CURS 8: METODE DE OPTIMIZARE PARAMETRICĂ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "CURS 8: METODE DE OPTIMIZARE PARAMETRICĂ"

Transcript

1 CURS 8: METODE DE OPTIMIZARE PARAMETRICĂ Problemele de optimizare vizează extremizarea (maximizarea sau minimizarea) unui criteriu de performanţă. Acesta din urmă poate fi o funcţie caz în care este vorba despre optimizarea parametrică sau o funcţională (o funcţie de funcţii), când este vorba despre optimizarea dinamică. Acest paragraf este dedicat ilustrării comparative a principalilor algoritmi de optimizare parametrică. 1.1 Formularea problemei. Definiții Criteriul de performanţă care trebuie extremizat se mai numeşte funcţie scop, funcţie obiectiv sau funcţie criteriu fără impuneri de legături sau/şi restricţii. Aceasta este o funcţie de n argumente reale, f ( x1, x,... x n), a cărei extremizare înseamnă găsirea unui vector T n x = x 1 x... x n R, corespunzător unui punct din spaţiul n-dimensional, pentru care funcţia este optimă (maximă sau minimă). Maximizarea şi minimizarea unei funcţii nu se deosebesc formal, întrucât maximul lui f se obţine pentru minimul lui f. Pentru n, funcţia obiectiv admite o reprezentare geometrică, şi anume: bidimensională: y = f ( x1 ) este ecuaţia unei curbe în planul ( x1, y ) ; tridimensională: y = f ( x1, x) este ecuaţia unei suprafeţe în sistemul de coordonate ( x1, x, y ) (suprafaţa de răspuns). Generalizarea acestor reprezentări pentru o funcţie obiectiv de n variabile independente necesită un sistem de n+1 axe independente, perpendiculare două câte două într-un sistem cartezian. Pentru n 3 aceasta este evident imposibil de realizat în spaţiul tridimensional şi de aceea dezvoltările teoretice cu introducerea noţiunilor de hiperplan, hipersuprafaţă, hiperspaţiu sunt uneori mai dificil de urmărit. Este utilă reluarea a două definiţii cunoscute din matematică. Definiția 1: Fie funcţia scalară continuă şi derivabilă de variabilă vectorială f ( x ), (1) n x R. Se numeşte gradientul funcţiei f funcţia vectorială de variabilă vectorială notată cu f ( x), care conţine derivatele parţiale de ordinul întâi ale lui f în raport cu fiecare dintre componentele lui x : f ( x) f ( x) f ( x) f '( x) = f ( x)... x1 x xn Funcţia f ( x) se numeşte antigradientul funcţiei f. Punctele de extrem, T x, ale unei funcţii de variabilă vectorială sunt caracterizate de anularea gradientului: f ( x ) = 0. Direcţia vectorului gradient indică spre maximul unei funcţii concave, iar a antigradientului indică spre minimul unei funcţii convexe.

2 D e f i n i ț i a : Se numeşte (matricea) hessian a funcţiei de variabilă vectorială f ( x ) funcţia matricială de variabilă vectorială notată cu H ( x ), obţinută printr-o nouă derivare a gradientului în raport cu componentele vectorului x : () f ( x) f ( x) f ( x)... x x 1 1 x x1 xn f ( x) f ( x) f ( x)... f "( x) = H ( x) x x1 x x x n f ( x) f ( x) f ( x)... x n x1 xn x xn 1. Clasificarea metodelor de optimizare parametrică Principalele metode de optimizare parametrică sunt sintetizate în tabelul.9; ele sunt detaliate în paragrafele următoare. Cele două mari clase de metode indirecte şi directe se deosebesc atât principial, cât şi din punctul de vedere al performanţelor (viteza de convergenţă, timpul de calcul şi memoria necesară algoritmilor rezultaţi). Astfel, metodele directe sunt în general mai lent convergente decât metodele indirecte, dar necesită un volum de memorie mai mic. Nivelul admisibil al compromisului acceptat în ce priveşte performanţele este un factor în alegerea uneia sau alteia dintre metode. A. indirecte (folosesc valorile funcţiei f ( x ) şi pe cele ale derivatelor ei) B. directe (folosesc numai valorile f x, fără a le funcţiei ( ) utiliza pe cele ale derivatelor ei) Tabel 1 A.1 metode de gradient (Cauchy) A. metode Newton (de gradient de ordinul al II-lea) A.3 metode ale direcţiilor conjugate B.1 metoda explorării exhaustive unidimensională B. metode de eliminare multidimensională B.3 metode de căutare pe bază de hiperpoliedre (simplexuri) exploratoare B.4 metode de căutare aleatoare (Monte Carlo) B.5 metode de căutare unidirecţională (unidimensională) metode de relaxare (Gauss) Clasificarea metodelor de optimizare parametrică 1.3 Metode indirecte Metodele indirecte se mai numesc şi metode de urcare (coborâre); pentru simplificare, pintr-un lejer abuz de limbaj, termenul de metode de gradient denotă în mod generic întreaga clasă a metodelor indirecte. Esenţa lor constă în găsirea punctului de anulare a gradientului (acesta fiind punctul de extrem căutat), pornind dintr-un punct iniţial dat. În calculul aproximativ, termenul de anulare înseamnă, de fapt, situarea valorii absolute sub o anume limită (toleranţă) dată, considerată ca suficientă. Metodele de gradient (Cauchy) şi cele de gradient de ordinul al II-lea (Newton) se

3 bazează pe aproximări de ordinul I, respectiv de ordinul al II-lea, ale dezvoltării în serie Taylor a funcţiei obiectiv f ( x ) în jurul punctului de optim, x : T (3) f ( x) f ( x ) + f '( x ) ( x x ) (4) ( ) ( ) ( T ) ( ) 1 ( T ) ( T f x f x + f ' x x x + x x f " x ) ( x x ) Metodele Newton au o convergenţă mai bună decât cele de gradient simplu, dar prezintă inconvenientul unui timp de calcul şi al unui volum de memorie mai mari, pentru că necesită calculul matricei hessian la fiecare iteraţie de căutare. În formula (3) gradientul arată direcţia ratei maxime de creştere a funcţiei f. Pe această formulă se bazează metoda celei mai mari pante (dacă optimul este un maxim) sau metoda celei mai abrupte coborâri (dacă optimul este un minim). Mai jos se prezintă descrierea în meta-limbaj a celui mai simplu algoritm de gradient (notaţia semnifică norma vectorială). Date de intrare: ε (toleranţa suficientă), x (0) (punctul iniţial) i 0 Repetă #1. Se determină direcţia de căutare la pasul i (dată de versorul asociat gradientului): (5) d = ± f f ( x ) ( x ) 3, unde +/ corespund maximizării/minimizării #3. Se alege arbitrar p (i), pasul de deplasare pe direcţia d (i). #. Se calculează noul punct de evaluare a gradientului: (6) i i+1 ( i+ 1) x = x + p d Până când f ( x ) ε. Se observă că algoritmul de mai sus necesită cunoaşterea a priori a tipului de extrem căutat (maxim sau minim). Implementarea în Matlab se poate face sub forma unei funcţii care primeşte punctul de start al căutării, x0 (la cazul general acesta este un vector) şi toleranţa dorită, epsilon, şi returnează valoarea de extrem a unei funcţii (la cazul general, vectoriale) cunoscute, x, şi numărul de iteraţii în care s-a obţinut aceasta, nr_it. S-a utilizat o variabilă locală, itermax, pentru a forţa ieşirea din ciclare dacă extremul nu poate fi găsit. function [x,nr_it]=opt_grad(x0,epsilon) nr_it=1;x_curent=x0;itermax=1500;%număr maxim de iteraţii h=0.001; %variaţie utilizată în calculul gradientului p=0.001;%se alege un pas constant de deplasare for k=1:n, v=zeros(1,n);v(k)=1; grad_curent(k)=(f1(x0+h/v)-f1(x0-h/v))/h;

4 while (norm(grad_curent)>=epsilon)&(nr_it<=itermax), %implementarea formulei (.9) folosind (.8); %pentru o funcţie de maximizat se înlocuieşte cu + x_viitor=x_curent-pgrad_curent/norm(grad_curent); for k=1:n, v=zeros(1,n);v(k)=1; grad_viitor(k)=(f1(x_viitor+h/v)-f1(x_viitor-h/v))/h; x_curent=x_viitor; grad_curent=grad_viitor; nr_it=nr_it+1; x=x_curent; Funcţia de mai sus face uz de apelul funcţiei Matlab norm, care calculează norma vectorială sau matricială; ea realizează minimizarea unei funcţii care trebuie să se afle în fişierul f1.m; în particular ea poate fi o funcţie scalară: function y=f1(x) y=5x^+x+13; Valoarea în care se atinge minimul acestei funcţii este 0., care se obţine după un număr de iteraţii mai mic sau mai mare, depinzând de condiţia iniţială şi de pasul de deplasare ales. Într-adevăr, apelul: [x,nr_it]=opt_grad(1,1e-3) produce rezultatele: x = iar apelul: [x,nr_it]=opt_grad(-1,1e-3) are drept rezultat: x = Numărul mare de iteraţii se datorează folosirii unui pas foarte mic (p=0.001); folosirea unui astfel de pas se justifică în cazul extremelor abrupte ( creste ascuţite sau văi abrupte), unde componentele gradientului au variaţii mari. Algoritmul Fletcher-Reeves (metoda gradienţilor conjugaţi) este o procedură puternică de determinare a minimului local al unei funcţii generale, f(x). De această dată, la fiecare iteraţie i se defineşte o nouă direcţie de căutare, p (i), ca o combinaţie liniară între vectorul gradient la iteraţia curentă, f(x (i) ), şi direcţiile de la iteraţiile anterioare, { p j } Etapele algoritmului sunt listate mai jos. 4. j= 0, i 1

5 1. Se alege un punct iniţial caracterizat de vectorul x (0).. Se stabileşte direcţia iniţială drept direcţia negativă a gradientului în x (0) : p (0) = f x (0) ( ( )) 3. La fiecare iteraţie i se determină minimul în raport cu parametrul α al funcţiei obiectiv în direcţia p (i), conform relaţiei: (7) ( ( i+ 1) ) ( ( i ) ( i f x = f x + α p ) ) Se determină astfel punctul x (i+1). 4. Se determină noua direcţie de căutare, p (i+1), din punctul x (i+1) : + + (8) ( ) ( i+ 1) ( x ) ( x ) f ( i 1) ( i 1) p = f x + p f ( 5. Dacă ( i + 1) f x ) f ( x ), atunci punctul de minim a fost găsit: x x (i), STOP; altfel se reia de la etapa 3. În cele ce urmează este dat programul Matlab (fletreev.m) care implementează algoritmul Fletcher-Reeves; acesta va fi testat pentru aceeaşi funcţie scalară de gradul al IIlea conţinută în fişierul f1.m, cu un minim la 0.. %iniţializări i=1;x(i,:)=x0;n=length(x0);itermax=1000;%număr maxim de iteraţii h=0.0001;%variaţie utilizată în calculul gradientului for k=1:n, v=zeros(1,n);v(k)=1; %la fiecare pas gradientul este un vector de dimensiune n grad(i,k)=(f1(x0+h/v)-f1(x0-h/v))/h; p(i,:)=-grad(i,:); stop=0;%variabilă booleană care arată găsirea minimului local căutat while (~stop)&(i<=itermax), alfa=0:0.01:10; y_min=f1(x(i,:)); %se determină minimul funcţiei când alfa variază în intervalul (ales arbitrar) [0;10] %cu pasul 0.01 stop=1; for j=1:length(alfa), y=f1(x(i,:)+alfa(j)p(i));%formula (.30) if y<y_min, y_min=y; x(i+1,:)=x(i,:)+alfa(j)p(i); stop=0; 5

6 %în acest moment noul punct de căutare este x(i+1) if (~stop) for k=1:n, v=zeros(1,n);v(k)=1; grad(i+1,k)=(f1(x(i+1,:)+h/v)-f1(x(i+1,:)-h/v))/h; %noua direcţie de căutare se determină cu formula (.31) p(i+1,:)=-grad(i+1,:)+... norm(grad(i+1,:))^/norm(grad(i,:))^p(i,:); i=i+1; [nr_it n]=size(x);nr_it minim=x(nr_it,:) Execuţia programului din linie de comandă necesită iniţializarea variabilei x0, punctul de start al căutării. De exemplu, pentru: x0=1;fletreev rezultatul: minim = arată o convergenţă mai rapidă decât cea a metodei de gradient anterioare, implementată prin funcţia utilizator opt_grad. Observație: Pentru o funcţie de n variabile care nu este pătratică, după fiecare n iteraţii se reiniţializează direcţia de căutare la direcţia antigradientului, ca la primul pas. Scopul este eliminarea erorilor datorate faptului că funcţia se poate aproxima bine cu o funcţie pătratică numai în stricta vecinătate a optimului. 1.4 Metode directe. Metode de relaxare Din clasa metodelor directe de căutare a optimului, cea mai simplă, dar şi cea mai costisitoare ca timp, este cea a explorării exhaustive. Metodele de eliminare se folosesc când funcţia obiectiv are un singur optim (funcţie unimodală); ele se bazează pe eliminarea unei regiuni a domeniului de variaţie a variabilelor independente care nu conţine optimul. Căutarea aleatoare (metoda Monte Carlo) constă în evaluarea funcţiei obiectiv într-un set de puncte generate pseudoaleator la fiecare iteraţie a algoritmului. Domeniul de explorare din jurul optimului aflat la fiecare iteraţie se restrânge, până când el devine mai mic decât cel impus; astfel, optimul de la ultima iteraţie se declară drept optim global. Spre deosebire de metodele de gradient care efectuează modificări simultane ce produc deplasări în spaţiul n-dimensional metodele de căutare unidimensională (Gauss) se fondează pe modificarea succesivă a componentelor vectorului x. Aceste metode se mai numesc şi metode de relaxare sau de optimizare ciclică de-a lungul axelor de coordonate (engl. cyclic coordinate search). Căutarea multidimensională este astfel transformată într-o 6

7 succesiune de căutări unidimensionale, fără a prospecta direcţia înaintării, ci doar prin relaxarea rând pe rând a tuturor direcţiilor axelor de coordonate. Există mai mulţi algoritmi bazaţi pe metoda relaxării, care diferă după modul în care se face varierea pasului de căutare. Metodele de relaxare sunt în general mai lent convergente decât metodele obişnuite de gradient, fiindcă pot conţine mai multe iteraţii de căutare unidimensională, în funcţie de alegerea punctului de start şi a pasului. Ele pot deveni ineficiente sau cel puţin foarte lent convergente dacă funcţia obiectiv prezintă o vale (sau o creastă) care nu are direcţia paralelă cu axele de coordonate. Se prezintă mai jos etapele unui algoritm de relaxare [CEAN 84], în care pasul este menţinut constant pe durata unui ciclu de explorare a tuturor direcţiilor, după care pasul este micşorat în progresie geometrică de raţie r, până când devine mai mic decât un prag dat, ε. 1. Se alege un punct iniţial caracterizat de vectorul (0) (0) (0) (0) x = x1 x... x n, valoarea iniţială a pasului de căutare, p, şi pragul ε.. Se iniţializează indexul coordonatei de relaxat: k Se iniţializează contorul de iteraţii din optimizarea în raport cu coordonata k: i La o iteraţie i se relaxează coordonata de index k, obţinându-se vectorul: ( i+ 1) x = x1... xk + p... xn ( i+ 1) xk ( i + 1) f x f x, atunci i i+1 şi se reia etapa 4; Dacă ( ) ( ) altfel dacă i=1 (prima iteraţie), atunci se face relaxarea în sens opus: ( i+ 1) ( i 1) x = x1... x + k p... x n p p i i+1 şi se reia etapa 4; altfel ( i ) ( i 1) f x f x, atunci valoarea de optim a coordonatei k este: dacă ( ) ( ) x k opt = ( i 1) x k k k+1 şi se reia etapa 3 (se relaxează următoarea coordonată, k+1). 5. Se modifică pasul p, înmulţindu-l cu raţia r<1: p p r. Dacă p ε, atunci s-a obţinut extremul funcţiei, STOP; altfel se reia de la etapa. Funcţia Matlab de mai jos implementează algoritmul anterior pentru o funcţie scop de o variabilă vectorială de o dimensiune oarecare (numele fişierului ce conţine funcţia scop este transmis ca parametru de intrare, iar valorile funcţiei se evaluează cu feval). function [x_opt,nr_it]=opt_rlx(fct_scop,x0,pas_init,r,tol) %optimizare parametrică prin METODA RELAXĂRII %fct_scop - şirul de caractere ce desemnează funcţia de optimizat 7

8 %x0 - punctul de start (vector de dimensiunea variabilei funcţiei de optimizat, n) %pas_init - pasul iniţial de căutare %r - raţia subunitară de modificare a pasului după fiecare ciclu de relaxare a tuturor % celor n coordonate %tol - valoarea de prag a pasului, când căutarea se opreşte %iniţializări i=1;x(i,:)=x0;p=pas_init; n=length(x0); while (p>tol), p0=pr;p=p0; k=1;d=zeros(1,n); stop_global=0;inapoi=0; while (~stop_global), d(k)=1;j=0; stop=0; while (~stop) if inapoi, p=p/; inapoi=0; x(i+1,:)=x(i,:)+pd; j=j+1; if feval(fct_scop,x(i+1,:))>feval(fct_scop,x(i,:)), if j==1, p=-p; i=i+1; x(i+1,:)=x(i,:)+pd; inapoi=1; else stop=1; x(i+1,:)=[]; i=i-1; d(k)=0; k=k+1; p=p0; i=i+1; if k<=n, stop_global=0; else stop_global=1; 8

9 [nr_it n]=size(x); x_opt=x(nr_it,:); Pentru exemplificare, s-a folosit o funcţie de două argumente reale: function y=f(x) y=4+6x(1)-4x()+x(1)^+x()^-... 6x(1)x()+x(1)^4+x(1)^x(); care descrie o suprafaţă (figura.9), şi care are trei minime locale, calculabile analitic, situate aproximativ în punctele de coordonate (0;1), (0.3117;1.419) şi ( ; ). Cele două apeluri de mai jos arată că, din acelaşi punct de start, ( 1;3), dar cu alt pas iniţial (p=1, respectiv p=0.5), metoda relaxării poate furniza rezultate semnificativ diferite. [x_opt,nr_it]=opt_rlx('f',[-1 3],1,0.5,1e-6) x_opt = [x_opt,nr_it]=opt_rlx('f',[-1 3],0.5,0.5,1e-6) x_opt = f(x 1,x ) x x 1 Fig. 1 O suprafaţă cu trei minime locale: 4 f ( x1, x) = 4 + 6x1 4x + x1 + x 6x1x + x1 + x1 x Dintr-un alt punct de start se poate obţine un alt punct de minim local: [x_opt,nr_it]=opt_rlx('f',[-3-7],,0.5,1e-5) x_opt =

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

Laborator 6. Integrarea ecuaţiilor diferenţiale

Laborator 6. Integrarea ecuaţiilor diferenţiale Laborator 6 Integrarea ecuaţiilor diferenţiale Responsabili: 1. Surdu Cristina(anacristinasurdu@gmail.com) 2. Ştirbăţ Bogdan(bogdanstirbat@yahoo.com) Obiective În urma parcurgerii acestui laborator elevul

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu INTRODUCERE Laborator 1: ÎN ALGORITMI Întocmit de: Claudia Pârloagă Îndrumător: Asist. Drd. Gabriel Danciu I. NOŢIUNI TEORETICE A. Sortarea prin selecţie Date de intrare: un şir A, de date Date de ieşire:

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare

METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare Titulari curs: Florin Pop, George-Pantelimon Popescu Responsabil Laborator: Mădălina-Andreea

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

VII. Metode numerice de rezolvare a problemelor de optimizare fără restricţii

VII. Metode numerice de rezolvare a problemelor de optimizare fără restricţii Metode de Optimizare Curs 1 VII. Metode numerice de rezolvare a problemelor de optimizare fără restricţii Considerăm X o submulţime convexă deschisă a lui R n, f: X R o funcţie convexă diferenţiabilă şi

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

prin egalizarea histogramei

prin egalizarea histogramei Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o

Διαβάστε περισσότερα

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice Teme de implementare in Matlab pentru Laboratorul de Metode Numerice As. Ruxandra Barbulescu Septembrie 2017 Orice nelamurire asupra enunturilor/implementarilor se rezolva in cadrul laboratorului de MN,

Διαβάστε περισσότερα

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER 2. Circuite logice 2.4. Decodoare. Multiplexoare Copyright Paul GASNER Definiţii Un decodor pe n bits are n intrări şi 2 n ieşiri; cele n intrări reprezintă un număr binar care determină în mod unic care

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

Sisteme de ecuaţii algebrice liniare - metode iterative nestaţionare (semiiterative)

Sisteme de ecuaţii algebrice liniare - metode iterative nestaţionare (semiiterative) Sisteme de ecuaţii algebrice liniare - metode iterative nestaţionare (semiiterative) Conf.dr.ing. Gabriela Ciuprina Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul

Διαβάστε περισσότερα

Puncte de extrem pentru funcţii reale de mai multe variabile reale.

Puncte de extrem pentru funcţii reale de mai multe variabile reale. Puncte de extrem pentru funcţii reale de mai multe variabile reale. Definiţie. Fie f : A R n R. i) Un punct a A se numeşte punct de extrem local pentru f dacă diferenţa f(x) f păstrează semn constant pe

Διαβάστε περισσότερα

Stabilizator cu diodă Zener

Stabilizator cu diodă Zener LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator

Διαβάστε περισσότερα

Metode iterative pentru rezolvarea sistemelor de ecuatii liniare

Metode iterative pentru rezolvarea sistemelor de ecuatii liniare Metode iterative pentru rezolvarea sistemelor de ecuatii liniare 1 Metode iterative clasice Metodele iterative sunt intens folosite, in special pentru rezolvarea de probleme mari, cum sunt cele de discretizare

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă. Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

Noţiuni introductive

Noţiuni introductive Metode Numerice Noţiuni introductive Erori. Condiţionare numerică. Stabilitatea algoritmilor. Complexitatea algoritmilor. Metodele numerice reprezintă tehnici prin care problemele matematice sunt reformulate

Διαβάστε περισσότερα

CUPRINS 2. Sisteme de forţe... 1 Cuprins..1

CUPRINS 2. Sisteme de forţe... 1 Cuprins..1 CURS 2 SISTEME DE FORŢE CUPRINS 2. Sisteme de forţe.... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 2.1. Forţa...2 Test de autoevaluare 1...3 2.2. Proiecţia forţei pe o axă. Componenta forţei

Διαβάστε περισσότερα

Curs 9: METODE NUMERICE UTILIZATE ÎN SIMULAREA SISTEMELOR DINAMICE

Curs 9: METODE NUMERICE UTILIZATE ÎN SIMULAREA SISTEMELOR DINAMICE Curs 9: METODE NUMERICE UTILIZATE ÎN SIMULAREA SISTEMELOR DINAMICE Noțiunea de sistem dinamic Clasificări Noțiunea de simulare Un sistem dinamic este o entitate care se caracterizează printr-un mod specific

Διαβάστε περισσότερα

III. Reprezentarea informaţiei în sistemele de calcul

III. Reprezentarea informaţiei în sistemele de calcul Metode Numerice Curs 3 III. Reprezentarea informaţiei în sistemele de calcul III.1. Reprezentarea internă a numerelor întregi III. 1.1. Reprezentarea internă a numerelor întregi fără semn (pozitive) Reprezentarea

Διαβάστε περισσότερα

I. Noţiuni introductive

I. Noţiuni introductive Metode Numerice Curs 1 I. Noţiuni introductive Metodele numerice reprezintă tehnici prin care problemele matematice sunt reformulate astfel încât să fie rezolvate numai prin operaţii aritmetice. Prin trecerea

Διαβάστε περισσότερα

3.4. Minimizarea funcţiilor booleene

3.4. Minimizarea funcţiilor booleene 56 3.4. Minimizarea funcţiilor booleene Minimizarea constă în obţinerea formei celei mai simple de exprimare a funcţiilor booleene în scopul reducerii numărului de circuite şi a numărului de intrări ale

Διαβάστε περισσότερα

Transformări de frecvenţă

Transformări de frecvenţă Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.

Διαβάστε περισσότερα

Tehnici de Optimizare

Tehnici de Optimizare Tehnici de Optimizare Cristian OARA Facultatea de Automatica si Calculatoare Universitatea Politehnica Bucuresti Fax: + 40 1 3234 234 Email: oara@riccati.pub.ro URL: http://riccati.pub.ro Tehnici de Optimizare

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

Optimizarea numerică a dispozitivelor electromagnetice

Optimizarea numerică a dispozitivelor electromagnetice Gabriela Ciuprina, Daniel Ioan, Irina Munteanu, Mihai Rebican, Radu Popa Catedra de Electrotehnică, Universitatea Politehnica din Bucureşti Optimizarea numerică a dispozitivelor electromagnetice Printech

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey

Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey Mihai Suciu Facultatea de Matematică și Informatică (UBB) Departamentul de Informatică Mai, 16, 2018 Mihai Suciu (UBB) Algoritmica

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare. Cuprins. Prof.dr.ing. Gabriela Ciuprina

Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare. Cuprins. Prof.dr.ing. Gabriela Ciuprina Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina Metode numerice,

Διαβάστε περισσότερα

CURS 11. Rădăcină unei ecuatii: Cum se defineste o rădăcină aproximativă?

CURS 11. Rădăcină unei ecuatii: Cum se defineste o rădăcină aproximativă? CURS 11 Rezolvarea ecuaţiilor transcendente Fie ecuatia: f(x)=0 algebrică - dacă poate fi adusă la o formă polinomială transcendentă dacă nu este algebrică Ecuaţii algebrice: 3x=9; 2x 2-3x+2=0; x5=x(2x-1);

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

Sisteme liniare - metode directe

Sisteme liniare - metode directe Sisteme liniare - metode directe Radu T. Trîmbiţaş 27 martie 2016 1 Eliminare gaussiană Să considerăm sistemul liniar cu n ecuaţii şi n necunoscute Ax = b, (1) unde A K n n, b K n 1 sunt date, iar x K

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα