Sisteme de ecuaţii algebrice liniare - metode iterative nestaţionare (semiiterative)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Sisteme de ecuaţii algebrice liniare - metode iterative nestaţionare (semiiterative)"

Transcript

1 Sisteme de ecuaţii algebrice liniare - metode iterative nestaţionare (semiiterative) Conf.dr.ing. Gabriela Ciuprina Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul de Electrotehnică Suport didactic pentru disciplina Algoritmi Numerici, 2012

2 Cuprins Formularea problemei Metode staţionare Ideea metodei GC Metoda gradientului Metoda direcţiilor conjugate Metoda GC Precondiţionare

3 Formularea problemei Sistem de n ecuaţii algebrice liniare cu n necunoscute: a 11 x 1 + a 12 x 2 + +a 1n x n = b 1, a 21 x 1 + a 22 x 2 + +a 2n x n = b 2, a n1 x 1 + a n2 x 2 + +a nn x n = b n. (1)

4 Se dă matricea coeficienţilor A = Formularea problemei şi vectorul termenilor liberi a 11 a 12 a 1n a 21 a 22 a 2n a n1 a n2 a nn se cere să se rezolve sistemul unde x este soluţia IRn n (2) b = [ b 1 b 2 b n ] T IR n, (3) Ax = b, (4) x = [ x 1 x 2 x n ] T IR n. (5)

5 Buna formulare matematică Problema este bine formulată din punct de vedere matematic (soluţia există şi este unică) matricea A este nesingulară (are determinantul nenul). Se scrie formal: x = A 1 b trebuie citită ca: "x este soluţia sistemului algebric liniar Ax = b" şi NU "se calculează inversa matricei A care se înmulţeşte cu vectorul b".

6 Clasificarea metodelor 1. Metode directe - găsesc soluţia teoretică a problemei într-un număr finit de paşi. (Gauss, factorizare LU) 2. Metode iterative - generează un şir de aproximaţii ale soluţiei care se doreşte a fi convergent către soluţia exactă. staţionare: Jacobi, Gauss-Seidel, SOR, SSOR nestaţionare (semiiterative): gradienţi conjugaţi (GC), reziduu minim (MINRES), reziduu minim generalizat (GMRES), gradienţi biconjugaţi (BiGC), etc.

7 Reziduul la iteraţia k Ideea metodelor staţionare Ax = b A = B C Bx (k+1) = Cx (k) + b. (6) B(x (k+1) x (k) ) = b Ax (k). (7) r (k) = b Ax (k), (8) x (k+1) = x (k) + B 1 r (k), (9) Staţionaritatea se referă la faptul că reziduul este întotdeauna înmulţit cu matricea B 1, aceeaşi pe parcursul tuturor iteraţiilor: Jacobi: B = D Gauss-Seidel: B = D+L SOR: B = ω 1 (D+ωL). Nu se face inversarea propriu zisă, ci se rezolvă un sistem algebric liniar.

8 Algoritmul general al metodelor staţionare procedură metodă_iterativă_staţionară(n, B, A, b, x0, er, maxit, x) xv = x0 ; iniţializează şirul iteraţiilor k = 0 ; iniţializare contor iteraţii repetă r = b A xv ; calculează reziduu metodă_directă (n, B, r, z) d = z x = xv + z xv = x ; actualizează soluţia veche k = k + 1 cât timp d > er şi k maxit retur Metodele iterative + sunt eficiente pentru matrici rare deoarece ele nu generează umpleri. - s-ar putea să nu fie convergente.

9 Metoda gradienţilor conjugaţi Este o metodă iterativă nestaţionară, pentru rezolvarea unor sisteme de ecuaţii algebrice de forma unde A este simetrică şi pozitiv definită. Ax = b, (10) Algoritmul metodei gradienţilor conjugatţi (GC) este eficient pentru matrice rare. Pseudocodurile vor fi descrise simplificat, evidenţiind operaţii de algebră liniară, presupuse a fi implementate ţinând cont de raritatea structurilor de date.

10 Forma pătratică Metoda GC este simplu de înţeles dacă ea este formulată ca o problemă de minimizare. Fie o formă pătratică f : IR n IR unde A IR n n, x, b IR n 1, c IR. f(x) = 1 2 xt Ax b T x+c, (11) Teoremă Dacă A este simetrică şi pozitiv definită, atunci funcţia f(x) dată de (11) este minimizată de soluţia ecuaţiei Ax = b.

11 Justificarea teoremei: Forma pătratică f(x) = 1 2 xt Ax b T x+c (12) f(x) = 1 2 AT x+ 1 Ax b. (13) 2 În punctul de minim gradientul este zero f(x) = (AT + A)x = b. (14) Dacă A T = A (matrice simetrică) atunci (14) Ax = b. Deci soluţia ecuaţiei Ax = b este punct critic pentru f. Dacă în plus, A este pozitiv definită, atunci punctul critic este un minim.

12 Matrice pozitiv definită - intuitiv A = [3, 1.41 ; 1.41, 4] A = [ 3, 1.41 ; 1.41, 4] f = x T A x b T x f = x T A x b T x x x x x Funcţia pătratică asociată unei matrice pozitiv definite. Minimul funcţiei coincide cu soluţia sistemului. GC functionează. Funcţia pătratică asociată unei matrice negativ definite. Maximul funcţiei coincide cu soluţia sistemului. Algoritmul GC poate fi modificat cu uşurinţă pentru a putea funcţiona.

13 Matrice pozitiv semidefinită/indefinită - intuitiv A = [1, 2 ; 2, 4] A = [ 1, 1.73 ; 1.73, 1] f = x T A x b T x f = x T A x b T x x x x x Funcţia pătratică asociată unei matrice singulare, pozitiv semidefinite. Minimul este atins într-o infinitate de valori. Sistemul are o infinitate de soluţii (problema prost formulată matematic). Funcţia pătratică asociată unei matrice indefinite. Soluţia sistemului este punct şa pentru f. GC nu funcţionează.

14 Metoda celei mai rapide coborâri (a gradientului) Ax = b, (15) f(x) = 1 2 xt Ax b T x+c (16) f(x) = 1 2 AT x+ 1 Ax b = Ax b. (17) 2 Ideea: căutarea pe direcţii care corespund ratei celei mai mari de schimbare a funcţiei. Pentru aproximaţia x (k), direcţia celei mai rapide coborâri: Se definesc: e (k) - eroarea la iteraţia k r (k) - reziduul la iteraţia k. f(x (k) ) = b Ax (k). (18) e (k) = x (k) x, (19) r (k) = b Ax (k). (20)

15 Metoda celei mai rapide coborâri (a gradientului) r (k) = b A(e (k) + x) = b Ae (k) Ax. Legătura între eroare şi reziduu: e (k) = x (k) x, (21) r (k) = b Ax (k). (22) r (k) = Ae (k). (23) f(x) = Ax b. f(x (k) ) = b Ax (k). (24) Reziduul este direcţia celei mai rapide coborâri: r (k) = f(x (k) ). (25)

16 Metoda celei mai rapide coborâri (a gradientului) Corecţia primei iteraţii: după direcţia reziduului corespunzător iniţializării: x (1) = x (0) +αr (0). (26) α se va alege a.î. pe direcţia respectivă funcţia să fie minimă. g(α) = f(x (1) ) minimă, dg dα (x(1) ) = 0 Din (25) f(x (1) ) = r (1) ; Din (26) dx (1) /dα = r (0). (27) ( f(x (1) )) T dx(1) dα = 0. (27) (r (1) ) T r (0) = 0, (b Ax (1) ) T r (0) = 0, [b A(x (0) + αr (0) )] T r (0) = 0, (b Ax (0) αar (0) )) T r (0) = 0, (b Ax (0) ) T r (0) α(ar (0) ) T r (0) = 0, (r (0) ) T r (0) = α(r (0) ) T A T r (0). A simetrică α = (r(0) ) T r (0) (r (0) ) T Ar (0). (28)

17 Metoda celei mai rapide coborâri (a gradientului) Corecţia iteraţiei k + 1: α k se va alege a.î.: g(α k ) = f(x (k+1) ) minimă, dg dα (x(k+1) ) = 0 Din (25) f(x (k+1) ) = r (k+1) ; Din (29) dx (k+1) /dα k = r (k). (30) ortogonalitatea reziduurilor: x (k+1) = x (k) +α k r (k). (29) ( f(x (k+1) )) T dx(k+1) dα k = 0. (30) (r (k+1) ) T r (k) = 0, (b Ax (k+1) ) T r (k) = 0, [b A(x (k) + αr (k) )] T r (k) = 0, (b Ax (k) αar (k) )) T r (k) = 0, (b Ax (k) ) T r (k) α(ar (k) ) T r (k) = 0, (r (k) ) T r (k) = α(r (k) ) T A T r (k). A simetrică α = (r(k) ) T r (k) (r (k) ) T Ar (k). (31)

18 Metoda celei mai rapide coborâri (a gradientului) Algoritm - varianta 0 procedură metoda_gradientului_v0(n, A, b, x0, er, maxit, x) xv = x0 ; iniţializează şirul iteraţiilor k = 0 ; iniţializare contor iteraţii r = b A xv ; calculează reziduu cât timp r > er şi k maxit α = r T r/(r T Ar) x = xv+αr r = b A xv xv = x ; actualizează soluţia veche k = k + 1 retur Efortul cel mai mare de calcul: datorat produsului dintre o matrice şi un vector. (două astfel de produse la fiecare iteraţie).

19 Metoda celei mai rapide coborâri (a gradientului) Înmulţim la stânga cu A şi adunăm b x (k+1) = x (k) +α k r (k), (32) r (k+1) = r (k) α k Ar (k), (33) procedură metoda_gradientului(n, A, b, x0, er, maxit, x) xv = x0 ; iniţializează şirul iteraţiilor k = 0 ; iniţializare contor iteraţii r = b A xv ; calculează reziduu e = r cât timp e > er şi k maxit m = A r α = r T r/(r T m) e = r x = xv + αr xv = x ; actualizează soluţia veche k = k + 1 r = r αm retur Observaţii: 1 singur produs matrice vector pe iteraţie; Reziduul se calculează recursiv. Se pot acumula erori de rotunjire. Este bine ca periodic r (k) = b Ax (k).

20 Metoda celei mai rapide coborâri (a gradientului) Analiza convergenţei acestei metode se face pe baza numărului de condiţionare spectrală κ = maxλ i minλ i 1. (34) Metoda poate converge rapid, într-un singur pas, dacă punctul de start este ales pe axele elipsoidului sau dacă forma pătratică este sferică (ceea ce corespunde cazului în care toate valorile proprii sunt egale). În rest, convergenţa depinde de numărul de condiţionare κ şi de iniţializare. Se poate demonstra că eroarea la fiecare iteraţie i este mărginită de ( ) κ 1 i e (i) e (0) (35) κ+1

21 Metoda celei mai rapide coborâri (a gradientului) κ = 10 κ = 10 κ = 1 Convergentă metodei gradientului depinde de iniţializare şi de numărul de condiţionare spectrală. O problemă care are numărul de condiţionare spectrala κ = 1 (toate valorile proprii sunt egale, iar forma pătratică este sferică) converge într-un singur pas.

22 Metoda direcţiilor conjugate Metoda gradientului converge atât de încet deoarece direcţiile de căutare sunt ortogonale şi se întâmplă ca pe parcursul iteraţiilor direcţiile de căutare să se repete. Ar fi de dorit să existe exact n direcţii de căutare, d (0), d (1),...,d (n 1) astfel încât soluţia să fie găsită după exact n paşi. La fiecare pas nou x (k+1) = x (k) +α k d (k), (36) iar α k se va alege astfel încât eroarea e (k+1) să fie ortogonală pe d (k) şi, în consecinţă, nici o altă corecţie să nu se mai facă în direcţia lui d (k) : (d (k) ) T e (k+1) = 0. (37) OBS: În cazul particular în care direcţiile d (k) sunt reziduurile, se obţine exact metoda celei mai rapide coborâri.

23 Metoda direcţiilor conjugate x (k+1) = x (k) +α k d (k), (38) Scădem soluţia exactă din ambii termeni Din e (k+1) = e (k) +α k d (k), (39) (d (k) ) T e (k+1) = 0. (40) (d (k) ) T (e (k) +α k d (k) ) = 0. (41) α k = (d(k) ) T e (k) (d (k) ) T d (k). (42) Nu este utilă deoarece eroarea nu este cunoscută.

24 Metoda direcţiilor conjugate Soluţia constă în a face direcţiile de căutare A-ortogonale şi nu ortogonale: (d (k) ) T Ad (j) = 0. j < k. (43) Noua cerinţă este ca e (k+1) să fie A-ortogonal pe d (k), această condiţie fiind echivalentă cu găsirea unui punct de minim de-a lungul direcţiei d (k), aşa cum se făcea la metoda gradientului. d dα f(x(k+1) ) = 0, ( f(x (k+1) )) T d dα (x(k+1) ) = 0, (r (k+1) ) T d (k) = 0, Rezultă (d (k) ) T A(e (k) +α k d (k) ) de unde (d (k) ) T Ae (k+1) = 0. (44) α k = (d(k) ) T Ae (k) (d (k) ) T Ad (k) = (d(k) ) T r (k) (d (k) ) T Ad (k), (45) expresie ce se poate calcula.

25 Metoda direcţiilor conjugate Teoremă Metoda direcţiilor conjugate calculează soluţia în exact n paşi. Pentru demonstraţie consultaţi documentul extins. Găsirea unui set de direcţii A-ortogonale d (k) se realizează uşor cu ajutorul procedurii Gram-Schmidt conjugate. Se porneşte de la o mulţime de n vectori liniar independenţi u (0), u (1),...,u (n 1) d (0) = u (0). (46) A doua direcţie porneşte de la al doilea vector la care se adaugă un vector orientat pe direcţia anterioară, scalat astfel încât rezultatul să fie A-ortogonal pe direcţia anterioară.

26 Metoda direcţiilor conjugate d (1) = u (1) +β 10 d (0), (47) unde β 10 se alege astfel încât (d (1) ) T Ad (0) = 0. (48) Această relaţie este echivalentă cu (u (1) +β 10 d (0) ) T Ad (0) = 0, (49) de unde β 10 = (u(1) ) T Ad (0) (d (0) ) T Ad (0). (50)

27 Metoda direcţiilor conjugate Similar, următoarea direcţie este d (2) = u (2) +β 20 d (0) +β 21 d (1), (51) unde β 20 şi β 21 se aleg astfel încât de unde rezultă (d (2) ) T Ad (0) = 0 şi (d (2) ) T Ad (1) = 0, (52) β 20 = (u(2) ) T Ad (0) (d (0) ) T Ad (0), β 21 = (u(2) ) T Ad (1) (d (1) ) T Ad (1). (53)

28 Metoda direcţiilor conjugate În general k 1 d (k) = u (k) + β kj d (j), (54) unde β kj, definiţi pentru k > j, sunt deduşi din condiţiile de A-ortogonalitate impuse direcţiilor, rezultând j=0 β kj = (u(k) ) T Ad (j) (d (j) ) T. (55) Ad (j) Dificultate: toate direcţiile de căutare trebuie memorate pentru a construi o direcţie de căutare nouă.

29 Metoda gradienţilor conjugaţi Metoda gradienţilor conjugaţi este metoda direcţiilor conjugate în care direcţiile de căutare sunt construite prin conjugarea reziduurilor: u (k) = r (k). (56) Justificarea acestei alegeri: 1. Intuitiv, inspirat de metoda celei mai rapide coborâri, în care direcţiile de căutare erau direcţiile reziduurilor. 2. Proprietatea reziduului de a fi ortogonal pe direcţiile de căutare anterioare şi pe reziduurile anterioare. (d k ) T r (i) = 0, k < i, (57) (r k ) T r (i) = 0, k < i. (58) De asemenea, reziduul r k este o combinaţie liniară dintre reziduul anterior şi produsul Ad (k 1) : r (k) = Ae (k) = A(e (k) +α k d (k) ) = r (k 1) α k 1 Ad (k 1). (59)

30 Metoda gradienţilor conjugaţi Coeficienţii β β kj = (r(k) ) T Ad (j) (d (j) ) T Ad (j). (60) Pentru a explicita termenul de la numărător, vom înmulţi relaţia (59) la stânga cu (r (i) ) T : de unde (r (i) ) T r (k+1) = (r (i) ) T r (k) α k (r (i) ) T Ad (k), (61) α k (r (i) ) T Ad (k) = (r (i) ) T r (k) (r (i) ) T r (k+1). (62) Pentru i k, membrul drept al acestei relaţii este nenul doar pentru cazul i = k + 1, când valoarea lui este (r (i) ) T r (i) /α i 1. Rezultă că valorile β sunt nenule doar dacă i = k + 1: β kj = { (r (k) ) T r (k) α k 1 (d (k 1) ) T Ad (k 1) k = i 1, 0 k < i 1 (63)

31 Metoda gradienţilor conjugaţi Nu mai este necesar ca valorile β să fie notate cu doi indici. Vom renota β k = β k,k 1 = (r (k) ) T r (k) α k 1 (d (k 1) ) T Ad (k 1) = (r(k) ) T r (k) (d (k 1) ) T r = (r(k) ) T r (k) (k 1) (r (k 1) ) T r (k 1). (64) În concluzie, metoda gradienţilor conjugaţi se bazează pe următoarele şase relaţii: d (0) = r (0) = b Ax (0) α k = (r (k) ) T r (k) (d (k) ) T Ad (k) x (k+1) = x (k) +α k d (k) r (k+1) = r (k) α k Ad (k) β k+1 = (r(k+1) ) T r (k+1) (r (k) ) T r (k) d (k+1) = r (k+1) +β k+1 d (k)

32 Metoda gradienţilor conjugaţi Algoritmul este complet după n iteraţii Convergenţa metodei gradientului depinde de iniţializare şi de numărul de condiţionare spectrală (stânga). Metoda gradienţilor conjugaţi converge în exact n paşi, indiferent de iniţializare şi de numărul de condiţionare spectrală (dreapta).

33 Algoritm: Metoda gradienţilor conjugaţi procedură metoda_gradienţilor_conjugaţi(n, A, b, x0, er, maxit, x) xv = x0 ; iniţializează şirul iteraţiilor k = 0 ; iniţializare contor iteraţii r = b A xv ; calculează reziduu cât timp r > er şi k maxit dacă k = 0 d = r altfel β = r T r/(rv T rv) d = r + βdv α = r T r/(d T Ad) x = xv + αd rv = r r = rv αad xv = x dv = d k = k + 1 retur Algoritmul se poate îmbunătăţi, calculând la o iteraţie o singură dată produsul matrice - vector Ad şi produsul scalar r T r.

34 Metoda gradienţilor conjugaţi Algoritmul este complet după n iteraţii. Din acest motiv, se mai spune că metoda este semi-iterativă, şirul iteraţiilor nu tinde către soluţia exactă atunci când numărul iteraţiilor tinde la infinit, ci, într-o aritmetică exactă, soluţia exactă se obţine după exact n iteraţii. În practică însă metoda este folosită pentru probleme atât de mari încât nu ar fi fezabil să se execute toate cele n iteraţii. De aceea, iteraţiile în algoritm sunt executate într-un ciclu cu test şi nu într-un ciclu cu contor.

35 Precondiţionare Precondiţionare = transformarea problemei iniţiale într-una echivalentă care are proprietaţi îmbunătăţite considerabil. Precondiţionare la stânga Ax = b (65) M 1 Ax = M 1 b, (66) M matrice nesingulară, numită matrice de precondiţionare sau precondiţionator. Convergenţa depinde de proprietăţile matricei M 1 A. M 1 A nu se calculează explicit, ci se rezolvă My = A Cazurile extreme: M = I şi M = A - nu există nici un câştig. O condiţie puternică pentru un bun precondiţionator este ca valorile proprii ale matricei M 1 A să fie apropiate de 1 şi ca norma M 1 A I 2 să fie mică [Trefethen:97].

36 Precondiţionare la dreapta Precondiţionare AM 1 y = b, (67) unde x = M 1 y. Se pot folosi ambele tipuri de precondiţionare simultan. Precondiţionare matricelor simetrice şi pozitiv definite Precondiţionarea se face astfel încât să se păstreze această proprietate. Fie M = CC T - simetrică şi pozitiv definită. [ C 1 AC T] C T x = C 1 b, (68) unde C T = (C 1 ) T = (C T ) 1, iar matricea din paranteza dreapta este simetrică şi pozitiv definită.

37 Precondiţionare Metode de precondiţionare celebre 1. Precondiţionarea Jacobi (sau scalarea diagonală): M = diag(a), nesingulară. Generalizare: M = diag(c), unde c ales convenabil. 2. Factorizarea incompletă Cholesky sau LU în care se aplica procedura de factorizare, dar factorii nu sunt calculati complet, valorile care ar umple matricea nu sunt luate în considerare. Matricea de precondiţionare se obţine ca produsul acestor factori incompleţi. Aceste două exemple de precondiţionatori nu fac nicio referire la problema iniţială care a generat sistemul (65). Cel mai bun sfat general: de a încerca să se construiască precondiţionatorul pe baza unei versiuni mai simple a problemei. Pe această idee se bazează metodele multigrid care se bazează şi pe precondiţionatori obţinuţi din Jacobi şi SSOR..

38 Precondiţionare Sugestie pentru studiu. 1. Analizaţi funcţiile Matlab disponibile pentru rezolvarea sistemelor de ecuaţii algebrice liniare: directe (mldivide, lu, chol, luinc, cholinc), semiiterative (pcg, cgs, gmres, etc.). 2. Alegeţi un set de sisteme de test pe care să experimentaţi metodele de rezolvare. Algeţi aceste probleme din următoarea listă: gallery - din Matlab; davis/welcome.html - UF sparse matrix collection

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Cap2. Sisteme de ecuaţii algebrice liniare - metode iterative

Cap2. Sisteme de ecuaţii algebrice liniare - metode iterative Cap2. Sisteme de ecuaţii algebrice liniare - metode iterative Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul de Electrotehnică Suport didactic pentru

Διαβάστε περισσότερα

Cap.2. Sisteme de ecuaţii algebrice liniare - metode directe (II)

Cap.2. Sisteme de ecuaţii algebrice liniare - metode directe (II) Cap.2. Sisteme de ecuaţii algebrice liniare - metode directe (II) Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul de Electrotehnică Suport didactic

Διαβάστε περισσότερα

METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare

METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare Titulari curs: Florin Pop, George-Pantelimon Popescu Responsabil Laborator: Mădălina-Andreea

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Metode iterative pentru rezolvarea sistemelor de ecuatii liniare

Metode iterative pentru rezolvarea sistemelor de ecuatii liniare Metode iterative pentru rezolvarea sistemelor de ecuatii liniare 1 Metode iterative clasice Metodele iterative sunt intens folosite, in special pentru rezolvarea de probleme mari, cum sunt cele de discretizare

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Sisteme liniare - metode directe

Sisteme liniare - metode directe Sisteme liniare - metode directe Radu T. Trîmbiţaş 27 martie 2016 1 Eliminare gaussiană Să considerăm sistemul liniar cu n ecuaţii şi n necunoscute Ax = b, (1) unde A K n n, b K n 1 sunt date, iar x K

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare. Cuprins. Prof.dr.ing. Gabriela Ciuprina

Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare. Cuprins. Prof.dr.ing. Gabriela Ciuprina Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina Metode numerice,

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

METODE NUMERICE: Laborator #7 Calculul valorilor proprii si vectorilor proprii prin metodele puterii. Metoda Householder

METODE NUMERICE: Laborator #7 Calculul valorilor proprii si vectorilor proprii prin metodele puterii. Metoda Householder METODE NUMERICE: Laborator #7 Calculul valorilor proprii si vectorilor proprii prin metodele puterii. Metoda Householder Titulari curs: Florin Pop, George-Pantelimon Popescu Responsabil Laborator: Alexandru

Διαβάστε περισσότερα

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă. Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1) Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale

Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale Investeşte în oameni! FONDUL SOCIAL EUROPEAN Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 2013 Axa prioritară nr. 1 Educaţiaşiformareaprofesionalăînsprijinulcreşteriieconomiceşidezvoltăriisocietăţiibazatepecunoaştere

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Laborator 6. Integrarea ecuaţiilor diferenţiale

Laborator 6. Integrarea ecuaţiilor diferenţiale Laborator 6 Integrarea ecuaţiilor diferenţiale Responsabili: 1. Surdu Cristina(anacristinasurdu@gmail.com) 2. Ştirbăţ Bogdan(bogdanstirbat@yahoo.com) Obiective În urma parcurgerii acestui laborator elevul

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

Seminar Algebra. det(a λi 3 ) = 0

Seminar Algebra. det(a λi 3 ) = 0 Rezolvari ale unor probleme propuse "Matematica const în a dovedi ceea ce este evident în cel mai puµin evident mod." George Polya P/Seminar Valori si vectori proprii : Solutie: ( ) a) A = Valorile proprii:

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Lucian Maticiuc CURS I II. 1 Matrice şi determinanţi. Sisteme de ecuaţii liniare. 1.1 Matrice şi determinanţi

Lucian Maticiuc CURS I II. 1 Matrice şi determinanţi. Sisteme de ecuaţii liniare. 1.1 Matrice şi determinanţi Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr Lucian MATICIUC http://mathettituiasiro/maticiuc/ CURS I II Matrice şi determinanţi Sisteme de ecuaţii

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

Analiză matricială şi condiţionarea unui. sistem liniar

Analiză matricială şi condiţionarea unui. sistem liniar unui unui Norme, convergenţă, condiţionare UBB 18 martie 2015 Elemente de analiză matricială unui A C m m, A T transpusa lui A, A transpusa conjugată a lui A polinomul p(λ) = det(a λi ) polinomul caracteristic

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Ecuatii trigonometrice

Ecuatii trigonometrice Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu

Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu INTRODUCERE Laborator 1: ÎN ALGORITMI Întocmit de: Claudia Pârloagă Îndrumător: Asist. Drd. Gabriel Danciu I. NOŢIUNI TEORETICE A. Sortarea prin selecţie Date de intrare: un şir A, de date Date de ieşire:

Διαβάστε περισσότερα

Calculul valorilor proprii

Calculul valorilor proprii Laborator 5 Calculul valorilor proprii 5.1 Valori şi vectori proprii Definiţia 5.1 Fie A C n n. Un vector x C n n este un vector propriu al matricei A, asociat valorii proprii λ C, dacă sunt satisfăcute

Διαβάστε περισσότερα

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice Teme de implementare in Matlab pentru Laboratorul de Metode Numerice As. Ruxandra Barbulescu Septembrie 2017 Orice nelamurire asupra enunturilor/implementarilor se rezolva in cadrul laboratorului de MN,

Διαβάστε περισσότερα

Sisteme de ecuaţii algebrice liniare - metode directe (II)

Sisteme de ecuaţii algebrice liniare - metode directe (II) Sisteme de ecuaţii algebrice liniare - metode directe (II) Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul de Electrotehnică Suport didactic pentru

Διαβάστε περισσότερα

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15 MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()

Διαβάστε περισσότερα

, m ecuańii, n necunoscute;

, m ecuańii, n necunoscute; Sisteme liniare NotaŃii: a ij coeficienńi, i necunoscute, b i termeni liberi, i0{1,,..., n}, j0{1,,..., m}; a11 1 + a1 +... + a1 nn = b1 a11 + a +... + an n = b (S), m ecuańii, n necunoscute;... am11 +

Διαβάστε περισσότερα

Aproximarea funcţiilor prin metoda celor mai mici pătrate

Aproximarea funcţiilor prin metoda celor mai mici pătrate Aproximarea funcţiilor prin metoda celor mai mici pătrate Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina i Numerici, 2016-2017 1/60

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Sisteme de ecuaţii diferenţiale

Sisteme de ecuaţii diferenţiale Curs 5 Sisteme de ecuaţii diferenţiale 5. Sisteme normale Definiţie 5.. Se numeşte sistem normal sistemul de ecuaţii diferenţiale de ordinul întâi dx dt = f (t, x, x 2,..., x n ) dx 2 dt = f 2(t, x, x

Διαβάστε περισσότερα

Noţiuni introductive

Noţiuni introductive Metode Numerice Noţiuni introductive Erori. Condiţionare numerică. Stabilitatea algoritmilor. Complexitatea algoritmilor. Metodele numerice reprezintă tehnici prin care problemele matematice sunt reformulate

Διαβάστε περισσότερα

Algoritmi numerici pentru analiza circuitelor electrice rezistive neliniare

Algoritmi numerici pentru analiza circuitelor electrice rezistive neliniare numerici pentru analiza circuitelor electrice rezistive neliniare Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul de Electrotehnică Suport didactic

Διαβάστε περισσότερα

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b. Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,

Διαβάστε περισσότερα

PROBLEME DE VALORI ŞI VECTORI PROPRII

PROBLEME DE VALORI ŞI VECTORI PROPRII 9 PROBLEME DE VALORI ŞI VECTORI PROPRII 81 Introducere Problema de valori proprii a unui operator liniar A: Ax = λx x vector propriu, λ valoare proprie În reprezentarea unei baze din < n problemă matricială

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

1.3. Erori în calculele numerice

1.3. Erori în calculele numerice Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul de Electrotehnică Suport didactic pentru disciplina Metode numerice, 2017-2018 1/41 Cuprins Caracterizarea

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar

Διαβάστε περισσότερα

Conf.dr.ing. Gabriela Ciuprina

Conf.dr.ing. Gabriela Ciuprina Conf.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul de Electrotehnică Suport didactic pentru disciplina Algoritmi Numerici, 2012 Cuprins 1 2 3 4 5 6 În

Διαβάστε περισσότερα

CURS 11. Rădăcină unei ecuatii: Cum se defineste o rădăcină aproximativă?

CURS 11. Rădăcină unei ecuatii: Cum se defineste o rădăcină aproximativă? CURS 11 Rezolvarea ecuaţiilor transcendente Fie ecuatia: f(x)=0 algebrică - dacă poate fi adusă la o formă polinomială transcendentă dacă nu este algebrică Ecuaţii algebrice: 3x=9; 2x 2-3x+2=0; x5=x(2x-1);

Διαβάστε περισσότερα

Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey

Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey Mihai Suciu Facultatea de Matematică și Informatică (UBB) Departamentul de Informatică Mai, 16, 2018 Mihai Suciu (UBB) Algoritmica

Διαβάστε περισσότερα