Str

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Str"

Transcript

1 Str. Testiranje statističkih hipoteza Predavač: Dr Mirko Savić

2 Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće naučnim ili iskustvenim). Jednom formirana hipoteza se koristi za izvođenje zaključaka o posmatranom problemu uz pomoć odgovarajućeg statističkog metoda. Podela testova: Parametarski testovi. Neparametarski testovi.

3 Postupak testiranja hipoteze se izvodi u nekoliko koraka:. Definišu se nulta i alternativna hipoteza.. Izbor modela teorijskog rasporeda. 3. Određuje se nivo značajnosti testa α odnosno verovatnoća ( α). 4. Definisanje uzorka. 5. Izračunavanje statistike testa na osnovu uzorka. 6. Iz tablice teorijskog rasporeda očitava se tablična vrednost (kriterijum). 7. Upoređivanje statistike testa sa tabličnom vrednošću. 8. Odluka o prihvatanju ili odbacivanju formulisane hipoteze.

4 Str. 3 Definisanje nulte i alternativne hipoteze Nulta hipoteza H 0 - tvrdnja o vrednosti nekog parametra osnovnog skupa koja se testira. Cilj je da se ta pretpostavka statistički potvrdi ili ospori. Nasuprot nulte hipoteze H 0, je alternativna hipoteza H, koja sadrži sve ostale vrednosti parametra osnovnog skupa koje nisu obuhvaćene nultom hipotezom H 0.

5 Hipoteza može da bude prosta ili složena:.prosta H 0 i složena H (dvosmerni test) H 0 : Prosečna plata u gradu je 000 evra. H 0 : µ = µ 0 =000 H : Prosečna plata u gradu nije 000 evra. H : µ µ 0 =000. Složena H 0 i složena H (jednosmerni test sa gornjom granicom) H 0 : Prosečna plata u gradu nije veća od 00 evra. H 0 : µ µ 0 =00 H : Prosečna plata u gradu je veća od 00 evra. H : µ > µ 0 =00 3.Složena H 0 i složena H (jednosmerni test sa donjom granicom) H 0 : Prosečna plata u gradu nije manja od 500 evra. H 0 : µ µ 0 =500 H : Prosečna plata u gradu je manja od 500 evra. H :µ < µ 0 =500 Hipoteza mora da bude nedvosmislena! Raskrsnica na kojoj stoje dva čoveka

6 Str. 7 Rizici greške kod testiranja hipoteza - Testiranjem H 0 se prihvata Testiranjem H 0 se odbacuje Dobra odluka, Greška prve vrste, H 0 je istinita u osnovnom skupu uz verovatnoću α uz verovatnoću α Dobra odluka, Greška druge vrste, uz verovatnoću β H 0 je neistinita u osnovnom skupu uz uslovnu verovatnoću β (verovatnoća β se zove ''jačina testa'' ili ''moć testa'')

7 Testiranje hipoteza primenom ''p'' vrednosti (ne radi se) Str. 7 p vrednost- realizovani nivo rizika greške α. α p H 0 se odbacuje! α<p H 0 se prihvata!

8 Str. 8 Uvod u parametarske testove Koriste se za proveru hipoteza o nepoznatoj vrednosti parametara osnovnog skupa. Primena zavisi od ispunjenja unapred određenih, strogih pretpostavki o osnovnom skupu.

9 Parametarski testovi se vrše na osnovu nekog od teorijskih rasporeda: normalnog rasporeda, Studentovog t-rasporeda, Snedekorovog F-rasporeda, binomnog rasporeda.

10 Str. 8 Testiranje na osnovu normalnog rasporeda Uslov: n 30

11 Testiranje aritmetičke sredine Str. 8 Izračunavanje statistike testa: Kada nije poznata varijansa osnovnog skupa: u 0 x µ = 0, s x gde je: x aritmetička sredina uzorka, µ 0 s x hipotetička vrednost aritmetičke sredine osnovnog skupa, ocena standardne devijacije osnovnog skupa.

12 Dvosmerni test:. prosta H 0 i složena H (dvosmerni test): H 0 : µ = µ 0 ; H : µ µ 0. α α u α > u0 u α u0 uα α uα u u α < u0

13 Jednosmerni test:. složena H 0 i složena H (jednosmerni test): H 0 : µ µ 0 ; H : µ > µ 0. uα u0 uα u0

14 Jednosmerni test: 3. složena H 0 i složena H (jednosmerni test): H 0 : µ µ 0 ; H : µ < µ 0. (u) u Odbacivanje H 0 α u > u0 -u 0 Prihvatanje H 0 α u u0 Oblasti prihvatanja i odbacivanja nulte hipoteze H 0

15 Primer 3 (strana 568) Testiranje razlike a.s. osnovnog skupa i a.s. uzorka SOT-06 K:4-7 Testiranje aritmetičke sredine, intervalna serija, veliki uzorak, bez ponavljanja

16 Testiranje proporcije Str. Uslov: n 50 u 0 = p gde je: p' proporcija u uzorku, P 0 hipotetička vrednost proporcije u osnovnom skupu, s p' ocena srednje mere odstupanja proporcija u uzorcima od proporcije u osnovnom skupu. s p P 0 SOT-057 K:4-8 Testiranje proporcije, bez ponavljanja

17 Testiranje razlike aritmetičkih sredina dva osnovna skupa n 30; n 30 ( ) ( ) s( ) x x u x x 0 0 = µ µ Primer 34 (strana 579) Testiranje razlike a.s. dva uzorka Uslov: Str. 4 SOT-07 K:4-9 Testiranje razlike a.s. dva uzorka, veliki uzorci ( ) = = = n n n n x n f x x n f x s m j j j m j i i x x Formula na str. 07 (udžbenik):

18 Str. 6 Testiranje razlike proporcija dva os. skupa Uslov: n 50; n 50 u 0 = ( p p ) ( ) P s( ) p p P 0 Za jednosmerni test: (udžbenik,str. 6) s ( p p ) = p n q + p n q Primer 35 (strana 58) Testiranje razlike proporcija dva uzorka SOT-065 K:4-0 Testiranje razlike proporcija dva uzorka

19 Testiranje na osnovu Studentovog t-rasporeda Str. 7 Uslov: n<30 t (α;r) Goset (Gosset) početkom XX veka Testiranje aritmetičke sredine Str. 585;97;8 t 0 = x s x µ 0

20 . prosta H 0 i složena H (dvosmerni test): H 0 : µ = µ 0 ; H : µ µ 0. α α ( ) t r ; α ( ) t r ; α ( ) ( ) t t t r r ; 0 ; α α t( ) t r ; 0 α < ( ) t t r ; 0 α >

21 . složena H 0 i složena H (jednosmerni test): H 0 : µ µ 0 ; H : µ > µ 0. t t( ; r ) 0 α

22 3. složena H 0 i složena H (jednosmerni test): H 0 : µ µ 0 ; H : µ < µ 0. t < t( ; r ) t0 t( α ; r ) 0 α

23 Primer 36 (strana 588) Testiranje razlike a.s. osnovnog skupa i a.s. uzorka mali uzorak SOT-049 K:4- Testiranje aritmetičke sredine, negrupisani podaci, mali uzorak

24 Str. 3 Testiranje razlike aritmetičkih sredina dva osnovna skupa t 0 = ( ) ( µ µ ) x x s( ) x x 0 Primer 37 (strana 59) Testiranje razlike a.s. dva uzorka mali uzorci SOT-063 K:4- Testiranje razlike a.s. dva uzorka, grupisani podaci, mali uzorci

25 Analiza varijanse Str. 3 (disperziona analiza; ANOVA) Definicija: Matematičko-statistički postupak pomoću kojeg se testira značajnost razlike između aritmetičkih sredina iz tri i više uzoraka. Može se ispitivati uticaj: jednog faktora varijabiliteta, dva faktora varijabiliteta, dva faktora varijabiliteta sa više opservacija (posmatranja).

26 Analiza varijanse jednog faktora varijabiliteta Str. 33 Formulisanje hipoteza: H 0 : µ =µ =...=µ i =...=µ m =µ, H : Aritmetičke sredine bar dva podskupa se među sobom razlikuju. Tabela za analizu varijanse: Suma kvadrata odstupanja Broj stepeni slobode Ocena varijanse Odnos varijansi Tablična vrednost S A r =m V A F 0 S R r =n m V R - S T r=n V T - F ( α ; r ; r) ili F ( α ; ) r ; r

27 Grafički prikaz (Snedekorov F-raspored): F ( α r ; r) F 0 F ( r) F F ( α ; ) ; ; r ; r r < α ; 0

28 Testiranje kod analize varijanse jednog faktora varijabiliteta Str. 35 Radi se samo ako je H 0 odbačena! Tri testa: t-test, testiranje najmanje značajne razlike (NZR), Takijev test (Tukey).

29 Test najmanje značajne razlike: NZR x x = α, + t ( ) s( ) r xi xi x i+ <NZR; Razlika nije statistički značajna. x i+ NZR; Razlika je statistički značajna. i i Statistički značajna razlika α=5% (*). Visoko statistički značajna razlika α=% (**). Primer 39 (strana 60) ANOVA varijabiliteta jedan faktor SOT-03 K:4-3 ANOVA jednog faktora varijabiliteta (bez proizvoljne a.s.)

30 Str. 39 Analiza varijanse dva faktora varijabiliteta Tabela za analizu varijanse: Suma kvadrata odstupanja Broj stepeni slobode Ocena varijanse Odnos varijansi Tablična vrednost S A r =m V A F 0(A) ( α ; ) S B r 3 =s V B F 0(B) ( α ; ) S R r =(m ) (s ) V R - - S T r=n V T - - F F r; r r; r

31 Grafički prikaz za faktor A: F ( α r ; r3) F 0( A) F ( r F ; r3) F 0( A) ( α ; ) ; r ; r3 α ; <

32 Grafički prikaz za faktor B: F r r α F 0 B F ; ; ( 3 r r3) F 0( B) F ( α ; ) ; ( ) ( ) r ; r3 α ; <

33 Testiranje kod analize varijanse dva faktora varijabiliteta Str. 4 Radi se samo ako je H 0 odbačena za neki od faktora! Tri testa: t-test, testiranje najmanje značajne razlike (NZR), Takijev test (Tukey). Na isti način kao i za jedan faktor varijabiliteta!

34 Izračunavanje relativnog uticaja faktora: Samo u slučaju ako je nulta hipoteza H 0 odbačena za oba faktora! R A = S A S ( m ) T VR S ( ) B s RB = VR S T V R V R SOT-08 ANOVA dva faktora varijabiliteta SOT-074 K:4-4 ANOVA dva faktora varijabiliteta

35 SOT-054; K(05)z 4-7 Test. n.o. normalnog rasporeda SOT-058; K(05)z 4-8 Testiranje proporcije SOT-09; K(05)z 4-9 Test. razlike a.s. veliki uzorci SOT-066; K(05)z 4-0 Test. razlike proporcija dva skupa SOT-050; K(05)z 4- Test. n.o. t-rasporeda SOT-03; K(05)z 4- Test. razlike a.s. mali uzorci SOT-069; K(05)z 4-3 ANOVA faktora var. SOT-07; K(05)z 4-4 ANOVA faktora var.

Str. 454;139;91.

Str. 454;139;91. Str. 454;39;9 Metod uzorka Predavač: Dr Mirko Savić avicmirko@eccf.u.ac.yu www.eccf.u.ac.yu Statitička maa može da e pomatra a jeda od ledeća dva ačia: potpuo pomatraje, delimičo pomatraje (metod uzorka).

Διαβάστε περισσότερα

Studentov t-test. razlike. t = SG X

Studentov t-test. razlike. t = SG X Studentov t-test Najčešće upotrebljavan parametrijski test značajnosti za testiranje nulte hipoteze je Studentov t-test. Koristi se za testiranje značajnosti razlika između dve aritmetičke sredine. Uslovi

Διαβάστε περισσότερα

Chi-kvadrat test. Chi-kvadrat (χ2) test

Chi-kvadrat test. Chi-kvadrat (χ2) test 1 Chi-kvadrat test Chi-kvadrat (χ2) test Test za proporcije, porede se frekvence Neparametarski test Koriste se dihotomne varijable Proverava se veza između dva faktora Npr. tretmana i bolesti pola i smrtnosti

Διαβάστε περισσότερα

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA CILJEVI POGLAVLJA Nakon čitanja ovoga poglavlja bićete u stanju da: 1. razumete pojmove slučajna promenljiva, raspored verovatnoća, očekivana vrednost i funkcija

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

I INFORMATIKE STATISTIKA. Uvod u verovatnoću i statistiku Osnovni pojmovi matematičke statistike Parametri deskriptivne statistike

I INFORMATIKE STATISTIKA. Uvod u verovatnoću i statistiku Osnovni pojmovi matematičke statistike Parametri deskriptivne statistike OSNOVE SPORTSKE STATISTIKE I INFORMATIKE Predavač: Dragan Veličković, dipl.mat. MSc. profesor matematike i računarstva ECDL ovlašćeni ispitivač CS 0826J 1. Uvod STATISTIKA Uvod u verovatnoću i statistiku

Διαβάστε περισσότερα

Prof. dr Vidosav D. Majstorović, dipl.maš.inž. Mašinski fakultet u Beogradu

Prof. dr Vidosav D. Majstorović, dipl.maš.inž. Mašinski fakultet u Beogradu Upravljanje kvalitetom proizvoda I četvrta nastavna jedinica statistički metodi upravljanja kvalitetom / Kontrolne karte Prof. dr Vidosav D. Majstorović, dipl.maš.inž. Mašinski fakultet u Beogradu UKP

Διαβάστε περισσότερα

MERE DISPERZIJE ( VARIJABILNOSTI )

MERE DISPERZIJE ( VARIJABILNOSTI ) MERE DISPERZIJE ( VARIJABILNOSTI ) 1. RASPON VARIJACIJE 2.KVARTILNO ODSTUPANJE 3.PROSEČNO ODSTUPANJE 4.STANDARDNA DEVIJACIJA 5.KORELACIJA 6.STATISTIČKI POSTUPCI PRI BAŽDARENJU MERE DISPERZIJE Pokazatelji

Διαβάστε περισσότερα

11. glava PROSTA KORELACIONA I REGRESIONA ANALIZA

11. glava PROSTA KORELACIONA I REGRESIONA ANALIZA PROSTA KORELACIONA I REGRESIONA ANALIZA CILJEVI POGLAVLJA Nakon čitanja ovoga poglavlja bićete u stanju da: 1. shvatite razliku između funkcionalne i stohastičke veze i razumete stohastički model. znate

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA

MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA 1 Merenje Svaki eksperimentalni rad u fizici praćen je merenjem neke fizičke veličine. Izmeriti neku fizičku veličinu znači uporediti je sa standardnom

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Tačno merenje Precizno Tačno i precizno

Tačno merenje Precizno Tačno i precizno MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA Izmeriti neku veličinu u fizici znači naći brojni odnos merene fizičke veličine prema vrednosti iste fizičke veličine, koja je dogovorno izabrana za jedinicu.

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET DIPLOMSKI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET DIPLOMSKI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET DIPLOMSKI RAD PRIMJENA STATISTIČKIH METODA KOD VREDNOVANJA SUKLADNOSTI OPEČNIH ZIDNIH ELEMENATA Osijek, 07.04.2016. SAŽETAK U radu smo

Διαβάστε περισσότερα

Kontrola kvaliteta betona Projekat betona

Kontrola kvaliteta betona Projekat betona Kontrola kvaliteta betona Projekat betona Predavanje, 08.01.2013. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez SADRŽAJ Kontrola kvaliteta betona: Opće postavke Partije betona Kontrola

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

1. Pravopis/gramatika 2. Logika znanstvenoga rada

1. Pravopis/gramatika 2. Logika znanstvenoga rada Logičke zakonitosti znastvenog rada Logičke zakonitosti znanstvenog rada Mladen Petrovečki Mladen Petrovečki 1. Pravopis/gramatika 2. Logika znanstvenoga rada 1. uporaba logičkih pravilai logike uopće

Διαβάστε περισσότερα

PRAVILNIK O PRETHODNO UPAKOVANIM PROIZVODIMA. ("Sl. glasnik RS", br. 43/2013 i 16/2016) Član 1

PRAVILNIK O PRETHODNO UPAKOVANIM PROIZVODIMA. (Sl. glasnik RS, br. 43/2013 i 16/2016) Član 1 Preuzeto iz elektronske pravne baze Paragraf Lex izvor: www.paragraf.rs Informacije o izmenama, dopunama, važenju, prethodnim verzijama ili napomenama propisa, kao i o drugim dokumentima koji su relacijski

Διαβάστε περισσότερα

1. Pravopis/gramatika Što jest, a što nije dobro?

1. Pravopis/gramatika Što jest, a što nije dobro? Uvod u biomedicinska istraživanja Metode medicinske informatike u istraživanju Uvod u biomedicinska istraživanja Metode medicinske informatike u istraživanju Logičke zakonitosti znastvenog rada Prof. dr.

Διαβάστε περισσότερα

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije. Svojstva tautologija Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija i formula B. Dokaz: Neka su A i A B tautologije. Pretpostavimo da B nije tautologija. Tada postoji valuacija v

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

O SKUPOVIMA. Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe,

O SKUPOVIMA. Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe, O SKUPOVIM Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe, skupine, mnoštva neke vrste objekata, stvari, živih bića i dr. Tako imamo skup stanovnika nekog grada, skup

Διαβάστε περισσότερα

Kontrola Kvaliteta - skripta za usmeni -

Kontrola Kvaliteta - skripta za usmeni - Kontrola Kvaliteta - skripta za usmeni - Kontrola kao deo procesa upravljanja: Upravljanje -upravljanje tehničkim sistemima - Control -upravljanje organizacionim sistemima - Management Kontrola kao deo

Διαβάστε περισσότερα

Boks Dºenkinsov model

Boks Dºenkinsov model UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIƒKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Sandra Kova evi Boks Dºenkinsov model -Master rad- Mentor: prof.dr Zagorka Lozanov-Crvenkovi Novi Sad, 2016

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT OASDSP : 7 FFT Dkompozicija DFT Brzi algoritmi a bazi radix- Brza Furijova trasofrmacija Tačost izračuavaja Komplksa FFT ovi Sad, Oktobar 5 straa OASDSP : 7 FFT Brza trasformacija : itrativa dkompozicija

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

USB Charger. Battery charger/power supply via 12 or 24V cigarette lighter

USB Charger. Battery charger/power supply via 12 or 24V cigarette lighter USB Charger Battery charger/power supply via 12 or 24V cigarette lighter Compact charger for devices chargeable via USB For example ipod, iphone, MP3 player, etc. Output voltage: 5V; up to 1.2A; short-circuit

Διαβάστε περισσότερα

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12 GRAFOVI Ljubo Nedović 21. februar 2013 Sadržaj 1 Osnovni pojmovi 2 2 Bipartitni grafovi 8 3 Stabla 9 4 Binarna stabla 11 5 Planarni grafovi 12 6 Zadaci 13 1 2 1 Osnovni pojmovi Iz Vikipedije, slobodne

Διαβάστε περισσότερα

Modeli i baze podataka

Modeli i baze podataka Modeli i baze podataka priručnik za III razred 1 Kratki istorijat baza podataka Praistorija Nastanak baza podatakaa se vezuje za Herman-aa Holerith-a koji je 1884. godine prijavio patent sistem za automatsku

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs

savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Deskrptvna statstčka analza Predavač: Dr Mrko Savć savcmrko@ef.uns.ac.rs www.ef.uns.ac.rs Deskrptvna statstčka analza predstavlja skup metoda kojma se vrš zračunavanje, prkazvanje opsvanje osnovnh karakterstka

Διαβάστε περισσότερα

1. Pravopis/gramatika. 2. Logičko zaključivanje. Što jest, a što nije dobro? Logika znanstvenoga rada. Logika znanstvenoga rada

1. Pravopis/gramatika. 2. Logičko zaključivanje. Što jest, a što nije dobro? Logika znanstvenoga rada. Logika znanstvenoga rada Uvod u biomedicinska istraživanja 1. Pravopis/gramatika Metode medicinske informatike u istraživanju Logičke zakonitosti znanstvenog rada Prof. dr. sc. Mladen Petrovečki Doktorski studij Biomedicina akad.

Διαβάστε περισσότερα

WELMEC Evropska saradnja u oblasti zakonske metrologije

WELMEC Evropska saradnja u oblasti zakonske metrologije WELMEC 6.5, 2. izdanje: Smernice ou pogledu kontrola prethodno upakovanih proizvoda označenih znakom "e" od strane nadležnih tela WELMEC 6.5 2. izdanje Februar 2012. WELMEC Evropska saradnja u oblasti

Διαβάστε περισσότερα

Gradimir V. Milovanović MATEMATIČKA ANALIZA I

Gradimir V. Milovanović MATEMATIČKA ANALIZA I Gradimir V. Milovanović Radosav Ž. D ord ević MATEMATIČKA ANALIZA I Predgovor Ova knjiga predstavlja udžbenik iz predmeta Matematička analiza I koji se, počev od školske 2004/2005. godine, studentima Elektronskog

Διαβάστε περισσότερα

Projektovanje informacionih sistema 39

Projektovanje informacionih sistema 39 Projektovanje informacionih sistema 39 Glava 3 3.0 Osnove relacione algebre - uvod Za manipulisanje podacima i tabelama u relacionim bazama podataka potrebna su osnovna znanja iz relacione algebre. Relaciona

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

Metode prognoziranja na vremenskim nizovima

Metode prognoziranja na vremenskim nizovima Metode prognoziranja na vremenskim nizovima Pomoću ovih metoda buduće vrijednosti prognoziraju se na temelju povijesnih podataka. Pravila po kojima se ponašaju podaci iz prošlosti primjenjuje se na buduće

Διαβάστε περισσότερα

Deskrptvna statstčka analza Predavač: Dr Mrko Savć savcmrko@eccf.su.ac.yu www.eccf.su.ac.yu Deskrptvna statstčka analza predstavlja skup metoda kojma se vrš zračunavanje, prkazvanje opsvanje osnovnh karakterstka

Διαβάστε περισσότερα

Skupovi, relacije, funkcije

Skupovi, relacije, funkcije Chapter 1 Skupovi, relacije, funkcije 1.1 Skup, torka, multiskup 1.1.1 Skup Pojam skupa ne definišemo eksplicitno. Intuitivno skup prihvatamo kao konačnu ili beskonačnu kolekciju objekata (ili elemenata)u

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu I Definisanje frekventnih karakteristika Dinamički modeli sistema se definišu u vremenskom, Laplace-ovom

Διαβάστε περισσότερα

Teorija kodiranja. Hamingov kod i njegova definicija

Teorija kodiranja. Hamingov kod i njegova definicija Teorija kodiranja. Hamingov kod i njegova definicija Erna Oklapi Gimnazija Novi Pazar ernaoklapii@yahoo.com Sanela Numanović Gimnazija Kruševac sanelanumanovic@yahoo.com Rezime U ovom radu predstavljen

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

ELEMENTI VISE ˇ MATEMATIKE

ELEMENTI VISE ˇ MATEMATIKE Nada Miličić Miloš Miličić ELEMENTI VISE ˇ MATEMATIKE II deo II izdanje Akademska misao Beograd, 2011 Dr Nada Miličić, redovni profesor Dr Miloš Miličić, redovni profesor ELEMENTI VIŠE MATEMATIKE II DEO

Διαβάστε περισσότερα

SPORT NAUKA I PRAKSA

SPORT NAUKA I PRAKSA Naučni časopis ISSN 1821-2077 SPORT NAUKA I PRAKSA Časopis objavljuje originalne naučne i stručne radove, pregledne članke i patente iz sledećih oblasti: Teorija sporta Sportska psihologija Metodologija

Διαβάστε περισσότερα

Karakterizacija kontinualnih sistema u prelaznom režimu

Karakterizacija kontinualnih sistema u prelaznom režimu Karakterizacija kontinualnih sistema u prelaznom režimu Postoji veći broj parametara koji karakterišu ponašanje sistema u prelaznom režimu. Ovi parametri pripadaju različitim prostorima u kojima se sistemi

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

RAVNOTEŽE U RASTVORIMA KISELINA I BAZA

RAVNOTEŽE U RASTVORIMA KISELINA I BAZA III RAČUNSE VEŽBE RAVNOTEŽE U RASTVORIMA ISELINA I BAZA U izračunavanju karakterističnih veličina u kiselinsko-baznim sistemima mogu se slediti Arenijusova (Arrhenius, 1888) teorija elektrolitičke disocijacije

Διαβάστε περισσότερα

PRIMENA METODE ANALIZA EFEKATA U SLUČAJU NEIZVRŠENJA - FAILURE MODE EFFECTS ANALYSIS (FMEA) U REŠAVANJU DEVIJACIJE

PRIMENA METODE ANALIZA EFEKATA U SLUČAJU NEIZVRŠENJA - FAILURE MODE EFFECTS ANALYSIS (FMEA) U REŠAVANJU DEVIJACIJE PRIMENA METODE ANALIZA EFEKATA U SLUČAJU NEIZVRŠENJA - FAILURE MODE EFFECTS ANALYSIS (FMEA) U REŠAVANJU DEVIJACIJE Studija slučaja: REŠAVANJE REKLAMACIJE SA TRŽIŠTA DEVIJACIJA U PROCESU PRIMARNOG PAKOVANJA

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ISKAZI U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ili netačne, tj rečenice koje imaju logičkog smisla.ovakve rečenice se u matematici nazivaju iskazi.dakle,

Διαβάστε περισσότερα

(Μη νομοθετικές πράξεις) ΚΑΝΟΝΙΣΜΟΙ

(Μη νομοθετικές πράξεις) ΚΑΝΟΝΙΣΜΟΙ 10.6.2013 Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης L 158/1 II (Μη νομοθετικές πράξεις) ΚΑΝΟΝΙΣΜΟΙ ΚΑΝΟΝΙΣΜΟΣ (ΕΕ) αριθ. 517/2013 ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ της 13ης Μαΐου 2013 για την προσαρμογή ορισμένων κανονισμών

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

PROIZVODNA FUNKCIJA PREDAVANJE 7 Prof. d r dr J ovo Jovo J ednak Jednak

PROIZVODNA FUNKCIJA PREDAVANJE 7 Prof. d r dr J ovo Jovo J ednak Jednak PROIZVODNA FUNKCIJA PREDAVANJE 7 Prof. dr Jovo Jednak Proizvodnja, proizvodna funkcija, dodata vrednost i priroda inputa Transformacija faktora proizvodnje (inputa) u učinak zove se proces proizvodnje.

Διαβάστε περισσότερα

KOMPLEKSNA ANALIZA. 1. Funkcije kompleksne promenljive

KOMPLEKSNA ANALIZA. 1. Funkcije kompleksne promenljive KOMPLEKSNA ANALIZA. Funkcije kompleksne promenljive Neka je R skup realnih brojeva, a C skup kompleksnih brojeva. Definicija. Ako je E R, preslikavanje f : E C se naziva kompleksna funkcija realne promenljive.

Διαβάστε περισσότερα

ВИШЕСТЕПЕНИ РЕДУКТОР

ВИШЕСТЕПЕНИ РЕДУКТОР Средња машинска школа РАДОЈЕ ДАКИЋ ВИШЕСТЕПЕНИ РЕДУКТОР Милош Мајсторовић Београд 200 год. 2 2 3 0 02 4 4 9 0 9 Poz. Kol. JM. Dimenzije, broj crteza: Standard: 24 Vijak M Poklopac vratila I Sklop vratila

Διαβάστε περισσότερα

NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ)

NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ) NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ) Trenutna vrednost naizmeničnog napona: u(t) = U max sin(ωt + θ) Trenutna vrednost naizmenične struje:

Διαβάστε περισσότερα

UREĐAJU NA SKUPU REALNIH BROJEVA

UREĐAJU NA SKUPU REALNIH BROJEVA **** MLADEN SRAGA **** 00. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE UREĐAJU NA SKUPU REALNIH BROJEVA JEDNADŽBE NEJEDNADŽBE APSOLUTNE JEDNADŽBE APSOLUTNE NEJEDNADŽBE

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

KONTROLA KVALITETE. Prof.dr.sc.Vedran Mudronja

KONTROLA KVALITETE. Prof.dr.sc.Vedran Mudronja KONTROLA KVALITETE Prof.dr.sc.Vedran Mudronja DEFINICIJA KVALITETE Ishikawa o kvaliteti: Kvaliteta je ekvivalent sa zadovoljstvom kupca. Kvaliteta mora biti definirana opsežno. Nije dovoljno samo reći

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

SVEUĆILIŠTE U RIJECI UČITELJSKI FAKULTET U RIJECI ODSJEK ZA UČITELJSKI STUDIJ U GOSPIĆU MATEMATIKA I. Skupovi, funkcije, brojevi

SVEUĆILIŠTE U RIJECI UČITELJSKI FAKULTET U RIJECI ODSJEK ZA UČITELJSKI STUDIJ U GOSPIĆU MATEMATIKA I. Skupovi, funkcije, brojevi SVEUĆILIŠTE U RIJECI UČITELJSKI FAKULTET U RIJECI ODSJEK ZA UČITELJSKI STUDIJ U GOSPIĆU MATEMATIKA I Skupovi, funkcije, brojevi mr.sc. TATJANA STANIN 009. Kratak pregled predavanja koja se izvode na učiteljskom

Διαβάστε περισσότερα

OSNOVNE NUMERIČKE METODE U HEMIJSKOM INŽENJERSTVU

OSNOVNE NUMERIČKE METODE U HEMIJSKOM INŽENJERSTVU Prof.dr Ratomir Paunović Prof.dr Radovan Omorjan OSNOVNE NUMERIČKE METODE U HEMIJSKOM INŽENJERSTVU Tehnološki fakultet, Univerzitet u Novom Sadu Novi Sad : Recenzenti: Predgovor Kori² enje numeri kih metoda

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

O DIMENZIONALNOJ ANALIZI U FIZICI.

O DIMENZIONALNOJ ANALIZI U FIZICI. 1 O DIMENZIONALNOJ ANALIZI U FIZICI Ljubiša Nešić, Odsek za fiziku, PMF, Niš http://www.pmf.ni.ac.yu/people/nesiclj/ Uvod Kao što je poznato, fizičke veličine mogu da imaju dimenzije ili pak da budu bezdimenzionalne.

Διαβάστε περισσότερα

Društvo matematičara Srbije. Pripreme za Juniorske olimpijade školske 2007/2008. Matematička indukcija

Društvo matematičara Srbije. Pripreme za Juniorske olimpijade školske 2007/2008. Matematička indukcija Društvo matematičara Srbije Pripreme za Juiorske olimpijade školske 007/008 -Dord e Baralić Tel:063/706-706-6 e-mail:djolebar@ptt.yu Matematička idukcija Primer 1. Dokazati da je > za sve N. Ituitivo zamo

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

The Thermal Comfort Properties of Reusable and Disposable Surgical Gown Fabrics Original Scientific Paper

The Thermal Comfort Properties of Reusable and Disposable Surgical Gown Fabrics Original Scientific Paper 24 The Thermal Comfort Properties of Surgical Gown Fabrics 1 1 2 1 2 Termofiziološke lastnosti udobnosti kirurških oblačil za enkratno in večkratno uporabo december 2008 marec 2009 Izvleček Kirurška oblačila

Διαβάστε περισσότερα

VEKTORI. Nenad O. Vesi 1. = α, ako je

VEKTORI. Nenad O. Vesi 1. = α, ako je VEKTORI Nenad O. Vesi 1 1 Uvod Odnos vektora AB, jednak je α CD ( AB CD ) = α, ako je AB = αcd. Teorema 1 (TEOREME BLIZANCI) Dat je trougao ABC i ta ke P i Q na pravama BC, CA redom i ta ke R i S na pravoj

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

LABORATORIJSKE VEŽBE IZ FIZIKE

LABORATORIJSKE VEŽBE IZ FIZIKE LABORATORIJSKE VEŽBE IZ FIZIKE Ime i prezime: Broj indeksa: UPUTSTVO ZA IZRADU LABORATORIJSKIH VEŽBI IZ FIZIKE. Pre početka sa radom pažljivo se upoznati sa napomenama iz ovog uputstva!. Na početku opisa

Διαβάστε περισσότερα

STATISTIKA. KONCEPTI : POPULACIJA i UZORAK. Primjer: svi glasači, samo neki glasači

STATISTIKA. KONCEPTI : POPULACIJA i UZORAK. Primjer: svi glasači, samo neki glasači STATISTIKA KONCEPTI : POPULACIJA i UZORAK Primjer: svi glasači, samo neki glasači populacija uključuje sve podatke, a uzorak samo dio, slučajno izabranih kako procjeniti reprezentativni element? MJERE

Διαβάστε περισσότερα

PRILOG 1 PRAVILNIK BAB 87

PRILOG 1 PRAVILNIK BAB 87 PRILOG 1 PRAVILNIK BAB 87 PRILOG 1.1 PRAVILNIK O TEHNIČKIM NORMATIVIMA ZA BETON I ARMIRANI BETON I OPŠTE ODREDBE 1 Ovim pravilnikom propisuju se uslovi i zahtevi koji moraju biti ispunjeni pri projektovanju,

Διαβάστε περισσότερα

2.2. Analiza vremena Pert metodom

2.2. Analiza vremena Pert metodom 2.2. Analiza vremena Pert metodom Dok je kod CPM metode poznato samo jedno vreme trajanja aktivnosti t, kod Pert metode dane su tri procjene: a - optimistično vreme (najkraće moguće vreme u kojemu se može

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

MERENJE VREMENA REAKCIJE NA VIZUELNU POBUDU

MERENJE VREMENA REAKCIJE NA VIZUELNU POBUDU EŽBA BOJ 7 Uputstvo za laboratorijske vežbe iz Električnih merenja MEENJE EMENA EAKCIJE NA IZUELNU POBUDU ZADATAK: Odrediti vreme reakcije na vizuelnu pobudu. Izvršiti elementarnu statističku obradu dobijenih

Διαβάστε περισσότερα

UPUTSTVA ZA INSTRUMENTE I OPREMU

UPUTSTVA ZA INSTRUMENTE I OPREMU ELEKTROTEHNIČKI FAKULTET U BEOGRADU LABORATORIJA ZA ELEKTRONIKU UPUTSTVA ZA INSTRUMENTE I OPREMU MULTIMETAR FLUKE 111 I PROTOBORD- Vladimir Rajović IZVOR ZA NAPAJANJE Agilent E3630A-Dušan Ćurapov GENERATOR

Διαβάστε περισσότερα

Dve karakteristike čine relacioni model još uvek najpopularnijim i najšire primenjivanim:

Dve karakteristike čine relacioni model još uvek najpopularnijim i najšire primenjivanim: RELACIONI MODEL RELACIONI MODEL Dve karakteristike čine relacioni model još uvek najpopularnijim i najšire primenjivanim: Struktura modela je veoma jednostavna, prihvatljiva svakom korisniku, jer relaciona

Διαβάστε περισσότερα

LINEARNA ELEKTRONIKA VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM

LINEARNA ELEKTRONIKA VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU LINEARNA ELEKTRONIKA LABORATORIJSKE VEŽBE VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM.. IME I PREZIME BR. INDEKSA

Διαβάστε περισσότερα

Predavanje br 3 TRANSPORT I LOGISTIKA 2006/2007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA

Predavanje br 3 TRANSPORT I LOGISTIKA 2006/2007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA ANALIZA NOSEĆIH STRUKTURA 11 Predavanje br TRANSPORT I LOGISTIKA 006/007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA Dimenzionisanje čeličnih konstrukcija se izvodi na bazi poznavanja rasporeda spoljašnjih

Διαβάστε περισσότερα

STATISTIKA. 1. Osnovni pojmovi

STATISTIKA. 1. Osnovni pojmovi STATISTIKA. Osovi pojmovi Matematička statistika se bavi proučavajem skupova sa velikim brojem elemeata, koji su jedorodi u odosu a jedo ili više zajedičkih kvalitatitvih ili kvatitativih svojstava. Kako

Διαβάστε περισσότερα