www. Μ ΑΘΗΜ ΑΤΙΚΑ α x +β< 0 Γ ΓΥΜΝΑΣΙΟΥ α.(β +γ )α.

Διαβάστε περισσότερα

ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 133. Ύλη: Σσναρηήζεις-Σηαηιζηική Θέμα 1

ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 133. Ύλη: Σσναρηήζεις-Σηαηιζηική Θέμα 1 ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 1 Ον/μο:.. Γ Λσκείοσ Ύλη: Σσναρηήζεις-Σηαηιζηική Γεν. Παιδείας 9-1-1 Θέμα 1 Α. Αο ππνζέζνπκε όηη x 1,x,...,x k είλαη νη ηηκέο κηαο κεηαβιεηήο x πνπ αθνξά ηα άηνκα ελόο δείγκαηνο

Διαβάστε περισσότερα

Φςζική Πποζαναηολιζμού Γ Λςκείος. Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο

Φςζική Πποζαναηολιζμού Γ Λςκείος. Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο Φςζική Πποζαναηολιζμού Γ Λςκείος Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο Επιμέλεια: Αγκανάκηρ Α. Παναγιώηηρ Επωηήζειρ Σωζηό- Λάθορ Να χαπακηηπίζεηε ηιρ παπακάηω πποηάζειρ ωρ ζωζηέρ ή λάθορ: 1. Η ηαιάλησζε είλαη

Διαβάστε περισσότερα

Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση

Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέρξη ζηηγκήο ην κνλνπώιην έρεη ζεσξεζεί ζαλ κηα επηρείξεζε ε νπνία πσιεί ην πξντόλ ηεο ζε θάζε πειάηε ζηελ

Διαβάστε περισσότερα

Η/Υ A ΤΑΞΕΩΣ ΑΕ 2010-2011. Συστήματα Αρίθμησης. Υποπλοίαρχος Ν. Πετράκος ΠΝ

Η/Υ A ΤΑΞΕΩΣ ΑΕ 2010-2011. Συστήματα Αρίθμησης. Υποπλοίαρχος Ν. Πετράκος ΠΝ Συστήματα Αρίθμησης Υποπλοίαρχος Ν. Πετράκος ΠΝ 1 Ειζαγωγή Τν bit είλαη ε πην βαζηθή κνλάδα κέηξεζεο. Είλαη κία θαηάζηαζε on ή off ζε έλα ςεθηαθό θύθισκα. Άιιεο θνξέο είλαη κία θαηάζηαζε high ή low voltage

Διαβάστε περισσότερα

x x x x tan(2 x) x 2 2x x 1

x x x x tan(2 x) x 2 2x x 1 ΘΕΡΙΝΟ ΣΜΗΜΑ ΜΑΘΗΜΑΣΙΚΑ Ι ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΕΡΟ Ι 1. Να γίλνπλ νη γξαθηθέο παξαζηάζεηο ησλ παξαθάησ ζπλαξηήζεσλ. t ( i) e ( ii) ln( ) ( iii). Να βξεζεί ην Π.Ο., ν ηύπνο ηεο αλίζηξνθεο θαη ην Π.Τ. ησλ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 204-205 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/204 A ΟΜΑΓΑ Οδηγία: Να γράυεηε ζηο ηεηράδιο ζας ηον αριθμό κάθε μιας από ηις παρακάηφ ερφηήζεις Α.-Α.8 και

Διαβάστε περισσότερα

: :

: : ΔΛΛΗΝΙΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ Παλεπηζηεκίνπ (Διεπζεξίνπ Βεληδέινπ) 34 106 79 ΑΘΖΝΑ Τει. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Δleftheriou

Διαβάστε περισσότερα

4) Να γξάςεηε δηαδηθαζία (πξόγξακκα) ζηε Logo κε όλνκα θύθινο πνπ ζα ζρεδηάδεη έλα θύθιν. Λύζε Γηα θύθινο ζηθ επαλάιαβε 360 [κπ 1 δε 1] ηέινο

4) Να γξάςεηε δηαδηθαζία (πξόγξακκα) ζηε Logo κε όλνκα θύθινο πνπ ζα ζρεδηάδεη έλα θύθιν. Λύζε Γηα θύθινο ζηθ επαλάιαβε 360 [κπ 1 δε 1] ηέινο Λσμένες αζκήζεις ζηη Logo Στεδίαζη ζτημάηων με ηη τελώνα 1) Να γξάςεηε δηαδηθαζία (πξόγξακκα) ζηε Logo κε όλνκα ηεηξάγσλν πνπ ζα ζρεδηάδεη έλα ηεηξάγσλν κε πιεπξά 120. Γηα ηεηξάγσλν επαλάιαβε 4 [κπ 120

Διαβάστε περισσότερα

ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ

ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ ΦΤΛΛΟ ΕΡΓΑΙΑ (Θεοδώρα Γιώηη, Νικόλας Καραηάζιος- Τπεύθσνη εκ/κος Λ. Παπαηζίμπα) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ:.., ΗΜΕΡΟΜΗΝΙΑ:.// Σε ακαμίδην πνπ κπνξεί λα θηλείηαη ρσξίο ηξηβέο πάλσ

Διαβάστε περισσότερα

(γ) Να βξεζεί ε ρξνλνεμαξηώκελε πηζαλόηεηα κέηξεζεο ηεο ζεηηθήο ηδηνηηκήο ηνπ ηειεζηή W.

(γ) Να βξεζεί ε ρξνλνεμαξηώκελε πηζαλόηεηα κέηξεζεο ηεο ζεηηθήο ηδηνηηκήο ηνπ ηειεζηή W. ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τειηθή Εμέηαζε: 5 Σεπηέκβξε 6 (Δηδάζθσλ: ΑΦ Τεξδήο) ΘΕΜΑ Θεσξνύκε θβαληηθό ζύζηεκα πνπ πεξηγξάθεηαη από Φακηιηνληαλή Η, ε νπνία ζε κνξθή πίλαθα ρξεζηκνπνηώληαο ηηο ηδηνζπλαξηήζεηο, θαη

Διαβάστε περισσότερα

ΠΡΩΣΟΙ ΑΡΙΘΜΟΙ. (δει. ν n έρεη έλαλ ηνπιάρηζηνλ δηαηξέηε πνπ αλήθεη ζην ζύλνιν 2,..., n 1

ΠΡΩΣΟΙ ΑΡΙΘΜΟΙ. (δει. ν n έρεη έλαλ ηνπιάρηζηνλ δηαηξέηε πνπ αλήθεη ζην ζύλνιν 2,..., n 1 ΠΡΩΣΟΙ ΑΡΙΘΜΟΙ Οπιζμόρ : Έλαο αθέξαηνο θαιείηαη πξώηνο αλ νη κόλνη ζεηηθνί δηαηξέηεο ηνπ είλαη νη θαη. Αλ ν αθέξαηνο δελ είλαη πξώηνο ηόηε ν θαιείηαη ζύλζεηνο. Παπαηήπηζη : i) Αλ ν αθέξαηνο είλαη ζύλζεηνο

Διαβάστε περισσότερα

Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαλέκεηαη δωξεάλ απνθιεηζηηθά από ηνλ ψεθηαθό ηόπν ηνπ schooltime.gr

Τν εθπαηδεπηηθό πιηθό ηεο Φξνληηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαλέκεηαη δωξεάλ απνθιεηζηηθά από ηνλ ψεθηαθό ηόπν ηνπ schooltime.gr Τν εθπαηδεπηηθό πιηθό ηεο Φξνηηζηεξηαθήο Δθπαίδεπζεο Τζηάξα δηαέκεηαη δωξεά απνθιεηζηηθά από ην ψεθηαθό ηόπν ηνπ schooltime.gr Η έα ηζηνζειίδα καο : www. Μ ΑΘΗΜ ΑΤΙΚΑ α x +β< 0 Γ ΓΥΜΝΑΣΙΟΥ α.(β +γ )α.

Διαβάστε περισσότερα

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.

Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Μονοψϊνιο Ολιγοψώνιο Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Οπιακή αξία Δπηπξόζζεηα νθέιε από ηελ ρξήζε/θαηαλάισζε κηαο επηπξόζζεηε

Διαβάστε περισσότερα

Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ.

Απαντήσεις θέματος 2. Παξαθάησ αθνινπζεί αλαιπηηθή επίιπζε ησλ εξσηεκάησλ. Απαντήσεις θέματος 2 Απηά πνπ έπξεπε λα γξάςεηε (δελ ρξεηαδόηαλ δηθαηνιόγεζε εθηόο από ην Γ) Α return a*b; Β 0:acegf2, 1: acegf23, 2: acegf234, 3:acegf2345, 4:acegf23456, 5:acegf234567, 6:acegf2345678,

Διαβάστε περισσότερα

1. Να ζεκεηώζεηε πνηα από ηηο επόκελεο ηαρύηεηεο είλαη κεγαιύηεξε. Α. π 1 = 30m/s Β. π 2 = 0.02km/s Γ. π 3 = 36000m/h Γ. π 4 = 144km/h.

1. Να ζεκεηώζεηε πνηα από ηηο επόκελεο ηαρύηεηεο είλαη κεγαιύηεξε. Α. π 1 = 30m/s Β. π 2 = 0.02km/s Γ. π 3 = 36000m/h Γ. π 4 = 144km/h. ΦΤΙΚΗ A ΛΤΚΔΙΟΤ ΓΙΑΡΚΔΙΑ: 10min ΣΜΗΜΑ:. ONOMA:. ΔΠΩΝΤΜΟ: ΗΜΔΡΟΜΗΝΙΑ: ΜΟΝΑΓΔ ΘΔΜΑ 1 ο ΘΔΜΑ ο ΘΔΜΑ 3 ο ΘΔΜΑ 4 ο ΤΝΟΛΟ ΘΔΜΑ A: 1. Να ζεκεηώζεηε πνηα από ηηο επόκελεο ηαρύηεηεο είλαη κεγαιύηεξε. Α. π 1 = 30m/s

Διαβάστε περισσότερα

Εξετάςεισ περιόδου Μαΐου Ιουνίου 2016

Εξετάςεισ περιόδου Μαΐου Ιουνίου 2016 Εξετάςεισ περιόδου Μαΐου Ιουνίου 016 ΕΞΕΣΑΣΕΑ ΤΛΗ ΜΑΘΗΜΑΣΙΚΩΝ ΟΜΑΔΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΣΙΚΩΝ ΠΟΤΔΩΝ Β ΣΑΞΗ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ (όλα τα τμήματα) Από το βιβλίο «Μαθηματικά Θετικήσ και Τεχνολογικήσ Κατεφθυνςησ Β

Διαβάστε περισσότερα

Θέμαηα Καγκοσρό 2009 Δπίπεδο: 3 (γηα καζεηέο ηεο Α' θαη Β' ηάμεο Γπκλαζίνπ)

Θέμαηα Καγκοσρό 2009 Δπίπεδο: 3 (γηα καζεηέο ηεο Α' θαη Β' ηάμεο Γπκλαζίνπ) Μιτάλης Λάμπροσ Νίκος Κ. Σπαοσδάκης Θέμαηα Καγκοσρό 009 Δπίπεδο: (γηα καζεηέο ηεο Α' θαη Β' ηάμεο Γπκλαζίπ) Δξσηήζεηο βαζκώλ: ) Πηο από ηπο παξαθάησ αξηζκύο είλαη δπγόο (δειαδή άξηηο); 009 9 Β) 008 009

Διαβάστε περισσότερα

Εξίσωση ευθείας. ) θαη Β( 1,

Εξίσωση ευθείας. ) θαη Β( 1, ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΔΣΙΚΗ & ΣΔΥΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ Δπηκέιεηα: Άιθεο Σδειέπεο Ι. Ερωτήσεις τύποσ «ΣΩΣΤΟ - ΛΑΘΟΣ». Η επζεία ε νπνία δηέξρεηαη από ηα ζεκεία Α(, ) θαη Β(, ) έρεη ζπληειεζηή

Διαβάστε περισσότερα

Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis

Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training Dipl.Biol.cand.med. Stylianos Kalaitzis Stylianos Kalaitzis Μνλνϋβξηδηζκνο 1 Γπν γνλείο, εηεξόδπγνη γηα ηνλ αιθηζκό θάλνπλ παηδηά. Πνία ε πηζαλόηεηα

Διαβάστε περισσότερα

ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017

ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017 α: κολάδα β: κολάδες Σειίδα από 8 ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 7 ΘΔΜΑ Α Α Έζηω, κε Θα δείμνπκε όηη f ( ) f ( ) Πξάγκαηη, ζην δηάζηεκα [, ] ε f ηθαλνπνηεί ηηο πξνϋπνζέζεηο ηνπ ΘΜΤ Επνκέλωο,

Διαβάστε περισσότερα

«Τεηπάδιο Επανάληψηρ» ΑΛΓΕΒΡΑ Ά ΛΥΚΕΙΟΥ

«Τεηπάδιο Επανάληψηρ» ΑΛΓΕΒΡΑ Ά ΛΥΚΕΙΟΥ . Άλγεβπα Ά Λςκείος Θεωπία Αζκήζειρ «Τεηπάδιο Επανάληψηρ» ΑΛΓΕΒΡΑ Ά ΛΥΚΕΙΟΥ Σςνοπηική θεωπία Επωηήζειρ θεωπίαρ Θέμαηα Εξεηάζεων Σςνδςαζηικά θέμαηα Θέμαηα ηος ΟΕΦΕ 006 010.. (Α) ΜΕΡΟ: ΕΡΩΣΗΕΙ ΘΕΩΡΙΑ ΘΕΜΑΣΑ

Διαβάστε περισσότερα

Α ζ θ ή ζ ε σ λ. Γ γ π κ λ α ζ ί ν π

Α ζ θ ή ζ ε σ λ. Γ γ π κ λ α ζ ί ν π 9 ν ΓΤΜΝΑΙΟ ΑΘΗΝΩΝ Δ π η ι ν γ ή Α ζ θ ή ζ ε σ λ Γ γ π κ λ α ζ ί ν π Δπηκέιεηα Θόδσξνο Οηθνλνκόπνπινο Α Θ Η Ν Α Κ Δ Φ Α Λ Α Ι Ο ν Α. Δ Ρ Ω Σ Η Δ Ι Θ Δ Ω Ρ Ι Α. Πνηνο αξηζκόο ιέγεηαη ξεηόο;. Πόηε δπν αξηζκνί

Διαβάστε περισσότερα

Να ζρεδηαζζεί ην θαηεπζπλόκελν γξάθεκα πνπ νξίδεηαη από ηνλ εμήο πίλαθα γεηηλίαζεο.

Να ζρεδηαζζεί ην θαηεπζπλόκελν γξάθεκα πνπ νξίδεηαη από ηνλ εμήο πίλαθα γεηηλίαζεο. . Σρεδίαζε Καηεπζπλόκελωλ Γξαθεκάηωλ (.8.) Να ζρεδηαζζεί ην θαηεπζπλόκελν γξάθεκα πνπ νξίδεηαη από ηνλ εμήο πίλαθα γεηηλίαζεο. Κνξπθέο 0 0 0 0 0 0 0 0. Σρεδίαζε(.8.5) Να ζρεδηαζηεί ην παξαθάηω γξάθεκα

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 19 ΙΑΝΟΥΑΡΙΟΥ 2008

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 19 ΙΑΝΟΥΑΡΙΟΥ 2008 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ 1. ρεδίαζε πλδπαζηηθνύ Κπθιώκαηνο Έλα ζπλδπαζηηθό θύθισκα (Κ) έρεη ηξεηο εηζόδνπο A, B θαη C θαη κία έμνδν Y Y=A B+AC Να θαηαζθεπάζεηε ην ράξηε Karnaugh. B 0

Διαβάστε περισσότερα

Ασκήσεις Οπτική και Κύματα

Ασκήσεις Οπτική και Κύματα Παλεπηζηήκην Κξήηεο Τκήκα Επηζηήκεο θαη Τερλνινγίαο Υιηθώλ Ασκήσεις Οπτική και Κύματα Δηδάζθσλ: Δεκήηξεο Παπάδνγινπ Email: dpapa@materials.uc.gr Άλυτες Ασκήσεις: 1. Να πξνζδηνξίζεηε αλ νη αθόινπζεο ζπλαξηήζεηο

Διαβάστε περισσότερα