Πρόβληµα Απόκρυψης. Ποιο είναι το εµφανές αντικείµενο (χρώµα) σε κάθε σηµείο του επιπέδου προβολής;

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πρόβληµα Απόκρυψης. Ποιο είναι το εµφανές αντικείµενο (χρώµα) σε κάθε σηµείο του επιπέδου προβολής;"

Transcript

1 Πρόβληµα Απόκρυψης Ποιο είναι το εµφανές αντικείµενο (χρώµα) σε κάθε σηµείο του επιπέδου προβολής; Σ Εµφανές αντικείµενο στο σηµείο Σ Επίπεδο προβολής Χωρίζονται σε αλγόριθµους απόκρυψης ακµών και επιφανειών. Χρησιµοποιούν άµεσα ή έµµεσα ταξινόµηση στις διαστάσεις X Y και Z. 8.

2 Αλγόριθµοι Απόκρυψης Χωρίζονται σε αλγόριθµους χώρου αντικειµένων και αλγόριθµους χώρου εικόνας. Αλγόριθµοι χώρου αντικειµένων συγκρίνουν αντικείµενα µεταξύ τους για να βρουν το πλησιέστερο σε κάθε σηµείο του επιπέδου προβολής: Για κάθε αντικείµενο π {Εύρεση των ορατών τµηµάτων του π µέσω σύγκρισης (Χ,Υ,Ζ) µε όλα τα άλλα αντικείµενα; Χρωµατισµός των ορατών τµηµάτων του π στην οθόνη } Αλγόριθµοι χώρου εικόνας έχουν την εξής µορφή: Για κάθε pixel ρ της εικόνας {Εύρεση του πλησιέστερου αντικειµένου που τέµνεται από την ακτίνα προβολής που περνά από το ρ; Χρωµατισµός του ρ µε το χρώµα του πλησιέστερου αντικειµένου στο σηµείο τοµής } 2 ( ) Αλγόριθµοι χώρου αντικειµένων είναι O Π ενώ αλγόριθµοι χώρου εικόνας είναι O( Π Ρ) όπου Π οαριθµός των πολυγώνων και P οαριθµός των pixels. 8.2

3 Αλγόριθµοι Απόκρυψης Υπολογιστική ακρίβεια. Αλγόριθµοι χώρου εικόνας: ακρίβεια που απαιτεί η ανάλυση της εικόνας. Αλγόριθµοι χώρου αντικειµένων: ακρίβεια ορισµού αντικειµένων (=ακρίβεια υπολογιστή). Θέση στη γραφική σωλήνωση εξόδου. Αλγόριθµοι χώρου αντικειµένων: µετά την προβολή (διακεκοµµένη γραµµή). Αλγόριθµοι χώρου εικόνας: ενσωµατώνονται στη διαδικασία παράστασης στην οθόνη. ιαγραφή πίσω επιφανειών. Θέσεις αντικειµένων και φωτεινών πηγών Θέση παρατηρητή 3 Μαθηµατικά Μοντέλα ΣΣΑ 3 Μετασχ/σµοί Μοντέλου ΠΣΣ (WCS) 3 Μετασχ/σµός Παρατήρησης ΣΣΠ (ECS) ιαγραφή Πίσω Επιφανειών 3 Αποκοπή Είσοδοι (για κάθε καρέ) Παράσταση Στην Οθόνη: Σάρωση Αντιταύτιση Φωτισµός Υφή Απόκρυψη Ακµών/ Επιφανειών 2 D ΣΣΟ 2 (SCS) Προβολή 8.3

4 Αλγόριθµοι Απόκρυψης Τεχνικές βελτίωσης αποτελεσµατικότητας αλγορίθµων απόκρυψης. Εκµετάλλευση προοπτικού µετασχηµατισµού. Εκµετάλλευση συνάφειας. Περιβάλλοντες όγκοι. ιαµερισµός χώρου. 8.4

5 Προοπτικός Μετασχηµατισµός Σ ( ) ( ) Ζήτηµα απόκρυψηςµεταξύ δύο σηµείων x,y,z και Σ2 x2,y2,z2 υπάρχει µόνο αν τα δύο σηµεία βρίσκονται πάνω στην ίδια ακτίνα προβολής. Y Π Y Π Σ Σ 2 Ακτίνες προβολής Σ Σ 2 Ακτίνες προβολής X Π Παράλληλη προβολή Z Π X Π Προοπτική προβολή Z Π Συνθήκη απόκρυψης στην παράλληλη προβολή. ( x = x2 ) & ( y = y2 ) Συνθήκη απόκρυψης στην προοπτική προβολή. ( x / z = x2 / z2 ) & ( y / z = y2 / z2 ) Απαιτεί (ακριβή) διαίρεση µε z. Η διαίρεση αυτή γίνεται κατά την προοπτική προβολή. Η προοπτική προβολή µετατρέπει τις ακτίνες προβολής σε παράλληλες. Φυλάµε z συντεταγµένη για σύγκριση βάθους. 8.5

6 Συνάφεια Συνάφεια: ιδιότητα γεωµετρικών οντοτήτων να διατηρούν τοπικά σταθερές τις τιµές των χαρακτηριστικών τους ή να τις µεταβάλλουν οµαλά. Π.χ. αυξητικός υπολογίσµος z σηµείων πολυγώνου. Είδη συνάφειας: Συνάφεια ακµής. Συνάφεια επιφάνειας. Συνάφεια γραµµών σάρωσης. Συνάφεια καρέ. 8.6

7 Περιβάλλοντες Όγκοι Απλούστεροι όγκοι από τα αντικείµενα που περιβάλλουν για µείωση κόστους συγκρίσεων κατά την ταξινόµηση στις διαστάσεις Χ, Υ και Ζ. Συχνά έχουν τη µορφή ορθογώνιου παραλληλογράµµου (2 ) ή ορθογώνιου παραλληλεπιπέδου (3 ). Οχι απαραίτητα κλειστοί. Αν οι περιβάλλοντες όγκοι δύο αντικειµένων δεν τέµνονται τότε ούτε τα αντικείµενα τέµνονται. Το αντίθετο δεν ισχύει πάντα. 8.7

8 ιαµερισµός Χώρου ιαµέριση χώρου σε σύνολο διατεταγµένων µερών (π.χ. voxels). Τα µέρη του χώρου που καταλαµβάνει ένα αντικείµενο ορίζουν έµµεσα τη διάταξή του σε σχέση µε άλλα αντικείµενα. 8.8

9 ιαγραφή Πίσω Επιφανειών Αν η γωνία µεταξύ V και N είναι > 90 τότε η επιφάνεια είναι πίσω (αόρατη). V N < 90 < 90 B Γ > 90 A Μια επιφάνεια είναι ορατή αν V N = Vx N x + Vy N y + Vz N Μειώνει όγκο δεδοµένων κατά ~50%. Λύνει πρόβληµα απόκρυψης για ένα κυρτό αντικείµενο. z > 0 8.9

10 ιαγραφή Πίσω Επιφανειών Λειτουργείστοχώροαντικειµένων και είναι O Π. V µπορεί να υπολογισθεί από µία κορυφή P της επιφάνειας. Αν ο παρατηρητής βρίσκεται στο κέντρο του ΣΣΠ τότε V = P µπορεί να υπολογισθεί από 3 διαδοχικές, µη συγγραµµικές κορυφές P P2 και N = A B = P P P N ( ) ( ) N 2 3 P P A B 3 P 2 ( ) Προσοχή A B B A. Χρήση σειράς κορυφών. P P3 8.0

11 Αλγόριθµοι Απόκρυψης Επιφανειών Ακολούθησαν την εµφάνιση της πλεγµατικής οθόνης. 4 Βασικές κατηγορίες. z-buffer (πιο διαδεδοµένος). scanline. ταξινόµηση κατά βάθος. υποδιαίρεση επιφάνειας. 8.

12 Αλγόριθµοι Απόκρυψης Επιφανειών Βασική πράξη: σύγκριση βάθους 2 στοιχείων µε ίδιοχυ. Η προοπτική προβολή διευκολύνει. Μετατρέπει ακτίνες προβολής ώστε να είναι παράλληλες του Z. Ίσες αποστάσεις στον Ζ π δεν µετασχηµατίζονται σε ίσες αποστάσεις στον Ζ ο. Ζ ο µεταβάλλεται ταχύτερα καθώς πλησιάζει τη µέγιστη τιµή του (). Y Π X Π Z Π Y O Πρoοπτική προβολή Z O X O 8.2

13 Αλγόριθµος z-buffer Απαιτεί ύπαρξη µνήµης βάθους (z-buffer) για κάθε pixel. Οι τιµές βάθους βρίσκονται (για τα περισσότερα σχήµατα) µε παρεµβολή. Έµµεση ταξινόµηση. Για κάθε pixel ο z-buffer φυλάει την ελάχιστη (ως τώρα) τιµή βάθουςστο pixel αυτό. Αρχικοποίηση στο µέγιστο z (πίσω επίπεδο αποκοπής). 8.3

14 Αλγόριθµος z-buffer /* Αλγόριθµος z-buffer */ /* Αρχικοποίηση: m,n οι διαστάσεις της οθόνης */ for (x=0; x<m; x++) { for (y=0; y<n; y++) { z_buffer[x,y]=f; frame_buffer[x,y]=background; } } /*Επεξεργασία πολυγώνων*/ for (π=0; π<number_of_polygons(); π++) { /*Επεξεργασία scanlines πολυγώνου ymin ymax*/ for (y=ymin; y<=ymax; y++) { } /*Βρες µε γραµµική παρεµβολή µεταξύ των αντίστοιχων κορυφών, τις τιµές τοµής µε scanline y :xleft,xright τις τιµές βάθους στις τοµές :zleft,zright τις τιµές χρωµατισµού στις τοµές :cleft,cright*/ for (x=xleft; x<=xright; x++) { } 8.4 /*µέγιστο βάθος*/ /*φόντο*/ /*Βρες µε γραµµική παρεµβολή µεταξύ xleft και xright την τιµή βάθους z και χρώµατος c σε κάθε pixel x,y*/ if (z<z_buffer[x,y]) { z_buffer[x,y]=z; frame_buffer[x,y]=c; } }

15 Αλγόριθµος z-buffer Τοµές πλευρών πολυγώνου µε scanlines βρίσκονται µε λίστα ενεργών πλευρών. Γραµµική παρεµβολή z. z z z a β γ = z = z = z α ( z z ) 2 ( z z ) 3 ( z z ) β α y y y y s 2 s 3 x x γ β y y y y x a x a Y o y 3 y 2 ( x, y z ) 2 2, 2 ( x, y z ) 3 3, 3 ( x, y, z ) γ s γ y s ( x, y, z ) a s a ( x, y, z ) β s β γραµµή σάρωσης y ( x, y z ), 8.5

16 Αλγόριθµος z-buffer ( ) O Π S, όπου Π οαριθµός πολυγώνων και S o µέσος αριθµός pixel ανά πολύγωνο. Για τυπικές σκηνές Π S m n (σταθερό). Πλεονεκτήµατα z-buffer: Ευκολία υλοποίησης σε H/W ή S/W. Επεξεργασία πολυγώνων µε τυχαία σειρά. υνατότητα χρήσης για µη πολυγωνικά αντικείµενα (µε συνάρτηση βάθους). Ανάγκη σε µνήµη: Ένας καλός z-buffer απαιτεί 32 bits/pixel. Για ανάλυση 024x024 αυτό συνεπάγεται 4Mbytes. 8.6

17 Ειδικές Εφαρµογές z-buffer Συνδυασµός εικόνων Έστω ( F A, Z A ), ( FB, ZB ) οι frame και z-buffer εικόνων A και Β. ΑκαιΒµπορεί να δηµιουργήθηκαν χωριστά. Συνδυασµός: for (x=0; x<m; x++) for (y=0; y<n; y++) {Z C [x,y]=(z A [x,y]<z B [x,y])?z A [x,y]:z B [x,y]; F C [x,y]=(z A [x,y]<z B [x,y])?f A [x,y]:f B [x,y]; } Τοποθέτηση 3 αντικειµένων σε σκηνή µεχρήσηz-buffer. 3 cursor. εν µεταβάλλουµεπεριεχόµενα z-buffer. 8.7

18 Αλγόριθµοι Απόκρυψης Ακµών Ανάπτυξη την εποχή της διανυσµατικής οθόνης. Σήµερα χρήσιµοι για παράσταση περιγραµµάτων (π.χ. δοκιµές animation). Εξετάζουµε γενικό αλγόριθµογια µη διαφανή πολυγωνικά αντικείµενα που δεν διαπερνά το ένα το άλλο: Βήµα : ιαίρεση ακµών σε τµήµατα που είναι είτε ολικώς εµφανή είτε ολικώς µηεµφανή. Βήµα 2: Καθορισµός, για κάθε τέτοιο τµήµα, εάν είναι εµφανές. 8.8

19 Αλγόριθµος Απόκρυψης Ακµών Λειτουργείστοχώροαντικειµένων µετά τον αποκλεισµόπίσωεπιφανειών, την αποκοπή και την προβολή: Ενα τµήµα ακµής δεν είναι εµφανές µόνο αν κρύβεται από κάποια επιφάνεια (πολύγωνο). Υπολογισµός των σηµείων τοµής της προβολής κάθε ακµής µε τις προβολές των ακµών όλων των άλλων πολυγώνων: Ο(e 2 ) για e ακµές. Με χρήση της παραµετρικής εξίσωσης. Εστω ακµή k = P P 2 και προβολή της k = P P2 k = P + µ ( P2 P ) µε µ [ 0,] Τα n(k') σηµεία τοµής της k' µε άλλεςακµές δίνονται από τιµές της παραµέτρου µ,µ 2,,µ n(k') µ µ 0 2 µ n ( k ) Κάθε ζεύγος (µ i, µ i+ ) ορίζει ένα τµήµα ακµής. 8.9

20 Αλγόριθµος Απόκρυψης Ακµών Καθορισµός ορατότητας τµήµατος ακµής: Αρκεί ο έλεγχος ορατότητας οποιουδήποτε σηµείου του. Εστω το µέσον m του k' µεπαραµετρική τιµή: σ 2 m = P + σ ( µ + µ ) = i i+ ( P P ) (8.) Ορατότητα m εξαρτάται από m της k: m δεν είναι απαραίτητα µέσον της k. 2 Y Π k m m Επίπεδο προβολής l k Z Π X Π 8.20

21 Αλγόριθµος Απόκρυψης Ακµών Απειρα σηµεία της l προβάλοντια στο m. Οµως γνωρίζουµε επιπλέονταάκραp και P 2 της k: m = v m (8.2) m = P + µ ( P2 P ) για κάποιο µ (8.3) Από τις (8.), (8.2) και (8.3) : v ( P + σ ( P2 P )) = P + µ ( P2 P ) (σ δοσµένο, ν, µ άγνωστα, µ το ζητούµενο) Από την προοπτική προβολή: Αρα: d P = = P P2 P2 z z2 P P2 P v d + σ = P + ( P2 P ) z z2 z µ (8.4) d 8.2

22 Αλγόριθµος Απόκρυψης Ακµών Η z-συντεταγµένη της (8.4) είναι: v d = z + µ z Λύνοντας ως προς v και αντικαθιστώντας στην (8.4): z z µ σ P σ µ P2 + σ µ P µ σ z z Η (8.5) ισχύει για οποιαδήποτε P και P2. Χρησιµοποιώντας τα σηµεία µε x = και x 2 =0 και παίρνοντας τη x-συντεταγµένη της (8.5): z σ ( µ ) µ ( σ ) 2 = 0 z Τελικά: σ z µ = σ ( z z2 ) + z2 ( ) 2 z ( ) ( ) ( ) ( ) 2 P 0 2 = 2 (8.5) 8.22

23 Αλγόριθµος Απόκρυψης Ακµών Για διερεύνηση ορατότητας m (συνεπώς k) εξετάζουµε σηµείο τοµής µε επίπεδο κάθε πολυγώνου π που δεν περιέχει την k. l = a m Η l τέµνει το επίπεδο του π στο w Για σηµείο του π, ισχύει w v 0 = a w 0 N = v ( ) 0 Αρα, υπολογίζουµε τοα w (και το ) από την m a w m v 0 N = w ( )

24 Αλγόριθµος Απόκρυψης Ακµών Αν a w > τότε το π βρίσκεται πίσω από την k. Αν aw τότε πρέπει να ελεγχθεί αν το w είναι εσωτερικό του π : Αν είναι, τότε το π καλύπτει το τµήµα τηςk. Αν όχι, τότε το π δεν καλύπτει το τµήµα τηςk (πρέπει βέβαια να εξετασθούν και τα άλλα πολύγωνα). Για αντικείµενα που διαπερνά το ένα το άλλο πρέπει να προστεθούν στη δοµή παράστασης οι ακµές τοµής. 8.24

25 Αλγόριθµος Απόκρυψης Ακµών Βελτίωση απόδοσης (εύρεση τοµών ακµών): Χρήση περιβαλλόντων ορθογώνιων παραλληλογράµµων για µείωση κόστους υπολογισµού τοµών ακµών: u min = min( u, u2), vmin = min( v, v2), umax = max( u, u2), vmax = max( v, v2) V P u max,v max ( ) V P 2 ( ) u max,v max k k P 2 u min,v min ( ) U u min,v min ( ) P U ύο ευθύγραµµα τµήµατα k και k 2 δεν τέµνονται αν: u < u ή u < u ή v < v ή v < v max, min,2 max,2 min, max, min,2 max,2 min, 8.25

26 Αλγόριθµος Απόκρυψης Ακµών Βελτίωση απόδοσης (εύρεση τοµών ακµών): Ταξινόµηση προβολών ακµών σύµφωνα µε αυξανόµενες u min τιµές. υαδική αναζήτηση στην ταξινοµηµένηλίσταπριναπόέλεγχοτοµής. Επεκτείνεται στις u max, v min και v max τιµές. Βελτίωση απόδοσης (έλεγχοι ορατότητας): Χρήση περιβάλλοντος ορθογώνιου παραλληλεπίπεδου πολυγώνου π κατά τον έλεγχο τοµής µε l. 8.26

27 Αλγόριθµοι Scanline Επέκταση βασικού αλγόριθµου σάρωσης πολυγώνου (πολλά πολύγωνα): Ιδια είδη συνάφειας. Χώρος εικόνας. Τοµές πολυγωνικών 3 αντικειµένων µε επίπεδοy=y s είναι πολύγωνα: Προβολές ακµών των πολυγώνων αυτών στο ΧΥ διαιρούν γραµµή σάρωσης σε span. Σε κάθε span αντιστοιχεί ορατή ακµή (χρώµα αντίστοιχου πολυγώνου). Εύρεση ορατής ακµής µετά από ταξινόµηση ως προς z. Απαγορεύονται πολύγωνα που τέµνονται. Z o Τοµή y=y s s s2 s 3 s4 s Spans X o

28 Αλγόριθµοι Scanline /*Aλγόριθµος scanline*/ ηµιούργησε µε Bucket-sort ένα y-bucket µε πληροφορίες για κάθε πλευρά του πολυγώνου (κεφ. 2); /*Επανάληψη γραµµών σάρωσης*/ for (ys=0; ys<n; ys++) {/*Επανάληψη ενεργών πολυγώνων (που τέµνουν ys)*/ for (π=0; π<max_active; π++) {Εύρεση ακµής τοµής π µε επίπεδο y=ys; Εισαγωγή ακµής σε λίστα ακµών τοµής ταξινοµηµένη ως προς xs; Καθoρισµός span από λίστα ακµών τοµής; /*Επανάληψη span*/ for (s=0; s<max_span; s++) {Αποκοπή ενεργών ακµών (που τέµνουν s) σταόριατουs; Εύρεση βάθους αποκοµµένων ακµώνσεένααπόταάκρατουs; Επιλογή ορατής αποκοµµένης ακµής (ελάχιστο βάθος); Χρωµατισµός ορατής αποκοµµένης ακµής; } } } Χρήση ΛΕΠ για αποδοτικότητα. Απόδοση εξαρτάται από # πολυγώνων και # span. 8.28

29 Αλγόριθµοι Λίστας Προτεραιότητας Ταξινόµηση πολυγώνων κατά βάθος και εµφάνιση µε σωστήσειρά: Οχι πάντα δυνατή (επικάλυψη z-έκτασης, τεµνόµενα πολύγωνα). ιαµερισµός πολυγώνων. Μεγάλη πολυπλοκότητα. Χώρος αντικειµένων, αν αποτέλεσµα θεωρηθεί η ταξινοµηµένη λίστα.. Αλγόριθµος ταξινόµησης κατά βάθος (Newell 972). 2. Αλγόριθµος BSP δένδρου (Fuchs 983). 8.29

30 Αλγόριθµος Ταξινόµησης κατά Βάθος Ταξινόµηση κατά φθίνουσα απόσταση από κέντρο προβολής. Σύγκριση P προ Q δεν είναι πάντα εύκολη. Χρήση περιβάλλοντος παραλληλεπιπέδου [x min (P), y min (P), z min (P)], [x max (P), y max (P), z max (P)]. 8.30

31 Αλγόριθµος Ταξινόµησης κατά Βάθος Απόφαση P προ Q µε 5 ελέγχους αύξουσας πολυπλοκότητας:. εν επικαλύπτονται x-εκτάσεις P και Q. 2. εν επικαλύτπονται y-εκτάσεις P και Q. 3. To P βρίσκεται στον ηµιχώρο του επιπέδου που ορίζεται από το Q στον οποίο δεν βρίσκεται το κέντρο προβολής (σχήµα Α): Πρόσηµο A Q x + BQ y + CQ z + DQ ) Πρόσηµο( AQ 0 + BQ 0 + CQ 0 + D κορυφή (x, y, z) του P. 4. Το Q βρίσκεται στον ηµιχώρο του επιπέδου που ορίζεται από το P στον οποίο βρίσκεται το κέντρο προβολής (σχήµα Β). 5. εν επικαλύπτονται οι προβολές των P και Q στο ΧΥ. ( Q ) X o Q P X o Q P Κέντρο προβολής Α Z o 8.3 Κέντρο προβολής Β Z o

32 Αλγόριθµος Ταξινόµησης κατά Βάθος Αν κανένας από τους παραπάνω 5 ελέγχους δεν ισχύει, γίνεται εναλλαγή των P και Q και επαναλαµβάνονται οι έλεγχοι 3 και 4. Αν και πάλι κανένας δεν ισχύει, κόβουµε το ένα πολύγωνο µε το επίπεδο του άλλου και επαναλαµβάνουµε τους ελέγχους. 8.32

33 Αλγόριθµος BSP ένδρου (Binary Space Partitioning) Εστω επίπεδο Ε που διαχωρίζει σύνολο πολυγώνων σκηνής: Πολύγωνα που βρίσκονται στο ίδιο τµήµα µε σηµείο προβολής δεν µπορεί να αποκρύπτονται από πολύγωνα του άλλου τµήµατος. Χρήση διαχωριστικών επιπέδων που συνεπάγονται λιγότερες τοµές πολυγώνων. ιαχωρισµός σταµατάει όταν ένα σύνολο περιέχει πολύγωνο. Παράσταση σε δένδρο (BSP δένδρο): Εσωτερικοί κόµβοι: επίπεδα διαχωρισµού. Φύλλα = µη περαιτέρω διαχωριζόµενες περιοχές. Λύση προβλήµατος απόκρυψης για θέση παρατήρησης b µε ενδοδιατεταγµένη διαδροµή BSP δένδρου: Εστω διαχωριστικό επίπεδο (πολύγωνο) P (κόµβος δένδρου). Πρώτα παρίστανται τα πολύγωνα του τµήµατος που δεν βρίσκεται το b. Μετά παριστάνεται το P. Τέλος παρίστανται τα πολύγωνα του τµήµατος που βρίσκεται το b. Αναδροµική διαδικασία. 8.33

34 Αλγόριθµοι Υποδιαίρεσης Επιφάνειας Αναδροµική διαίρεση επιπέδου προβολής: Αν πολύγωνο καλύπτει τµήµα πλήρως, τότε αυτό παίρνει το χρώµα του πολυγώνου. Αναδροµήσταµατά επίσης στο µέγεθος του pixel. Εκµετάλλευση συνάφειας επιφάνειας (µεγάλα πολύγωνα, σταθερού χρώµατος). Αλγόριθµος Warnock: Αναδροµή σταµατάαναπόένατµήµα περνάτοπολύ ακµή πολυγώνου. Συγκρίσεις προβολής πολυγώνου P µε περιοχή οθόνης Β. Χρήση περιβάλλοντων ορθογωνίων: P : x P, y P, x P, y P B : [ min ( ) min ( )] [ max ( ) max ( )] [ x ( B), y ( B) ], [ x ( B), y ( B) ] min min max 4 περιπτώσεις σχέσης P και B: (D: Disjoint) P εξωτερικό της Β. (C: Contained) P εσωτερικό της Β. (S: Surrounding) P καλύπτον πλήρως την Β. (I: Intersecting) P τέµνον την Β. Π.χ. σχέση D εξασφαλίζεται εάν ισχύει: x P > x B ή x P < x B 8.34 max ( min ( ) max ( )) ( max ( ) min ( )) ( y ( P) > y ( B) ) ή ( y ( P) < y ( B) ) min max max min ή

35 Αλγόριθµοι Υποδιαίρεσης Επιφάνειας Περιπτώσεις αλγόριθµου Warnock:. Αν για όλα τα πολύγωνα ισχύει η σχέση D, τότε δίνεται στην B το χρώµα του φόντου. 2. Αν υπάρχει µοναδικό P µε σχέσηc µε τηνβ, τότε δίνουµε αρχικά χρώµα φόντου στην Β και µετά εµφανίζουµε τοp. 3. Αν υπάρχει Ρ µε σχέσηs µε τηνβ, χωρίς να υπάρχουν άλλα πολύγωνα πουναπεριέχονταιήνατέµνουν την Β, τότε η Β παίρνει το χρώµα τουρ. 4. Αν υπάρχει Ρ µε σχέσηs µε τηνβ και όλα τα άλλα πολύγωνα που περιέχονται ή τέµνουν την Β βρίσκονται σε µεγαλύτερη απόσταση από τον παρατηρητή, τότε η Β παίρνει το χρώµα του Ρ. 5. ιαφορετικά γίνεται αναδροµική διαίρεση της Β. Σχέση S προϋποθέτει: ( xmin ( P) < xmin ( B) ) & ( xmax ( P) > xmax ( B) ) ( ( ) ( )) ( ( ) ( )) ymin P < ymin B & ymax P > ymax B και εξασφαλίζεται αν καµία ακµή τουρ δεν τέµνει την Β (αλγόριθµος αποκοπής). & ( x ( P) y ( P) ) max, max ( x ( P) y ( P) ) min, min 8.35

36 Αλγόριθµοι Υποδιαίρεσης Επιφάνειας Αναδροµικές διαιρέσεις Warnock: Μείωση υποδιαιρέσεων µε βάση κορυφές πολυγώνων (Weiler - Atherton): Αλγόριθµοι υποδιαίρεσης περιοχής έχουν µεγάλο κόστος για πεπλεγµένες σκηνές. 8.36

37 Σύγκριση Μεθόδων Απόκρυψης Αλγόριθµος Αριθµός Πολυγωνικών Επιφανειών depth - sort 0,4 0 6, z-buffer 7, , ,5 0 6 Scan - line 0, , Υποδιαίρεση επιφάνειας,

38 Απόκρυψη 3 Μαθηµατικών Επιφανειών Αλγόριθµος κινητού ορίζοντα: Παράσταση F(x, y, z)=0 µε σύνολοκαµπυλών από τοµές της F µε επίπεδα παράλληλα στα XY, XZ ή YZ. Y Z z z 2 z z 5 z 4 3 X Πρέπει να αποκρυφθούν τα τµήµατα καµπυλών που δεν φαίνονται. 8.38

39 Αλγόριθµος Κινητού Ορίζοντα Βασικά βήµατα (έστω τοµές µε επίπεδα παράλληλα στο XY): Ταξινόµηση z-τιµών σύµφωνα µε απόσταση από παρατηρητή. Εύρεση σηµείων της y = f ( x, z) z από πλησιέστερο προς πιο αποµακρυσµένο, στην ανάλυση (x) της οθόνης. Αν, για κάποιο x, ητιµή τουy που παίρνουµε είναι µεγαλύτερη από οποιαδήποτε προηγούµενη τότε η καµπύλη είναι εµφανής στο σηµείο αυτό (χρήση array µέγιστων y-τιµών) Y z z 5 z 4 z 3 2 X 8.39

40 Αλγόριθµος Κινητού Ορίζοντα Πρόβληµα γιακαµπύλες που εµφανίζονται στο κάτω µέρος της επιφάνειας (π.χ. z 5,z 6 ). Y Λύση µε χρήση δεύτερου array y min τιµών και κατάλληλη τροποποίηση αλγορίθµου. z z 6 5 z 4 z 3 z z 2 X 8.40

41 Σκιές Παραµεληµένη περιοχή, παρά τη µεγάληοπτικήσηµασία των σκιών. Εύρεση σκιών εύρεση µη ορατών επιφανειών ως προς φωτεινή πηγή (για σηµειακή πηγή): Χρήση αλγορίθµων απόκρυψης. Για σταθερό σκηνικό και σταθερή θέση φωτεινής πηγής, εύρεση σκιών είναι ανεξάρτητη από θέση παρατηρητή. Απλός αλγόριθµος για σκιά αντικειµένου που βρίσκεται πάνω σε επίπεδη επιφάνεια (Blinn): S = P a L Για την z-συντεταγµένη ισχύει (S z =0): 0 = Αρα S P a l και S = P a l x = x x y y y P a l ή a = z z P l z z 8.4

42 Απόκρυψη και Παρακολούθηση Ακτίνας (Ray Tracing) Αλγόριθµος παρακολούθησης ακτίνας (Whitted): Ακτίνες που ορίζονται από σηµείο παρατήρησης και κάθε pixel ακολουθούνται ώσπου να συναντήσουν αντικείµενο. Εκεί διασπώνται ανάλογα µε µοντέλο. Ουσιαστικά λύνει πρόβληµα απόκρυψης. Επίπεδο προβολής (οθόνη) 8.42

Εισαγωγή. Γραφικά. Μοντέλο (Πληροφορίες για Περιεχόµενο εικόνας. Επεξεργασία Εικόνων. Εικόνα. Τεχνητή Όραση 1.1. Εργα: : 2000+1 & ΣΚΕΠΣΙΣ (ΕΠΕΑΚ

Εισαγωγή. Γραφικά. Μοντέλο (Πληροφορίες για Περιεχόµενο εικόνας. Επεξεργασία Εικόνων. Εικόνα. Τεχνητή Όραση 1.1. Εργα: : 2000+1 & ΣΚΕΠΣΙΣ (ΕΠΕΑΚ Εισαγωγή Μιάεικόνααξίζει1000 λέξεις : Ανθρώπινοοπτικόκανάλι: 30-40 Μbits/s (=64-85 M λέξεις /min µε 4 γράµµατα/λέξη, 7bits/γράµµα). Γραπτό κείµενο: 600-1200 λέξεις/min. 100.000 αποδοτικότερη επικοινωνία

Διαβάστε περισσότερα

Γραφική με Υπολογιστή Computer Graphics

Γραφική με Υπολογιστή Computer Graphics Γραφική με Υπολογιστή Computer Graphics 1. Βασικοίγραφικοίαλγόριθμοι 2. Αρχέςγραφικώνπλεγματικώνοθονώνraster 3. Μετασχηματισμοί2 και3 διαστάσεωνκαι συστήματασυντεταγμένων 4. Προβολέςκαιμετασχηματισμοίπαρατήρησης

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Μέθοδοι Ανίχνευσης Επιφανειών (Surface Detection Methods)

Γραφικά Υπολογιστών: Μέθοδοι Ανίχνευσης Επιφανειών (Surface Detection Methods) 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Μέθοδοι Ανίχνευσης Επιφανειών (Surface Detection Methods) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα

Διαβάστε περισσότερα

Μοντέλα & Αλγόριθµοι Φωτισµού

Μοντέλα & Αλγόριθµοι Φωτισµού Μοντέλα & Αλγόριθµοι Φωτισµού Μοντέλο φωτισµού: συγκεκριµένη και απλοποιηµένη παράσταση φυσικών νόµων που διέπουν τον φωτισµό. Τοπικό: λαµβάνει υπ όψη µόνο άµεση πρόσπτωση φωτός (π.χ. Phog). Γενικό: λαµβάνει

Διαβάστε περισσότερα

Αλγόριθμοι Περικοπής και Απομάκρυνσης Κρυμμένων Επιφανειών

Αλγόριθμοι Περικοπής και Απομάκρυνσης Κρυμμένων Επιφανειών Γραφικά & Οπτικοποίηση Κεφάλαιο 5 Αλγόριθμοι Περικοπής και Απομάκρυνσης Κρυμμένων Επιφανειών Εισαγωγή Το οπτικό μας πεδίο είναι περιορισμένο ενώ παράλληλα υπάρχει παρεμπόδιση μεταξύ αντικειμένων βλέπουμε

Διαβάστε περισσότερα

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006 Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία Πέτρος Ποτίκας CoReLab 4/5/2006 Επισκόπηση Ετικέτες σε συνιστώσες (Component labelling) Hough μετασχηματισμοί (transforms) Πλησιέστερος

Διαβάστε περισσότερα

Γραφικά με Η/Υ / Εισαγωγή

Γραφικά με Η/Υ / Εισαγωγή Γραφικά με Η/Υ Εισαγωγή Πληροφορίες μαθήματος (1/4) Υπεύθυνος μαθήματος: Μανιτσάρης Αθανάσιος, Καθηγητής ιδάσκοντες: Μανιτσάρης Αθανάσιος: email: manits@uom.gr Μαυρίδης Ιωάννης: email: mavridis@uom.gr

Διαβάστε περισσότερα

Έγχρωµο και Ασπρόµαυρο Φως

Έγχρωµο και Ασπρόµαυρο Φως Έγχρωµο και Ασπρόµαυρο Φως Χρώµα: κλάδος φυσικής, φυσιολογίας, ψυχολογίας, τέχνης. Αφορά άµεσα τον προγραµµατιστή των γραφικών. Αν αφαιρέσουµε χρωµατικά χαρακτηριστικά, λαµβάνουµε ασπρόµαυρο φως. Μόνο

Διαβάστε περισσότερα

Απεικόνιση Υφής. Μέρος Α Υφή σε Πολύγωνα

Απεικόνιση Υφής. Μέρος Α Υφή σε Πολύγωνα Απεικόνιση Γραφικά ΥφήςΥπολογιστών Απεικόνιση Υφής Μέρος Α Υφή σε Πολύγωνα Γ. Γ. Παπαϊωάννου, - 2008 Τι Είναι η Υφή; Η υφή είναι η χωρική διαμόρφωση των ποιοτικών χαρακτηριστικών της επιφάνειας ενός αντικειμένου,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

Μετασχηματισμοί Παρατήρησης και Προβολές

Μετασχηματισμοί Παρατήρησης και Προβολές Μετασχ. Γραφικά Παρατήρησης Υπολογιστών και Προβολές Μετασχηματισμοί Παρατήρησης και Προβολές Γ. Γ. Παπαϊωάννου, - 2008 Στάδια Προβολής στο Επίπεδο Περνάμε από WCS στοτοπικόσύστημα συντεταγμένων του παρατηρητή

Διαβάστε περισσότερα

Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα. Παπαπαύλου Χρήστος ΑΜ: 6609

Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα. Παπαπαύλου Χρήστος ΑΜ: 6609 Απαλλακτική Εργασία Γραφικά & Εικονική Πραγματικότητα Παπαπαύλου Χρήστος ΑΜ: 6609 Αναπαράσταση μοντέλου Το 3D μοντέλο το αποθηκεύουμε στην μνήμη με τις εξής δομές δεδομένων: Λίστα κορυφών Λίστα τριγώνων

Διαβάστε περισσότερα

4.5.6 ΡΗΤΑ ΠΟΛΥΩΝΥΜΙΚΑ ΤΜΗΜΑΤΑ 4.5.6.1 Η ΑΠΕΙΚΟΝΙΣΗ ΣΗΜΕΙΟΥ ΜΕ ΒΑΡΟΣ 4.5.6.2 ΤΟ ΚΥΚΛΙΚΟ ΤΜΗΜΑ

4.5.6 ΡΗΤΑ ΠΟΛΥΩΝΥΜΙΚΑ ΤΜΗΜΑΤΑ 4.5.6.1 Η ΑΠΕΙΚΟΝΙΣΗ ΣΗΜΕΙΟΥ ΜΕ ΒΑΡΟΣ 4.5.6.2 ΤΟ ΚΥΚΛΙΚΟ ΤΜΗΜΑ 4.5.6 ΡΗΤΑ ΠΟΛΥΩΝΥΜΙΚΑ ΤΜΗΜΑΤΑ Ευθείες γραµµές και παραβολικά τµήµατα µπορούν να µοντελοποιηθούν µε τη χρήση κυβικών πολυωνυµικών τµηµάτων. Τα κυκλικά ελλειπτικά ή υπερβολικά τµήµατα όµως προσεγγίζονται

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων

Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιγραφή

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

Απεικόνιση Υφής. Μέρος B Δημιουργία Συντεταγμένων Υφής

Απεικόνιση Υφής. Μέρος B Δημιουργία Συντεταγμένων Υφής Απεικόνιση Γραφικά ΥφήςΥπολογιστών Απεικόνιση Υφής Μέρος B Δημιουργία Συντεταγμένων Υφής Γ. Γ. Παπαϊωάννου, - 2008 Γενικά Είδαμε ότι μπορούμε να αποθηκεύσουμε συντεταγμένες υφής στις κορυφές των τριγώνων

Διαβάστε περισσότερα

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ)

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ) ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ ΔΙΔΑΣΚΩΝ : ΝΤΙΝΤΑΚΗΣ ΙΩΑΝΝΗΣ (MSC) Καθηγητής Εφαρμογών ΚΑΡΔΙΤΣΑ 2010 ΤΙ ΕΙΝΑΙ ΦΩΤΟΑΠΟΔΟΣΗ: ΕΝΝΟΟΥΜΕ ΤΗ ΔΙΑΔΙΚΑΣΙΑ ΚΑΘΟΡΙΣΜΟΥ ΟΛΩΝ ΕΚΕΙΝΩΝ ΤΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΩΝ ΩΣΤΕ ΝΑ ΕΧΟΥΜΕ

Διαβάστε περισσότερα

ΚΥΛΙΝ ΡΟΣ 1. ΠΑΡΑΣΤΑΣΗ ΚΥΛΙΝ ΡΟΥ ΠΑΡΑΣΤΑΣΗ - ΕΠΙΠΕ ΕΣ ΤΟΜΕΣ - ΑΝΑΠΤΥΓΜΑ- ΣΚΙΕΣ - ΕΦΑΡΜΟΓΕΣ

ΚΥΛΙΝ ΡΟΣ 1. ΠΑΡΑΣΤΑΣΗ ΚΥΛΙΝ ΡΟΥ ΠΑΡΑΣΤΑΣΗ - ΕΠΙΠΕ ΕΣ ΤΟΜΕΣ - ΑΝΑΠΤΥΓΜΑ- ΣΚΙΕΣ - ΕΦΑΡΜΟΓΕΣ ΚΥΛΙΝ ΡΟΣ ΠΑΡΑΣΤΑΣΗ - ΕΠΙΠΕ ΕΣ ΤΟΜΕΣ - ΑΝΑΠΤΥΓΜΑ- ΣΚΙΕΣ - ΕΦΑΡΜΟΓΕΣ Σχήµα 1 1. ΠΑΡΑΣΤΑΣΗ ΚΥΛΙΝ ΡΟΥ Η κυλινδρική επιφάνεια ή κύλινδρος, προκύπτει από τις διαδοχικές θέσεις µιας ευθείας α, (γενέτειρα) η

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Γραφικά και Εικονική Πραγματικότητα Απαλλακτική εργασία 2012. Παπαπαύλου Χρήστος ΑΜ: 6609

Γραφικά και Εικονική Πραγματικότητα Απαλλακτική εργασία 2012. Παπαπαύλου Χρήστος ΑΜ: 6609 Γραφικά και Εικονική Πραγματικότητα Απαλλακτική εργασία 2012 0B Παπαπαύλου Χρήστος ΑΜ: 6609 Περιεχόμενα Πίνακας Περιεχομένων...2 Περιεχόμενα...2 Προγραμματιστικές λεπτομέρειες υλοποίησης...3 geom.h...3

Διαβάστε περισσότερα

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( ) ΚΕΦΑΛΑΙ 6 ΕΥΘΕΙΑ-ΕΠΙΠΕ 6 Γεωµετρικοί τόποι και εξισώσεις στο χώρο Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών ρισµός 6 Θεωρούµε τη συνάρτηση F:Α,

Διαβάστε περισσότερα

Απόδοση 3D σκηνών - Κινούµενα γραφικά

Απόδοση 3D σκηνών - Κινούµενα γραφικά Απόδοση 3D σκηνών - Κινούµενα γραφικά Περιεχόµενα ενότητας Καταστολή κρυµµένων επιφανειών - Αλγόριθµος z-buffer Τρισδιάστατες επιφάνειες: Κύβος Σφαίρα Κώνος - Κύλινδρος - Κυκλικός δίσκος ακτύλιος Τοµέας

Διαβάστε περισσότερα

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 6 KΕΦΑΛΑΙΟ 3 ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Η θεωρία μεγίστων και ελαχίστων μιας πραγματικής συνάρτησης με μια μεταβλητή είναι γνωστή Στο κεφάλαιο αυτό θα δούμε τη θεωρία μεγίστων και ελαχίστων

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

Καµπύλες Bézier και Geogebra

Καµπύλες Bézier και Geogebra Καµπύλες Bézier και Geogebra Κόλλιας Σταύρος Ένα από τα προβλήµατα στη σχεδίαση δυσδιάστατων εικόνων στα προγράµµατα γραφικών των υπολογιστών είναι η δηµιουργία οµαλών καµπυλών. Η λύση στο πρόβληµα αυτό

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων ΘΕ ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες που αφορούν την

Διαβάστε περισσότερα

Γραφικά & Οπτικοποίηση. Κεφάλαιο 1. Εισαγωγή. Γραφικά & Οπτικοπίηση: Αρχές & Αλγόριθμοι Κεφάλαιο 1

Γραφικά & Οπτικοποίηση. Κεφάλαιο 1. Εισαγωγή. Γραφικά & Οπτικοπίηση: Αρχές & Αλγόριθμοι Κεφάλαιο 1 Γραφικά & Οπτικοποίηση Κεφάλαιο 1 Εισαγωγή Ιστορικά Ιστορική ανασκόπηση : 2 Ιστορικά (2) Ρυθμοί ανάπτυξης CPU και GPU 3 Εφαρμογές Ειδικά εφέ για ταινίες & διαφημίσεις Επιστημονική εξερεύνηση μέσω οπτικοποίησης

Διαβάστε περισσότερα

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, σελ. 55-62 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 5) Δυαδική αναζήτηση

Διαβάστε περισσότερα

Υπολογισµός των υδροστατικών δυνάµεων που ασκούνται στη γάστρα του πλοίου

Υπολογισµός των υδροστατικών δυνάµεων που ασκούνται στη γάστρα του πλοίου Παράρτηµα Β Υπολογισµός των υδροστατικών δυνάµεων που ασκούνται στη γάστρα του πλοίου 1. Πρόγραµµα υπολογισµού υδροστατικών δυνάµεων Για τον υπολογισµό των κοµβικών δυνάµεων που οφείλονται στις υδροστατικές

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Ανακατασκευή εικόνας από προβολές

Ανακατασκευή εικόνας από προβολές Ανακατασκευή εικόνας από προβολές Μέθοδος ανακατασκευής με χρήση χαρακτηριστικών δειγμάτων προβολής Αναστάσιος Κεσίδης Δρ. Ηλεκτρολόγος Μηχανικός Θέματα που θα αναπτυχθούν Εισαγωγή στις τομογραφικές μεθόδους

Διαβάστε περισσότερα

Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση

Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ: ΓΕΩΜΕΤΡΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ: ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ [Κ. ΠΑΠΑΜΙΧΑΛΗΣ ρ ΦΥΣΙΚΗΣ] Τίτλος του Σεναρίου ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ Μελέτη των µετασχηµατισµών

Διαβάστε περισσότερα

Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας

Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x ) () Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,

Διαβάστε περισσότερα

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα:

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: υναµικός Προγραµµατισµός Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε υναµικό Προγραµµατισµό Το πρόβληµα του πολλαπλασιασµού πινάκων ΕΠΛ 3 Αλγόριθµοι και Πολυπλοκότητα 3- υναµικός

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2 + βχ + γ

Η συνάρτηση y = αχ 2 + βχ + γ Η συνάρτηση y αχ + βχ + γ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y αx + βx + γ με α 0 Μια συνάρτηση της μορφής y αx + βx + γ με α 0 ονομάζεται τετραγωνική

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό. Β. Τι

Διαβάστε περισσότερα

Τεχνικές σκίασης/απεικόνισης βασισμένες στις φυσικές αρχές σχηματισμού εικόνας

Τεχνικές σκίασης/απεικόνισης βασισμένες στις φυσικές αρχές σχηματισμού εικόνας Τεχνικές σκίασης/απεικόνισης βασισμένες στις φυσικές αρχές σχηματισμού εικόνας Η αρχιτεκτονική αλυσίδας γραφικών (κάθε πολύγωνο περνάει χωριστά από την αλυσίδα) σε συνδυασμό με τοπικά μοντέλα σκίασης έχει

Διαβάστε περισσότερα

ΣΦΑΙΡΑ ΠΑΡΑΣΤΑΣΗ - ΕΠΙΠΕ Η ΤΟΜΗ - ΣΚΙΕΣ ΕΦΑΡΜΟΓΕΣ

ΣΦΑΙΡΑ ΠΑΡΑΣΤΑΣΗ - ΕΠΙΠΕ Η ΤΟΜΗ - ΣΚΙΕΣ ΕΦΑΡΜΟΓΕΣ ΣΦΑΙΡΑ ΠΑΡΑΣΤΑΣΗ - ΕΠΙΠΕ Η ΤΟΜΗ - ΣΚΙΕΣ ΕΦΑΡΜΟΓΕΣ 1. ΠΡΟΒΟΛΕΣ ΣΦΑΙΡΑΣ (Ο, ρ) Σχήµα 1 Η σφαίρα σε κάθε ορθή προβολή προβάλλεται κατά µέγιστο κύκλο που έχει κέντρο την προβολή του κέντρου της σφαίρας και

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ . ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΩΡΙΑ. Γραµµική εξίσωση µε δύο αγνώστους, y Λέγεται κάθε εξίσωση της µορφής α + βy = γ, µε α 0 ή β 0. Γραφική παράσταση γραµµικής εξίσωσης Κάθε γραµµική εξίσωση α + βy = γ παριστάνει

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

sin ϕ = cos ϕ = tan ϕ =

sin ϕ = cos ϕ = tan ϕ = Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: ΑΛΓΟΡΙΘΜΟΙ ΕΥΘΕΙΑΣ ΚΥΚΛΟΥ -ΈΛΛΕΙΨΗΣ

ΚΕΦΑΛΑΙΟ 2: ΑΛΓΟΡΙΘΜΟΙ ΕΥΘΕΙΑΣ ΚΥΚΛΟΥ -ΈΛΛΕΙΨΗΣ ΚΕΦΑΛΑΙΟ : ΑΛΓΟΡΙΘΜΟΙ ΕΥΘΕΙΑΣ ΚΥΚΛΟΥ -ΈΛΛΕΙΨΗΣ Μια εικόνα μπορεί να περιγραφεί με πολλούς τρόπους. Αν υποθέσουμε ότι έχουμε μια προβολή ψηφιδοπλέγματος, μια εικόνα καθορίζεται πλήρως από το σύνολο των

Διαβάστε περισσότερα

Περιεχόμενα. Περιεχόμενα

Περιεχόμενα. Περιεχόμενα Περιεχόμενα xv Περιεχόμενα 1 Αρχές της Java... 1 1.1 Προκαταρκτικά: Κλάσεις, Τύποι και Αντικείμενα... 2 1.1.1 Βασικοί Τύποι... 5 1.1.2 Αντικείμενα... 7 1.1.3 Τύποι Enum... 14 1.2 Μέθοδοι... 15 1.3 Εκφράσεις...

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

ΥΒΡΙΔΙΚΑ ΠΛΕΓΜΑΤΑ. Κυριάκος Χ. Γιαννάκογλου Kαθηγητής ΕΜΠ

ΥΒΡΙΔΙΚΑ ΠΛΕΓΜΑΤΑ. Κυριάκος Χ. Γιαννάκογλου Kαθηγητής ΕΜΠ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΥΒΡΙΔΙΚΑ ΠΛΕΓΜΑΤΑ Κυριάκος Χ. Γιαννάκογλου Kαθηγητής ΕΜΠ kgianna@central.ntua.gr

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27)

Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: ίκτυα ροής και το πρόβληµα της µέγιστης ροής Η µεθοδολογία Ford-Fulkerson Ο αλγόριθµος Edmonds-Karps ΕΠΛ 232

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 04 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04 ΘΕΜΑ ο : * Θεωρούμε τους μιγαδικούς αριθμούς της μορφής xxi,

Διαβάστε περισσότερα

Περίληψη ιπλωµατικής Εργασίας

Περίληψη ιπλωµατικής Εργασίας Περίληψη ιπλωµατικής Εργασίας Θέµα: Εναλλακτικές Τεχνικές Εντοπισµού Θέσης Όνοµα: Κατερίνα Σπόντου Επιβλέπων: Ιωάννης Βασιλείου Συν-επιβλέπων: Σπύρος Αθανασίου 1. Αντικείµενο της διπλωµατικής Ο εντοπισµός

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

ΕΠΕΞΕΡΓΑΣΙΑ ΚΕΙΜΕΝΟΥ

ΕΠΕΞΕΡΓΑΣΙΑ ΚΕΙΜΕΝΟΥ ΕΠΕΞΕΡΓΑΣΙΑ ΚΕΙΜΕΝΟΥ 1. ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ ΕΦΑΡΜΟΓΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΚΕΙΜΕΝΟΥ 1.1. Χειρισµός εγγράφων 1.1.1. ηµιουργία, Άνοιγµα, Κλείσιµο, Αποθήκευση εγγράφου 1.1.2. Αποθήκευση εγγράφου µε

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες ΣΚΙΑΓΡΑΦΙΑ Γενικές αρχές και έννοιες Στο σύστημα προβολής κατά Monge δεν μας δίνεται η δυνατότητα ν αντιληφθούμε άμεσα τα αντικείμενα του χώρου, παρά μόνο αφού συνδυάσουμε τις δύο προβολές του αντικειμένου

Διαβάστε περισσότερα

h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα?

h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα? Κόκκινα-Μαύρα ένδρα (Red-Black Trees) Ένα κόκκινο-µαύρο δένδρο είναι ένα δυαδικό δένδρο αναζήτησης στο οποίο οι κόµβοι µπορούν να χαρακτηρίζονται από ένα εκ των δύο χρωµάτων: µαύρο-κόκκινο. Το χρώµα της

Διαβάστε περισσότερα

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΚΥΚΛΟΣ Κύκλος είναι ο γεωμετρικός τόπος των σημείων του επιπέδου που απέχουν σταθερή απόσταση από ένα σταθερό σημείο του επιπέδου αυτού. Το σταθερό σημείο

Διαβάστε περισσότερα

ΕΛ Λ Ε Ι Ψ Η - ΚΥΚΛΟΣ

ΕΛ Λ Ε Ι Ψ Η - ΚΥΚΛΟΣ ΣΥΝΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ -.Μ.Κ. 10.98 1 ΕΛ Λ Ε Ι Ψ Η - ΚΥΚΛΣ Ε1 Μ 2γ Ε2 2β 1. ΡΙΣΜΙ ΡΙΣΜΙ - ΚΤΣΚΕΥΕΣ Η έλλειψη είναι επίπεδη καµπύλη 2 ου βαθµού, είναι δε ο γεωµετρικός τόπος των σηµείων, των οποίων το άθροισµα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = π 3 γ) ω = π. Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα x x µια ευθεία ε, η οποία

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της µορφής G() F() + c, c

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Ανίχνευση Ακτίνας (φωτός) (ray tracing)

Γραφικά Υπολογιστών: Ανίχνευση Ακτίνας (φωτός) (ray tracing) 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Ανίχνευση Ακτίνας (φωτός) (ray tracing) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Θα εξετάσουμε την

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία ΜΑΘΗΜΑ 8. B.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία Θεωρία Ασκήσεις γ. τόπου και µεγιστο ελάχιστου Στις ασκήσεις αυτού του µαθήµατος χρησιµοποιούµε ανισωτικές σχέσεις από την Ευκλείδεια Γεωµετρία. Θυµίζουµε

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Εφαρμογές Θεωρίας 1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Έστω ότι η συνάρτηση ζήτησης για την κατανάλωση του νερού ενός φράγματος (εκφρασμένη σε ευρώ) είναι q = 12-P και το οριακό κόστος

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΕΑ ΥΛΗ Key CERT: ΥΠΟΛΟΓΙΣΤΙΚΑ ΦΥΛΛΑ

ΕΞΕΤΑΣΤΕΑ ΥΛΗ Key CERT: ΥΠΟΛΟΓΙΣΤΙΚΑ ΦΥΛΛΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Key CERT: ΥΠΟΛΟΓΙΣΤΙΚΑ ΦΥΛΛΑ Έκδοση 1.0 Σελίδα 1 από 6 ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΥΠΟΛΟΓΙΣΤΙΚΑ ΦΥΛΛΑ Τα ακόλουθα αποτελούν την εξεταστέα ύλη για την ενότητα Υπολογιστικά Φύλλα και θεωρούνται η

Διαβάστε περισσότερα

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών ΕΦΑΡΜΟΓΙΔΙΟ: Σχήματα-Γραμμές-Μέτρηση Είναι ένα εργαλείο που μας βοηθά στην κατασκευή και μέτρηση σχημάτων, γωνιών και γραμμών. Μας παρέχει ένα χάρακα, μοιρογνωμόνιο και υπολογιστική μηχανή για να μας βοηθάει

Διαβάστε περισσότερα

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Περίληψη Αλγόριθµοι τύπου Brute-Force Παραδείγµατα Αναζήτησης Ταξινόµησης Πλησιέστερα σηµεία Convex hull Βελτιστοποίηση Knapsack problem Προβλήµατα Ανάθεσης

Διαβάστε περισσότερα