Ο ΦΙΜΠΟΝΑΤΣΙ (ΚΑΙ Ο ΣΥΛΒΕΣΤΕΡ) ΚΑΙ ΤΑ ΜΟΝΑΔΙΑΙΑ ΚΛΑΣΜΑΤΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ο ΦΙΜΠΟΝΑΤΣΙ (ΚΑΙ Ο ΣΥΛΒΕΣΤΕΡ) ΚΑΙ ΤΑ ΜΟΝΑΔΙΑΙΑ ΚΛΑΣΜΑΤΑ"

Transcript

1 Ο ΦΙΜΠΟΝΑΤΣΙ (ΚΑΙ Ο ΣΥΛΒΕΣΤΕΡ) ΚΑΙ ΤΑ ΜΟΝΑΔΙΑΙΑ ΚΛΑΣΜΑΤΑ [ Στην ιστοσελίδα διάβασα για την (τελικά υποτιθέµενη) «διαίρεση του Φιµπονάτσι». Για να επιβεβαιώσω τα γραφόµενα σε αυτήν την ιστοσελίδα αποφάσισα να διαβάσω, ένα µέρος, από το ίδιο το βιβλίο του Φιµπονάτσι στην αγγλική µετάφρασή του. Όπως και εσείς θα διαπιστώσετε το σενάριο της ιστοσελίδας είναι τελείως φανταστικό. Πάντως αξίζει να ασχοληθείτε και µε την παραπάνω ιστοσελίδα, όπου γίνεται ένα γεφύρωµα των αιγυπτιακών κλασµάτων µε τον Φιµπονάτσι και ιδιαίτερα µε την διάσηµη ακολουθία του και είναι µια καλή ευκαιρία να την γνωρίσουν και οι µαθητές σας. Υλικό για την ακολουθία αυτή µπορείτε να βρείτε στο υλικό πολλών από τα παλαιότερα βιβλία στην ιστοσελίδα του Θαλής και Φίλοι (π.χ στο «Το θεώρηµα του Παπαγάλου» ή στο «Καταραµένα µαθηµατικά» και σε άλλα). Το παρακάτω υλικό µας δίνει µια πολύ καλή ευκαιρία να εµβαθύνουµε στο έργο του Φιµπονάτσι και µέσω αυτού να κατανοήσουµε την εξέλιξη των αριθµητικών συστηµάτων. Αρχικά το παρακάτω κείµενο ξεκινά µε το θέµα της διαίρεσης έτσι όπως την περιγράφει ο Φιµπονάτσι στο 5ο κεφάλαιο. Επίσης ενδιαφέρον, σε σχέση µε τα Αιγυπτιακά µαθηµατικά έχει η ενασχόληση του Φιµπονάτσι µε τις κλασµατικές µονάδες. Το θέµα αυτό αναπτύσσεται στο κεφάλαιο 7. Αρχικά όµως παραθέτω αποσπάσµατα από την εισαγωγή της αγγλικής µετάφρασης του Liber Abaci.] ΕΙΣΑΓΩΓΗ Η πρώτη πλήρης έκδοση του διάσηµου βιβλίου Liber Abaci («Bιβλίο του άβακα» ή «Βιβλίο των υπολογισµών») σε µια µοντέρνα γλώσσα (τα Αγγλικά) µόλις το 2002 από τον L. E. Sigler. [Μπορείτε να το βρείτε σε Google book] Στην εισαγωγή της µετάφρασης αυτής διαβάζουµε (συνοπτικά) τα παρακάτω: - Κάποια βιογραφικά στοιχεία του Φιµπονάτσι ( δεν τα αναφέρω γιατί µπορεί κανείς πολύ εύκολα να τα βρει στο διαδύκτιο). - Ήξερε σε βάθος πολλά από τα µαθηµατικά του Μεσογειακού κόσµου, δηλαδή Αιγυπτιακά, Συριακά, Αρχαία Ελληνικά (ιδιαίτερα τα Στοιχεία του Ευκλείδη), Ρωµαϊκά και Αραβικά (ιδιαίτερα την δουλειά του Αλ Κβαρίσµι) και µέσω των αράβων το ινδικό αριθµητικό σύστηµα. Έτσι: «Είδε καθαρά τα πλεονεκτήµατα της χρήσης των µαθηµατικών των Αράβων και ιδιαίτερα των Ινδικών ψηφίων και του δεκαδικού αριθµητικού συστήµατος, τους υπολογιστικούς αλγόριθµους και την άλγεβρά τους. Η γνώση των ινδικών ψηφίων άρχισε να φτάνει στην Ευρώπη περίπου στα µέσα του 10ου αιώνα από τους Άραβες µέσω της Ισπανίας, ωστόσο δεν χρησιµοποιούνταν ιδιαίτερα, µέχρι την εποχή του Φιµπονάτσι. Ο Φιµπονάτσι έγραψε αυτό το βιβλίο για να γνωρίσει στους Ιταλούς τα καλύτερα µέχρι τότε µαθηµατικά του κόσµου σε µία χρηστική µορφή» 1

2 - «Οι υπολογισµοί ήταν µια δραστηριότητα των ανθρώπων από τους αρχαίους χρόνους. Είχαν βρεθεί τρόποι να διευκολύνονται από τους Έλληνες και τους Ρωµαίους αλλά αυτοί οι τρόποι είχαν αναπτυχθεί πάνω στους άβακες». (Αναφέρει κάποια στοιχεία για τους άβακες και καταλήγει ότι είχαν τον ρόλο που σήµερα έχουν οι ηλεκτρονικοί µικροϋπολογιστές). - «Οι Ινδοί και οι Άραβες χρησιµοποίησαν αριθµούς σε ένα θεσιακό σύστηµα και µεθόδους για τις βασικές πράξεις που δεν έχουν ανάγκη τον άβακα. Τα ρωµαϊκά ψηφία και άλλα παρόµοια συστήµατα για να γράφουµε τους αριθµούς δεν διευκολύνουν τους υπολογισµούς. Οι υπολογισµοί γίνονταν µε τον άβακα και οι απαντήσεις γράφονταν µε τους Ρωµαϊκούς αριθµούς. Αντίθετα µε τα ινδικά ψηφία µε το θεσιακό σύστηµα µπορούµε και να κάνουµε τους υπολογισµούς και να γράψουµε το αποτέλεσµα. Είναι αυτές οι µέθοδοι που µαθαίνουν σήµερα οι µαθητές στο σχολείο. Στον Μεσαίωνα στην Ευρώπη αυτές οι καινούργιες αριθµητικές διαδικασίες ονοµάζονταν αλγόριθµοι, για να διαχωρίζονται από τους υπολογισµούς µε άβακα. Ο Φιµπονάτσι διδάσκει αυτούς τους αλγόριθµους στο βιβλίο του Liber Abaci. Στην Ιταλία αυτές τις γραπτές διαδικασίες υπολογισµών, της άλγεβρας και γενικά των πρακτικών µαθηµατικών τις ονόµαζαν τον Μεσαίωνα ως «abaco».» - (Αναφέρει ότι το βιβλίο αυτό ήταν παραπάνω από ένα βιβλίο για τους υπολογισµούς. Περιέχει πολλές από τις µέχρι τότε γνώσεις για την αριθµητική, την άλγεβρα και την λύση προβλήµατος. Πέρα από την πρακτική του αξία έχει και θεωρητική (αποδεικτική) αξία. «Το Liber Abaci ήταν καλά µαθηµατικά όταν γράφτηκε και παραµένει και σήµερα ένα βιβλίο µε καλά µαθηµατικά. Είναι ένα βιβλίο µε σοβαρά µαθηµατικά πάνω στην αριθµητική και τα εφαρµοσµένα µαθηµατικά γραµµένο από έναν σπουδαίο και δηµιουργικό µαθηµατικό» ) - «Θα πρέπει να σηµειώσουµε ότι µονολότι η λέξη abaci προέρχεται από την λέξη abacus, αναφέρεται στο παράδοξο για τον 13ο αιώνα του υπολογισµού χωρίς τον άβακα. Έτσι το Liber Abaci δεν πρέπει να µεταφράζεται ως «το βιβλίο του άβακα» (αλλά «το βιβλίων των υπολογισµών»). Ένας maestro d abbaco ήταν ένα άτοµο που υπολόγιζε κατευθείαν µε τα ινδικά ψηφία χωρίς την χρήση του άβακα και abaco είναι η επιστήµη του να το κάνει αυτό». - Στις υπόλοιπες σελίδες της εισαγωγής αναφέρονται κυρίως,περιληπτικά, τα περιεχόµενα του βιβλίου (το γνωστό πρόβληµα µε τα κουνέλια βρίσκεται στο 13ο κεφάλαιο). Το κεφάλαιο που µας ενδιαφέρει εδώ είναι το 7ο όπου ο Φιµπονάτσι, ανάµεσα στα άλλα, «συζητά τον διαχωρισµό ενός κλάσµατος σε άθροισµα κλασµατικών µονάδων. Αυτό το αντικείµενο µας πάει πολύ πίσω, στα Αιγυπτιακά µαθηµατικά και την προτίµησή τους στις κλασµατικές µονάδες και για αυτό το λόγο αυτό το θέµα συχνά καλείται Αιγυπτιακά κλάσµατα» 2

3 Ο ΦΙΜΠΟΝΑΤΣΙ ΚΑΙ Ο ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ Στο κεφάλαιο 1 (σελίδες 21 22) παραθέτει πίνακες πρόσθεσης και πολλαπλασιασµού (προπαίδεια). [Ο πολλαπλασιασµός του, που παρουσιάζει µε πολλά παραδείγµατα στο κεφάλαιο 2, έχει πολλές οµοιότητες µε τον δικό µας. Είναι πιο σύντοµος στην γραφή του αλλά απαιτεί περισσότερες πράξεις µε το µυαλό από ότι ο δικός µας. Για παράδειγµα: 37 37: πολλαπλασίασε το 7 7. Κάνει 49. Γράψε 9 και κράτησε στο µυαλό σου 4. Πολλαπλασίασε το 3 7 και το 7 3 και πρόσθεσέ τα µαζί µε το 4. Κάνει 46. Γράψε το 6 και κράτησε το 4. Πολλαπλασίασε το 3 3 και πρόσθεσε το 4. Κάνει 13. Άρα ο αριθµός είναι ο ] Ο ΦΙΜΠΟΝΑΤΣΙ ΚΑΙ Η ΔΙΑΙΡΕΣΗ - ΚΕΦΑΛΑΙΟ 5ο. Διαβάζουµε από το βιβλίο «Liber Abaci» κεφάλαιο 5ο «Για την διαίρεση των ακεραίων», ανάµεσα σε άλλα, και τα παρακάτω: - «Όταν κανείς επιθυµεί να ξέρει να διαιρεί οποιονδήποτε αριθµό µε οποιονδήποτε άλλον, είναι απαραίτητο, όπως και στην πρόσθεση, πρώτα να διαιρεί όλους τους αριθµούς µε τους αριθµούς από το 2 έως το 10. Και αυτό δεν είναι δυνατόν να γίνει πριν εισαχθεί σε διαιρέσεις κυρίων αριθµών που θα ξέρει απ έξω. Αυτές οι διαιρέσεις δίνονται σε πίνακες στις επόµενες σελίδες. Αλλά το πρώτο που πρέπει να διδαχθεί είναι πως τα µικρά κλάσµατα γράφονται. Αν πάνω από ένα νούµερο βάλλουµε µια κλασµατική γραµµή και πάνω από αυτήν ένα άλλο νούµερο, το πάνω νούµερο σηµαίνει τον αριθµό των µερών που καθορίζονται από το κάτω νούµερο. Το κάτω νούµερο ονοµάζεται denominator και το πάνω ονοµάζεται numerator. [Σ.τ.µ. οι ονοµασίες αυτές (στα λατινικά) δόθηκαν από τον Φιµπονάτσι]. Και αν πάνω από τον αριθµό 2 γραφτεί ο αριθµός 1, αυτό σηµαίνει το ένα από τα δύο µέρη του όλου, δηλαδή το µισό, (οµοίως 1/3, 1/4.1/19 σηµαίνει το δεκαενακοστό µέρος του όλου). Αν πάνω από το 3 βάλλουµε το 2 σηµαίνει τα δύο από τα τρία µέρη του όλου (και άλλα τέτοια παραδείγµατα). - Παρακάτω περιγράφει τα composed κλάσµατα: 3

4 Αναφέρουµε ένα παράδειγµα τέτοιου κλάσµατος (διαβάζουµε από δεξιά προς τα αριστερά): (µε συνεχόµενη όµως γραµµή). Αυτό σηµαίνει: Έχει ενδιαφέρον το σχετικό σχόλιο του µεταφραστή: «Αυτά τα composed κλάσµατα, τα οποία έχουν Αραβική καταγωγή, χρησιµοποιούνται συστηµατικά από τον Φιµπονάτσι και χρησιµοποιούνται σε συνδυασµό µε το θεµελιώδες θεώρηµα της Αριθµητικής που υποδεικνύει την ανάλυση των αριθµών σε γινόµενο πρώτων αριθµών (ή άλλων χρήσιµων παραγόντων). Αυτού του είδους τα κλάσµατα δεν χρησιµοποιούνται σήµερα. Τα δεκαδικά κλάσµατα είναι µια ειδική περίπτωση τέτοιων κλασµάτων. Για παράδειγµα: 3,1416 =. Συνεπώς κάποιος θα µπορούσε να υποθέσει ότι ο Φιµπονάτσι γνώριζε τα δεκαδικά κλάσµατα ή τουλάχιστον ήταν κοντά σε αυτό. Γιατί δεν χρησιµοποίησε περισσότερο τα δεκαδικά κλάσµατα; Απλά γιατί οι κλασµατικές µονάδες µέτρησης σπάνια χρησιµοποιούνταν στον κόσµο που ζούσε. Για παράδειγµα το νόµισµα της Πίζας δεν είχε δεκαδικές υποδιαιρέσεις. 2 pounds, 7 soldi, 3 denari γράφονταν pounds. Ωστόσο όταν τα δεκαδικά κλάσµατα ήταν απαραίτητα, τα χρησιµοποιούσε. (Αναφέρει 2 συγκεκριµένα παραδείγµατα από το βιβλίο). Με βάση αυτά τα παραδείγµατα είναι δύσκολο να αρνηθούµε ότι ο Φιµπονάτσι χρησιµοποίησε δεκαδικά κλάσµατα. Ο συµβολισµός των composed κλασµάτων, κατά συνέπεια καλύπτει µεγάλη γενικότητα που ο Φιµπονάτσι χρησιµοποίησε για να αντιµετωπίσει τα διαφορετικά ήδη µέτρησης. - Στην συνέχεια ο Φιµπονάτσι προτείνει να µάθουµε απ έξω τους παρακάτω πίνακες: 4

5 5

6 «Ένας καθολικός κανόνας για την διαίρεση αριθµών από αριθµούς µε ένα ψηφίο» Παράδειγµα: 365:2 Αν θέλει κανείς να διαιρέσει το 365 µε το 2 γράφει στον πίνακα το 2 σε ένα µέρος του πίνακα και τραβάς µια γραµµή από πάνω και ένα άλλο 2 κάτω από το 5 και ξεκινάς διαιρώντας το 3 µε το 2, λέγοντας το 1/2 του 3 είναι 1 και περισσεύει 1. Μετά γράφεις το 1 κάτω από το 3 και το 1 που περισσεύει το γράφεις από πάνω, όπως φαίνεται στον πρώτη εικόνα. Και το υπόλοιπο 1 ζευγαρώνει µε το 6 κάνοντας 16. Παίρνεις το 1/2 του 16 που είναι το 8. Βάζεις το 8 κάτω από το 6 και το 1 κάτω από το 3 όπως φαίνεται στην δεύτερη εικόνα. Και καθώς δεν υπάρχει υπόλοιπο στην διαίρεση µε του 16, διαιρείς το 5 µε το 2. Το πηλίκο είναι 2 και το υπόλοιπο 1. Γράφεις το 2 κάτω από το 5 και το 1 πάνω από το 2 το οποίο θα κάνουµε παρανοµαστή και έτσι θα έχουµε το 1/2 του όλου και πριν από το 1/2 γράφεις το πηλίκο 182 της διαίρεσης όπως φαίνεται στην τρίτη εικόνα. [Κάνει και την επαλήθευση µε πολλαπλασιασµό του 182 1/2 επί 2]. Όµοια για να διαιρέσεις το 365 µε το 3: Γράφεις το 3 (διαιρέτης) κάτω από το 5 (του 365) και διαιρείς το 3 (του 365) µε το 3 (διαιρέτης). Το πηλίκο είναι 1 το οποίο το βάζεις κάτω από το 3 (του 365). Επίσης διαιρείς το 3 (διαιρέτης) µε το 6 (του 365). Το πηλίκο είναι 2 το οποίο το βάζεις κάτω από το 6. Μετά διαιρείς το 5 µε το 3. Το πηλίκο είναι 1 και το υπόλοιπο 2. Βάζεις το 1 (πηλίκο) κάτω από το 5 και το (υπόλοιπο) 2 αριθµητή σε κλάσµα µε παρανοµαστή το 3. Έτσι το πηλίκο είναι 121 2/3. Διαίρεση του 1346 µε το 4: 6

7 διαιρείς το 13 µε το 4, βάζεις το πηλίκο 3 κάτω από το 3 και το υπόλοιπο 1 κάτω από το 3. Ζευγαρώνεις το 1 µε το 4 και παίρνεις το 14. Προσθέτεις τα τέταρτα του 14 που είναι 3 και περισσεύουν 2. Βάζεις το 3 κάτω από το 4 και το υπόλοιπο 2 από πάνω. Το 2 ζευγαρώνει µε το 6 και κάνει 26. Το 26 διαιρείται µε το 4 και δίνει πηλίκο 6 και υπόλοιπο 2. Βάζεις το 6 κάτω από το 6 και φτιάχνεις το κλάσµα 2/4 που είναι ίσο µε το 1/2 του όλου. Και µετά από αυτό βάζεις το πηλίκο της διαίρεσης που είναι το 336. Συνολικά το πηλίκο είναι 336 1/2. Συνεπώς ξέραµε πως έχουµε 13 εκατοντάδες καθώς η τρίτη θέση είναι εκατοντάδες Η διαίρεση του 5439 από το 5 Η διαίρεση του 9000 από το 7 Η διαίρεση του από το 8 Η διαίρεση του από το 9 Η διαίρεση των αριθµών από το 11 Η διαίρεση του από το 13 Αν θέλεις να διαιρέσεις το µε το 13, τότε το 13 µπαίνει κάτω από το 86, διαιρείς το 123 µε το 13 γιατί το 12 είναι µικρότερο από το 13. Το πηλίκο θα είναι 9 και το υπόλοιπο : 13 = /13 Και 9 φορές το 13 κάνει 117 και το υπόλοιπο από το 123 είναι 6. Βάζεις το 9 κάτω από το 3 του 123 και το υπόλοιπο 6 το βάζεις πάνω από το 3 και το ζευγαρώνεις µε το 7

8 5. Αυτό κάνει 65 του οποίου το 1/13 είναι 5. Έτσι βάζεις το 5 κάτω από το 5 και πάνω από το 8 βάζεις 0 γιατί το 8 είναι µικρότερο από το 13 και ζευγαρώνεις το 8 µε το 6 που είναι στην πρώτη θέση. Θα γίνει 86 του οποίου το 1/13 είναι 6 και αφήνει υπόλοιπο 8. Βάζεις το 6 στην πρώτη θέση του πηλίκου και το 8 πάνω από την γραµµή κλάσµατος του 13. Πως διαιρώ µε το 10: Π.χ. 167: 10 = 16 7/10 ή 1673: 10 = 167 3/10 Εδώ ξεκινάει οι διαίρεση των αριθµών από Incomposite (όχι σύνθετοι) (or primes) (πρώτους) αριθµούς µε δύο θέσεις. Κάποιοι αριθµοί δεν είναι σύνθετοι και είναι εκείνοι που στην Αριθµητική και στην Γεωµετρία καλούνται πρώτοι. Αυτό οφείλεται στο ότι δεν υπάρχει µικρότεροι αριθµοί, εκτός από την µονάδα, που να µετρούν τον αριθµό (να είναι παράγοντες του αριθµού). Οι άραβες τους ονοµάζουν hasam. Οι έλληνες τους ονοµάζουν linear (γραµµικοί) ενώ τους σύνθετους epipedi (επίπεδους) που είναι εµβαδά όπως ονοµάζονταν από τον πιο ικανό γεωµέτρη, τον Ευκλείδη. [Σ.τ.µ: π.χ το 65 οι Έλληνες το αντιλαµβάνονταν ως το εµβαδόν ορθογωνίου µε πλευρές 5 και 13] Τους σύνθετους τους ονοµάζουµε κανονικούς αριθµούς και τους πρώτους µη κανονικούς. Η διδασκαλία της διαίρεσης για τους πρώτους και τους σύνθετους δεν είναι η ίδια. Γενική περιγραφή (µε λόγια) της διαίρεσης αριθµού µε πρώτο. Περιγραφή διαιρέσεων µε το 17, το 19 και το 23 και µετά επαληθεύσεις των παραπάνω διαιρέσεων. Ακολουθεί διαίρεση µε το 59. Πως διαιρεί µε σύνθετους αριθµούς (σελ. 70) Για παράδειγµα θα κάνουµε την διαίρεση 749: 75 : Πρώτα παρατηρείς τον κανόνα για να βρίσκεις στους αριθµούς παράγοντα το 5 και βρίσκεις τον κανόνα για το 75 που είναι [που είναι µια άλλη γραφή του ] Διαιρείς το 749 µε το 3 που δίνει πηλίκο 249 και υπόλοιπο 2 το οποίο βάζεις πάνω από το 3 στο κλάσµα και διαιρείς το 249 µε το 5 δηλαδή από αυτό που προηγείται του 3 στο κλάσµα. Το πηλίκο είναι 49 και αφήνει υπόλοιπο 4. Αυτό το 4 το βάζεις πάνω από το 5 και διαιρείς πάλι το 49 µε το 5 αυτό που είναι στο τέλος του κλάσµατος. Το πηλίκο είναι 9 και το υπόλοιπο 4. Το 4 το βάζεις πάνω από το 5 και το 9 το βάζεις πριν από το κλάσµα. Και έτσι το πηλίκο της διαίρεσης 749:75 είναι 8

9 [δηλαδή: 9 + ] Σελίδα 78: Από το κεφάλαιο 6 Πολλαπλασιασµός 11 1/2 22 1/3 [Κάνει τους µικτούς κλάσµατα και πολλαπλασιάζει τους αριθµητές και τους παρανοµαστές. Τέλος διαιρεί τον αριθµητή µε τον παρανοµαστή και βρίσκει: Σελίδα 107: Από το κεφάλαιο 7 Διαίρεση του 83 µε το 5 2/3 (έχει ενδιαφέρον η εξήγηση που δίνει) «Αν θέλεις να διαιρέσεις το 83 µε το 5 2/3 τότε κάνεις τρίτα της µονάδας των αριθµών έτσι: Θα πολλαπλασιάσεις το 5 µε το 3 που είναι κάτω από το κλάσµα, και προσθέτεις το 2. Αυτό κάνει 17 τρίτα. [5 2/3 = 17/3]. Μετά πολλαπλασιάζεις το 83 µε το 3 για να βγάλεις τα τρίτα (as you make thirds out of it). Αυτό θα κάνει 249 τρίτα. [83 = 249/3] Τότε διαιρείς το 249 µε το 17 και το πηλίκο θα είναι 14 11/17 για την αρχική διαίρεση. [83: (5 2/3) = (249/3) : (17/3) = 249:17 = 14 11/17 ] Από τα παραπάνω είναι φανερό ότι η διαίρεση του 83 µε το 5 2/3 είναι η ίδια µε την διαίρεση του 249 µε το 17. Και αυτό είναι που ο πιο επιφανής γεωµέτρης Ευκλείδης δηλώνει στο βιβλίο του: οποιοδήποτε λόγο έχει ένας αριθµός µε έναν άλλο, τον ίδιο λόγο έχουν τα ίδια πολλαπλάσιά τους. [ ] [Προκύπτει από την πρόταση 12 του βιβλίου VII των Στοιχείων του Ευκλείδη]. Και πολλαπλασίασες συνεπώς και το 83 και το 5 2/3 µε το 3. Συνεπώς το 249 και το 17 θα βρίσκονται στον ίδιο λόγο. Πράγµατι το 17 είναι τριπλάσιο του 5 2/3 και το 249 είναι τριπλάσιο του 83. Και αν αντιθέτως θέλεις να διαιρέσεις το 5 2/3 µε το 83 [διαίρεση µε µεγαλύτερο διαιρέτη!] τότε διαιρείς το 17 µε τον κανόνα για το 249 που είναι το 1/249 (το γράφει σε µορφή composed κλάσµατος) και το πηλίκο θα είναι (το γράφει σε µορφή composed κλάσµατος) για την επιδιωκόµενη διαίρεση» 9

10 [ Αλλά 17: 249 είναι το 1/249 του 17 - ΚΕΦΑΛΑΙΟ 7ο (σχετικά µε τις κλασµατικές µονάδες, βρίσκουµε τα παρακάτω): [Για τον διαχωρισµό των κλασµάτων σε κλασµατικές µονάδες] [1] Σηµείωση του µεταφραστή: Αυτό το θέµα αναφέρεται στο πρόβληµα της έκφρασης οποιουδήποτε γνησίου κλάσµατος σαν άθροισµα κλασµατικών µονάδων, π.χ 5/6 = 1/2 + 1/3. Οι Αιγύπτιοι γενικά θεωρούσαν µια κλασµατική έκφραση µη τελειωµένη µέχρι να εκφραστεί σαν ένα άθροισµα κλασµατικών µονάδων. «Στο πρώτο και στο δεύτερο µέρος αυτού του κεφαλαίου διδαχθήκαµε πώς να προσθέτουµε µαζί κάποια κλάσµατα σε ένα µόνο κλάσµα. Σε αυτό το µέρος τώρα µαθαίνουµε πώς να διαχωρίζουµε κλάσµατα µε κάποια µέρη σε άθροισµα κλασµατικών µονάδων και πώς να βλέπουµε τα µέρη κάθε κλάσµατος, να ξέρουµε τις τιµές του µέρους ή των µερών ενός ακεραίου. Αυτή η δουλειά είναι πράγµατι χωρισµένη σε 7 κατηγορίες. Η πρώτη από τις οποίες είναι όταν το µεγαλύτερο νούµερο, που είναι κάτω από την κλασµατική γραµµή, διαιρείται από το µικρότερο δηλαδή αυτό που είναι πάνω από την κλασµατική γραµµή. Ο κανόνας για την πρώτη κατηγορία είναι πως διαιρείς το µεγαλύτερο µε το µικρότερο και θα έχεις το µέρος το οποίο το µικρότερο είναι από τα µεγαλύτερα. [Σ.τ.µ: Η πρώτη κατηγορία είναι: ] 10

11 Για παράδειγµα: Θα θέλαµε να ξέραµε τι µέρος του ακεραίου είναι το 3/12. Το 12 πράγµατι διαιρείται δια του 3, αυτό κάνει 4 το οποίο το λες 1/4 και τόσο το 3/12 είναι µέρος της ακέραιης µονάδας. Και για τον ίδιο λόγο το 4/20 είναι το 1/5 της ακέραιης µονάδας, τα 5/100 είναι το 1/20 επειδή 100:5 = 20 το οποίο το καταλαβαίνεις για παρόµοιες καταστάσεις. Αυτοί οι κανόνες για την πρώτη κατηγορία είναι στην πραγµατικότητα χωρισµένοι σε τρία µέρη από τα οποία το πρώτο λέγεται απλό, το δεύτερο σύνθετο και το τρίτο αντιστραµµένο σύνθετο. Το απλό είναι ο τρόπος που ανέφερα. Το σύνθετο είναι.(το παραλείπω) Η δεύτερη κατηγορία που είναι [Σ.τ.µ. = ] όταν το µεγαλύτερο νούµερο δεν µπορεί να διαιρεθεί µε το µικρότερο αλλά από το µικρότερο µπορούν να γίνουν τέτοια µέρη τα οποία µπορούν να διαιρεθούν integrally [µε όρους ακεραίων;] µε το µεγαλύτερο. Στον κανόνα για αυτήν την κατηγορία παίρνεις µέρη του µικρότερου από τα οποία µπορείς να διαιρέσεις το µεγαλύτερο και ο µεγαλύτερος διαιρείται µε καθένα από αυτά τα µέρη και θα έχεις κλασµατικές µονάδες τις οποίες κάνει ο µικρότερος από τον µεγαλύτερο. Για παράδειγµα: θέλουµε να διαχωρίσουµε τα 5/6 στο άθροισµα των απλών µερών του ακεραίου. Επειδή το 6 δεν διαιρείται µε το 5, το 5/6 δεν είναι από την πρώτη κατηγορία αλλά επειδή το 5 µπορεί να διαχωριστεί σε δύο µέρη δηλαδή σε 3 και 2 από τα οποία το µεγαλύτερο δηλαδή το 6 το διαιρεί, το 5/6 είναι από την δεύτερη κατηγορία. [ Άρα ][Ο Φιµπονάτσι λέει: «Τα 5/6 είναι 1/3 1/2 του ακεραίου 1. (δεν βάζει + ανάµεσα)] Στην συνέχεια παραθέτει του παρακάτω πίνακες [Προηγουµένως αναφέρει: But because in this part. ] 11

12 12

13 [ Ας πάρουµε ένα παράδειγµα: στον πίνακα µε τα µέρη του 24: Γράφει 5. Αυτό προκύπτει από τον παραπάνω κανόνα 2 αφού: = Οι αιγύπτιοι θα το έκαναν (υποθέτω) ως εξής: (ξεκίνα από το 24 για να φτάσεις στο 5) 1 24 Άρα 24:5 = / 3 1 / 2 Η τρίτη κατηγορία [ Σ.τ.µ. ] είναι όταν 1 παραπάνω από το µεγαλύτερο νούµερο διαιρείται µε το µικρότερο. Ο κανόνας είναι: διαιρείς τον αριθµό που είναι κατά ένα µεγαλύτερο από τον µικρότερο και το πηλίκο της διαίρεσης θα είναι το µέρος του ακεραίου 1 και θα είναι µικρότερο από το µεγαλύτερο και σε αυτό προσθέτεις το ίδιο µέρος από το µέρος που είναι ο µεγαλύτερος αριθµός. Για παράδειγµα, θέλεις να φτιάξεις κλασµατικές µονάδες από το 2/11 το οποίο ανήκει σε αυτήν την κατηγορία γιατί ένα παραπάνω από το 11, δηλαδή το 12, διαιρείται µε το 2 που είναι πάνω από την γραµµή. Από την διαίρεση προκύπτει το πηλίκο 6 που παράγει το 1/6, και σε αυτό προσθέτουµε το 1/6 του 1/11 δηλαδή (composed fraction ). Οµοίως: 3/11=, 4/11 =, 6/11 = 13

14 [ Μπορούµε να το δούµε από τον τύπο κατευθείαν: ] Στην ίδια κατηγορία Είναι πράγµατι από την ίδια κατηγορία όταν από τον µικρότερο αριθµό που είναι πάνω από την κλασµατική γραµµή µπορούν να φτιαχτούν δύο µέρη από τα οποία το ένα µαζί µε τον µεγαλύτερο αριθµό integrally χωρίζονται ακριβώς σαν 8/11 και 9/11. Δύο µέρη µπορούν να γίνουν από το 8/11, δηλαδή το 6/11 και το 2/11 ενώ για το 6/11 έχουµε σύµφωνα µε αυτόν τον κανόνα δυο κλασµατικές µονάδες 1/22 και 1/2 και για το 2/11 έχουµε 1/66 και 1/6. Έτσι για το 8/11 θα έχουµε 1/66 + 1/22 + 1/6 + 1/2. Όµοια 9/11 = 6/11 + 3/11 = 1/44 + 1/22 + 1/4 + 1/2 και 10/11 = 1/33 + 1/22 + 1/3 + 1/2 Η τέταρτη κατηγορία είναι όταν ο µεγαλύτερος αριθµός είναι πρώτος αριθµός και ο µεγαλύτερος συν ένα διαιρείται από τον µικρότερο πλην ένα, όπως οι 5/11 και 7/11. Ο κανόνας είναι: αφαιρείς ένα από τον µικρότερο από τον οποίο κάνεις µια κλασµατική µονάδα, δηλαδή µε οποιοδήποτε αριθµό είναι κάτω από την γραµµή κλάσµατος και µετά θα σου µείνουν τα µέρη της τρίτης κατηγορίας. Αν αφαιρέσεις το 1/11 από το 5/11, τότε θα σου µείνουν τα 4/11 το οποίο ισούται µε 1/33 + 1/3 (προηγούµενη περίπτωση) και αν προσθέσεις το 1/11 θα πάρεις 1/33 + 1/3 + 1/11. Με τον ίδιο κανόνα 7/11 = 1/22 + 1/11 + 1/2. Και 6/19 = 1/76 + 1/19 + 1/4 Και 7/29 = 1/5 + 1/29 + 1/145 Και για το 3/7 θα πάρεις 3/7 = 1/28 + 1/7 + 1/4. [Πράγµατι: αφού ο (7 + 1) διαιρείται µε τον (3 1) είµαστε στην 4η κατηγορία. Οπότε παίρνουµε την κλασµατική µονάδα 1/7 και την αφαιρούµε από το 3/7 οπότε έχουµε: 3/7 1/7 = 2/7. Το 2/7 είναι στην 3η κατηγορία αφού 2/7 = Οπότε 2/7 = 1/4 + 1/(4 7) και τελικά 3/7 = 1/28 + 1/7 + 1/4. ] [αλήθεια πως αποδεικνύεται γενικά αυτός ο κανόνας;] Η πέµπτη κατηγορία είναι όταν ο µεγαλύτερος αριθµός είναι ζυγός και διαιρείται από τον µικρότερο πλην 2. Ο κανόνας είναι: όταν αφαιρείς 2 από τον µικρότερο αριθµό το οποίο 2 θα σου δώσει ένα κλάσµα από την πρώτη κατηγορία και η διαφορά πραγµατικά θα είναι στην τρίτη κατηγορία. Για παράδειγµα το 11/26. Αν αφαιρέσεις από το 11/26 το 2/26 (το οποίο πρώτη κατηγορία κάνει 1/13) θα πάρεις 9/26. Το 9/26 είναι (τρίτη κατηγορία) 9/26 = = 1/3 + 1/78. 14

15 Άρα 11/26 = 1/13 + 1/3 + 1/78. Με τον ίδιο κανόνα έχεις: 11/62 = 2/62 + 9/62 = 1/ /31 = 1/7 + 1/ /31. Η έκτη κατηγορία είναι όταν ο µεγαλύτερος διαιρείται ακριβώς µε το 3 και ο µεγαλύτερος συν ένα διαιρείται από τον µικρότερο µείον τρία, όπως το 17/27. Ο κανόνας είναι: [περιγράφει τα παρακάτω:] Δηλαδή: 17/27 = 3/ /27 = 1/9 + 1/54 + 1/2, όπου για το 3/27 χρησιµοποιήσαµε τον πρώτο κανόνα και για το 14/27 τον τρίτο κανόνα. Όµοια: 20/33 = 1/66 + 1/11 + 1/2. Η έβδοµη κατηγορία, ο κανόνας της οποίας είναι πολύ χρήσιµος, είναι όταν δεν υφίσταται καµία από τις παραπάνω κατηγορίες. Τότε διαιρείς τον µεγαλύτερο αριθµό µε τον µικρότερο και θεωρείς το πηλίκο ανάµεσα σε αυτά τα δύο νούµερα αν βγαίνει ανάµεσα στο 3 και το 4 και τότε ξέρεις ότι το µικρότερο νούµερο είναι µικρότερο από 1/3 και µεγαλύτερο από 1/4 του µεγαλυτέρου. Και αν βγαίνει ανάµεσα στο 4 και στο 5, το µικρότερο θα είναι λιγότερο από το 1/4 και µεγαλύτερο από 1/5 του µεγαλυτέρου. Και έτσι καταλαβαίνεις για κάθε δύο νούµερα, ανάµεσα σε ποιους ακέραιους βγαίνει το πηλίκο. Μετά παίρνεις την κλασµατική µονάδα από το µεγαλύτερο µέρος που το µικρότερο νούµερο είναι του µεγαλύτερου..[συνεχίζει την περιγραφή µε λόγια] Για παράδειγµα: Θέλεις να κάνεις κλασµατικές µονάδες µέρη του 4/13. Το πηλίκο της διαίρεσης 13: 4 είναι ανάµεσα στο 3 και στο 4. Εποµένως τα 4/13 της µονάδας είναι µικρότερο από το 1/3 της µονάδας και µεγαλύτερο από το 1/4 της µονάδας. Εποµένως ξέρεις ότι το 1/4 είναι η µεγαλύτερη κλασµατική µονάδα που µπορείς να πάρεις από το 4/13. Αφαιρείς 4/13 1/4 και βρίσκεις [ο Φιµπονάτσι χρησιµοποιεί εδώ και τα composed fractions που µάλλον καλύτερα να αποφύγουµε] 3/52 που γράφεται 1/52 + 1/26 ( από την δεύτερη κατηγορία αφού ) Το 3/52 µπορείς να το βρεις και διαφορετικά από την έβδοµη κατηγορία: Αν διαιρέσεις το 52:3 το πηλίκο θα είναι 17 και πάνω. Συνεπώς το 1/18 είναι το µεγαλύτερο µοναδιαίο κλάσµα που είναι µέσα στο 3/52. Μετά διαιρείς το 52 µε το 18. Το πηλίκο είναι 2 8/9 που αφαιρείς από το 3. Μένει το 1/468. Έτσι έχεις 3/52 = 1/ /18 και 4/13 = 1/ /18 + 1/4. Οµοίως βρίσκεις: 17/29 = 1/ /12 + 1/2 15

16 16

17 Η ΜΕΘΟΔΟΣ ΤΟΥ ΣΙΛΒΕΣΤΕΡ Συλβέστερ ΑΠΟ ΤΟ ΑΡΧΕΙΟ: EGYPTIAN FRACTIONS Πρώτος ανακάλυψε αυτή την µέθοδο ο Φιµπονάτσι (το 1202) αλλά δεν απέδειξε γιατί λειτουργεί. Ο Συλβέστερ (το 1880) απέδειξε την ορθότητά της. Ο αλγόριθµος είναι: 17

18 Θεώρηµα: Ο Φιµπονάτσι Συλβέστερ αλγόριθµος είναι σίγουρο ότι θα παράξει µία έκφραση από το πολύ p όρους. Απόδειξη: Στην πράξη αυτή η χειρότερη περίπτωση (δηλαδή το r να είναι πάντα 1 και συνεπώς να απαιτούνται ακριβώς p βήµατα για να ολοκληρωθεί ο αλγόριθµος, σπάνια συµβαίνει. Από την άλλη µεριά όµως το πρόβληµα µε αυτήν την µέθοδο είναι ότι οι παρανοµαστές µπορεί να αυξάνουν υπερβολικά. Για παράδειγµα, για το 5/121 µε αυτήν την µέθοδο έχουµε: Σύγκρινέ το µε την βέλτιστη λύση: Ο Φιµπονάτσι είχε αναγνωρίσει αυτήν την ανεπάρκεια σηµειώνοντας ότι: αλλά και υποθέτοντας ότι κανείς θα πρέπει να δοκιµάσει ένα µικρότερο πρώτο κλάσµα αν η πρώτη προσπάθεια δεν παράξει µια «κοµψή» λύση. Δεν όρισε τι ορίζει 18

19 ως κοµψό και τότε αυτό έγινε λιγότερο ένας αλγόριθµος και περισσότερο ένα πρόβληµα δοκιµής λάθους. Β] Στην παρακάτω ιστοσελίδα θα βρεις παραπάνω πληροφορίες και κυρίως πολύ ενδιαφέρουσες διαδραστικές εφαρµογές. [Για τον Συλβέστερ υπάρχουν αναφορές και σε άλλα αρχεία της επεξεργασίας του βιβλίου «Αχµές, ο γιος του φεγγαριού» ] ΓΙΑ ΤΗΝ ΟΜΑΔΑ ΘΑΛΗΣ ΚΑΙ ΦΙΛΟΙ ΝΑΟΥΣΑ 2010 ΥΛΙΚΟ ΓΙΑ ΤΟ ΒΙΒΛΙΟ ΑΧΜΕΣ Σωτήρης Συριόπουλος 19

Ο ΦΙΜΠΟΝΑΤΣΙ ΚΑΙ Η ΔΙΑΙΡΕΣΗ. Διαβάζουµε από το βιβλίο «Liber Abaci» κεφάλαιο 5ο «Για την διαίρεση των ακεραίων», ανάµεσα σε άλλα, και τα παρακάτω:

Ο ΦΙΜΠΟΝΑΤΣΙ ΚΑΙ Η ΔΙΑΙΡΕΣΗ. Διαβάζουµε από το βιβλίο «Liber Abaci» κεφάλαιο 5ο «Για την διαίρεση των ακεραίων», ανάµεσα σε άλλα, και τα παρακάτω: Ο ΦΙΜΠΟΝΑΤΣΙ ΚΑΙ Η ΔΙΑΙΡΕΣΗ Διαβάζουµε από το βιβλίο «Liber Abaci» κεφάλαιο 5ο «Για την διαίρεση των ακεραίων», ανάµεσα σε άλλα, και τα παρακάτω: - «Όταν κανείς επιθυµεί να ξέρει να διαιρεί οποιονδήποτε

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

26.02.14 ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

26.02.14 ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 26.02.14 Χ. Χαραλάμπους 14 ο πρόβλημα (βρίσκεται στο Μουσείο Καλών Τεχνών της Μόσχας από το 1893 μ.χ.) «μετάφραση των συμβόλων: Εάν σου πουν: μία κομμένη πυραμίδα με ύψος 6, με βάση

Διαβάστε περισσότερα

Η Έννοια του Κλάσµατος

Η Έννοια του Κλάσµατος Η Έννοια του Κλάσµατος Κεφάλαιο ο. Κλασµατική µονάδα λέγεται το ένα από τα ίσα µέρη, στα οποία χωρίζουµε την ακέραια µονάδα. Έχει τη µορφή, όπου α µη µηδενικός φυσικός αριθµός (α 0, α διάφορο του µηδενός).

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ 1. Ταξινόμηση αντικειμένων ως προς τα χαρακτηριστικά τους Βάλε μαζί σε έναν κύκλο τα λουλούδια με το ίδιο χρώμα και το ίδιο όνομα. Κοίταξε προσεκτικά την εικόνα και απάντησε: Πόσα

Διαβάστε περισσότερα

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο

Διαβάστε περισσότερα

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ.

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 1. Οι φυσικοί αριθμοί. Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 0, 1,2,3,4,5,6,7,8,9, 10,..., 100,..., 1.000,..., 10.0000,10.001,..., 100.000, 100.001, 100.002,..., 200.000,...,

Διαβάστε περισσότερα

ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Αριθμητικά συστήματα 123, 231, 312 Τι σημαίνουν; Τι δίνει αξία σε κάθε ίδιο ψηφίο; Ποια είναι η αξία του κάθε ψηφίου; Αριθμητικά

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ

1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ 1 1.5 ΧΑΡΑΚΤΗΡΕΣ ΙΑΙΡΕΤΟΤΗΤΑΣ ΜΚ ΕΚΠ ΑΝΑΛΥΣΗ ΑΡΙΘΜΟΥ ΣΕ ΓΙΝΟΜΕΝΟ ΠΡΩΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΘΕΩΡΙΑ 1. Πολλαπλάσια του α : Είναι οι αριθµοί που προκύπτουν αν πολλαπλασιάσουµε τον α µε όλους τους φυσικούς. Είναι

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

Κλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια

Κλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια 1 ΜΑΘΗΜΑ 1 Ο Κλάσµατα Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια Όπως φαίνεται όµως ο Σάκης έφαγε 1 κοµµάτι από τα 8 Το κοµµάτι

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

(GNU-Linux, FreeBSD, MacOsX, QNX

(GNU-Linux, FreeBSD, MacOsX, QNX 1.7 διαταξεις (σελ. 17) Παράδειγµα 1 Θα πρέπει να κάνουµε σαφές ότι η επιλογή των λέξεων «προηγείται» και «έπεται» δεν έγινε απλώς για λόγους αφαίρεσης. Μπορούµε δηλαδή να ϐρούµε διάφορα παραδείγµατα στα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ Το αναλυτικό πρόγραμμα που παρουσιάζουμε εδώ είναι μια πρόταση από περιεχόμενα που θα μπορούσαν να διδαχτούν στο σχολείο δεύτερης ευκαιρίας. Αυτό δεν σημαίνει ότι το πρόγραμμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: ΣΤΡΑΤΗΓΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΡΙΘΜΩΝ-19 ο ΚΕΦΑΛΑΙΟ ΣΧΟΛΕΙΟ: 2 ο ΠΕΙΡΑΜΑΤΙΚΟ ΦΛΩΡΙΝΑΣ

Διαβάστε περισσότερα

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων

Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Ορισμός Ευκλείδεια διαίρεση ονομάζεται η πράξη κατά την οποία ένας αριθμός

Διαβάστε περισσότερα

Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους ΑΠΘ

Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 1.03.12 Χ. Χαραλάμπους Ποια είναι τα χαρακτηριστικά των μαθηματικών των αρχαίων Αιγυπτίων? Υπάρχει διαχωρισμός ανάμεσα στις ακριβείς τιμές ποσοτήτων και στις προσεγγίσεις? Όλοι αυτοί

Διαβάστε περισσότερα

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Γ'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της Γ Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν ίσως το αποκορύφωµα των

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Εαρινό Εξάμηνο 2011. 21.02.11 Χ. Χαραλάμπους ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών. Ιστορία των Μαθηματικών ΑΠΘ

Εαρινό Εξάμηνο 2011. 21.02.11 Χ. Χαραλάμπους ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών. Ιστορία των Μαθηματικών ΑΠΘ Εαρινό εξάμηνο 2011 21.02.11 Χ. Χαραλάμπους Μεσοποταμία Αίγυπτος 3000 1000 π.χ. Αίγυπτος: ο πάπυρος του Rhind ~1650 π.χ. Αγοράσθηκε από τον Σκωτσέζο Rhind το 1858 Αίγυπτος: ο πάπυρος της Μόσχας ~ 1600

Διαβάστε περισσότερα

3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 5 + 1 4 + 1. Κάνω τις ασκήσεις

3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 5 + 1 4 + 1. Κάνω τις ασκήσεις 3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 9 + 1 7 + 1 8 + 1 + 1 3 + 1 4 + 1 5 + 1 6 + 1 1 + 1 0 + 1 0 1 3 4 5 6 7 8 9 10 Κάνω τις ασκήσεις 1. Γράφω με τη σειρά μέσα στα κυκλάκια

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Στάμη Τσικοπούλου. ΕΥΚΛΕΙΔΗΣ Β 85τ.1/1

Στάμη Τσικοπούλου. ΕΥΚΛΕΙΔΗΣ Β 85τ.1/1 Πίνακες πολλαπλασιασμού Το Βεδικό τετράγωνο Στάμη Τσικοπούλου Σ τα μαθηματικά και ιδιαίτερα στην αριθμητική ένας πίνακας πολλαπλασιασμού (ή αλλιώς ένας πυθαγόρειος πίνακας) είναι ένας πίνακας που χρησιμοποιείται

Διαβάστε περισσότερα

Πειραματιζόμενοι με αριθμούς στο περιβάλλον του Microworlds Pro: διαθεματική προσέγγιση περί «πολλαπλασίων και διαιρετών»

Πειραματιζόμενοι με αριθμούς στο περιβάλλον του Microworlds Pro: διαθεματική προσέγγιση περί «πολλαπλασίων και διαιρετών» Πειραματιζόμενοι με αριθμούς στο περιβάλλον του Microworlds Pro: διαθεματική προσέγγιση περί «πολλαπλασίων και διαιρετών» μια Νίκος Δαπόντες Φυσικός Δευτεροβάθμιας Εκπαίδευσης Το περιβάλλον Microworlds

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ÊåöÜëáéï 1 ï. -Ïé äåêáäéêïß áñéèìïß -Óýãêñéóç äýï áñéèìþí -Óôñïããõëïðïßçóç ôùí áñéèìþí. -Ç Ýííïéá ôçò åîßóùóçò

ÊåöÜëáéï 1 ï. -Ïé äåêáäéêïß áñéèìïß -Óýãêñéóç äýï áñéèìþí -Óôñïããõëïðïßçóç ôùí áñéèìþí. -Ç Ýííïéá ôçò åîßóùóçò ÊåöÜëáéï 1 ï Öõóéêïß êáé Äåêáäéêïß áñéèìïß âéâëéïììüèçìá 1: -Öõóéêïß áñéèìïß -Ïé äåêáäéêïß áñéèìïß -Óýãêñéóç äýï áñéèìþí -Óôñïããõëïðïßçóç ôùí áñéèìþí âéâëéïììüèçìá : -Ç Ýííïéá ôçò ìåôáâëçôþò -Ç Ýííïéá

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή Εισαγωγή Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ Ξεκινάµε την εργαστηριακή µελέτη της Ψηφιακής Λογικής των Η/Υ εξετάζοντας αρχικά τη µορφή των δεδοµένων που αποθηκεύουν και επεξεργάζονται οι υπολογιστές και προχωρώντας

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού

Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού Παρουσίαση Λογισμικού: Κατερίνα Αραμπατζή Προμηθευτής: Postscriptum Advanced Communication

Διαβάστε περισσότερα

1. Εύρεση µήκους ενός κύκλου : Για να βρω το µήκος ενός κύκλου βρίσκω την ακτίνα του κύκλου και εφαρµόζω τον τύπο

1. Εύρεση µήκους ενός κύκλου : Για να βρω το µήκος ενός κύκλου βρίσκω την ακτίνα του κύκλου και εφαρµόζω τον τύπο 1 3.3 ΜΗΚΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙ 1. Μήκος κύκλου ακτίνας ρ : Το µήκος L ενός κύκλου δίνεται από τον τύπο L = 2πρ ή L = πδ όπου δ η διάµετρος του κύκλου και π ένας άρρητος αριθµός του οποίου προσέγγιση µε δύο δεκαδικά

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών»)

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών») Πρώτοι αριθµοί: Τι µας λέει στο βιβλίο (σελ.25-26): 1. Μου αρέσουν οι πρώτοι αριθµοί, γι αυτό αρίθµησα µε πρώτους τα κεφάλαια. Οι πρώτοι αριθµοί είναι αυτό που αποµένει όταν αφαιρέσεις όλα τα στερεότυπα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης

Διαβάστε περισσότερα

ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ

ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Συχνά τα Μαθηματικά χρησιμοποιούνται ως ένα «εργαλείο» προκειμένου να ανιχνευθεί η «εξυπνάδα» του κάθε ανθρώπου, να διαφοροποιηθούν οι μαθητές μεταξύ τους σε

Διαβάστε περισσότερα

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ 1 4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ 1. Θεώρηµα Αν α, β ακέραιοι µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι κ και υ, έτσι ώστε α = κβ + υ µε 0 υ < β. 2. Τέλεια διαίρεση Αν το υπόλοιπο υ της Ευκλείδειας

Διαβάστε περισσότερα

Mathematics and its Applications, 5th

Mathematics and its Applications, 5th Μαθηµατικα για Πληροφορικη Εφαρµογες και τεχνικες Ηλιας Κουτσουπιάς Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών Σχετικα µε το µαθηµα Σχετικα µε το µαθηµα Το µαθηµα πραγµατευεται καποια ϑεµατα

Διαβάστε περισσότερα

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ 174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία

Διαβάστε περισσότερα

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44. ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Το πρόβλημα στα Μαθηματικά

Το πρόβλημα στα Μαθηματικά Το πρόβλημα στα Μαθηματικά από το ΣΔΕ Γιαννιτσών Δημήτρης Πολυτίδης (Μαθηματικός) Στα Μαθηματικά το πρόβλημα θα πρέπει να είναι μια κατάσταση η επίλυση της οποίας, από το μαθητή, δεν είναι αυτόματη και

Διαβάστε περισσότερα

Διορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου

Διορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου Διορθώσεις - Βελτιώσεις στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου 1 Μαθηματικά Α Γυμνασίου A/A Σελίδα Αντί Να γραφεί 1 11, 1 η Δραστηριότητα Βρες τους έξι διαφορετικούς τριψήφιους αριθμούς που. Βρες

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις :

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις : ΓΥΜΝΑΣ Ο ΕΞΑΠ ΑΤΑΝΟΥ ΣχολK Έτος: OMNM-OMNN Τάξη: Α Μάθημα: ΜΑΘΗΜΑΤΙ Α Ημερομηνία : 30/0/2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN Θέμα 1 ο (ΘΕΩΡ Α) Επιλέξτε τη σωστή απάντηση στις παρακάτω

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +...

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +... 2 Διαχειρίζομαι αριθμούς ως το 10. 00 Για να εξασκηθώ 1. Βρίσκω το διπλάσιο των αριθμών όπως στο παράδειγμα. 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200 α) 3.400... +... +... +...... +... =...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 3: Πραγματικοί αριθμοί Πυθαγόρειο Θεώρημα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 2: Πραγματικοί

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας Κύκλου μέτρησις Ολοκληρωμένο διδακτικό σενάριο Δημιουργία: Τεύκρος Μιχαηλίδης Μαθηματικό Εργαστήρι Β Αθήνας Η ιστορία του π 2 Κυ κλου με τρησις Η μέθοδος του Αρχιμήδη για την προσέγγιση του π και ο ρόλος

Διαβάστε περισσότερα

2.2.3 Η εντολή Εκτύπωσε

2.2.3 Η εντολή Εκτύπωσε 2.2.3 Η εντολή Εκτύπωσε Η εντολή Εκτύπωσε χρησιµοποιείται προκειµένου να εµφανίσουµε κάτι στην οθόνη του υπολογιστή. Για τον λόγο αυτό ονοµάζεται και εντολή εξόδου. Ισοδύναµα µπορεί να χρησιµοποιηθεί και

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

1 / 15 «ΟΙ ΓΛΩΣΣΕΣ ΚΑΙ ΕΓΩ» Ερωτηµατολόγιο για τους µαθητές της 3 ης Γυµνασίου. Μάρτιος 2007

1 / 15 «ΟΙ ΓΛΩΣΣΕΣ ΚΑΙ ΕΓΩ» Ερωτηµατολόγιο για τους µαθητές της 3 ης Γυµνασίου. Μάρτιος 2007 1 / 15 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Έρευνα υποστηριζόµενη από τη Γενική ιεύθυνση Εκπαίδευσης και Πολιτισµού της Ε.Ε., στο πλαίσιο του προγράµµατος Σωκράτης «ΟΙ ΓΛΩΣΣΕΣ ΚΑΙ ΕΓΩ» Ερωτηµατολόγιο

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας Μονοψήφια διαίρεση Προβλήματα αναλογίας ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.13 Αναπτύσσουν και εφαρμόζουν αλγόριθμους της πρόσθεσης, της αφαίρεσης, του πολλαπλασιασμού με τριψήφιους

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης ΕΠ.27 Να αναπτυχθεί αλγόριθμος που θα εμφανίζει όλους τους τέλειους αριθμούς στο διάστημα [2,100]. Τέλειος είναι ο ακέραιος που ισούται με το άθροισμα των γνήσιων διαιρετών του. Oι τέλειοι Ο Πυθαγόρας

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1. Ένα ψυγείο την περίοδο των εκπτώσεων πωλείται µε έκπτωση 18% αντί του ποσού των 779. Να βρείτε πόση ήταν η αξία του ψυγείου πριν τις εκπτώσεις. Αν x ήταν η αξία του ψυγείου

Διαβάστε περισσότερα

Από την Α Λυκείου µέχρι το Πανεπιστήµιο

Από την Α Λυκείου µέχρι το Πανεπιστήµιο Από την Α Λυκείου µέχρι το Πανεπιστήµιο Α ΛΥΚΕΙΟΥ Β ΛΥΚΕΙΟΥ 1 η οµάδα προσανατολισµού ανθρωπιστικών σπουδών η οµάδα προσανατολισµού θετικών σπουδών 1 η οµάδα προσανατολισµού ανθρωπιστικών σπουδών 3 η οµάδα

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα