ENERGIAAUDIT. Peoleo tn. 4, Sauga alevik, Sauga vald, Pärnumaa 18- korteriga elamu

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ENERGIAAUDIT. Peoleo tn. 4, Sauga alevik, Sauga vald, Pärnumaa 18- korteriga elamu"

Transcript

1 Tellija: KÜ MEIE KODA Tellija kontaktisik: Tiit Pruul Aadress: Peoleo tn.4, Sauga alevik, Sauga vald, Pärnumaa Tel.: E-post: ENERGIAAUDIT Peoleo tn. 4, Sauga alevik, Sauga vald, Pärnumaa 18- korteriga elamu Auditeerimise aeg: Aruanne esitatud: Auditeerija ettevõte: Aadress: Riia mnt.106, Pärnu Reg. Nr Tel.: E-post: Energiaaudiitor: Tõnu Tiit Allkiri: Pärnu 2014

2 ENERGIAAUDIT: Peoleo 4, Sauga 2 Sisukord Sissejuhatus Auditi tulemuste kokkuvõte ja ülevaade säästuettepanekutest Hoone energiakasutuse ülevaade ja analüüs Hoone asukoht ja paiknemine Hoone üldandmed Varem läbiviidud rekonstrueerimis/renoveerimistööd Energia- ja veevarustuse üldiseloomustus Soojusenergia kulu Elektrienergia kulu Vee kulu Hoone soojusbilanss Hinnang hoone energiakasutuse kohta, säästumeetmed ja nende majanduslik tasuvus Hoone piirdetarindid Katuslagi Välisseinad I korruse põrand/ sokkel Aknad Välisuksed Hoone tehnosüsteemid Vee- ja kanalisatsioonisüsteemid Küttesüsteem Elektriseadmed Ventilatsioonisüsteem Kütte- ja ventilatsioonisüsteemide säästumeetmed ja nende majanduslik tasuvus Hoone vabasoojus ja tasakaalutemperatuurid Kokkuvõte säästumeetmetest Säästumeetmete paketid Kokkuvõte Kasutatud allikad Lisad Tarbevee tarbimisandmed Elektrienergia tarbimisandmed Termograafilise ülevaatuse aruanne... 36

3 ENERGIAAUDIT: Peoleo 4, Sauga 3 Sissejuhatus Käesolevas energiaauditi aruandes on esitatud Sauga alevikus Peoleo 4 asuva 3 korruselise ja 18 korteriga kortermaja kütte-, ventilatsiooni-, elektri- ja veevarustuse süsteemide käesoleva olukorra analüüs ning leitud võimalused hoone energiatarbe vähendamiseks. Auditeerimise mahu ja mudeli aluseks on võetud Majandus- ja Kommunikatsiooniministeeriumi ning Tallinna Tehnikaülikooli poolt väljatöötatud hoonete energiaauditi juhendmaterjal. Energiakasutuse analüüsimiseks on kasutatud korteriühistu esindaja poolt kogutud ja edastatud hoone tarbimisandmeid aastatel Hoone seisukorra täpsemaks määramiseks on teostatud jaanuaris 2014 hoone termograafiline ja visuaalne ülevaatus. Aruanne sisaldab hoone piirdetarindite ning tehnosüsteemide tehnilis-majanduslikku analüüsi, energia tarbimise alandamise potentsiaali lähtuvalt võimalikest energiasäästumeetmetest. Energiasäästu potentsiaal on esitatud vajalike investeeringute, eeldatava energiakokkuhoiu ning lihttasuvusaja kujul. Hoones on mõõdetud summaarset elektritarbimist ning veetarbimist kuude kaupa. Hoonet varustatakse kütteenergiaga elekterkütteseadmete abil, 7-s korteris on kasutusel õhk-õhk välisõhusoojuspumbad. Soe tarbevesi valmistatakse lokaalsete elektriboileritega korterites. Õhuvahetusest tingitud soojuskadusid hinnati kaudselt õhuvahetuse kordarvu alusel. Optimaalne renoveerimis/rekonstrueerimispakett valitakse välja tellija poolt vastavalt finantseerimise võimaluste1e. Osa säästumeetmeid on selliseid, mille rakendamine annab reaalset säästu ainult rakendatuna koos teiste meetmetega, seetõttu esitatakse säästumeetmed pakettidena Auditeerimise käigus välja toodud energiasäästumeetmete pakettide rakendamisel hoone sisekliima paraneb või ühtlustub eeldatavalt normikohasele tasemele. Tuleb tähele panna, et erinevate meetmete rakendamisel saadavad säästud ei ole otseselt liidetavad. Väljapakutud energiasäästu ettepanekute realiseerimine võib nõuda vastavate tööde jaoks projekti koostamist ja ka ehitusloa taotlemist vastavalt kohaliku omavalitsuse poolt kehtestatud korrale. Ehitusfirmadelt on soovitav tööde hinnapakkumised küsida lähtudes rekonstrueerimisprojektist, mis annab adekvaatse aluse ka tööde omanikujärelevalve korraldamiseks. Korteriühistu, kui lõpptarbija seisukohalt on säästupotentsiaal, energiahinnad kõik kulutused auditis arvestatud koos käibemaksuga. Parendustööde lihttasuvusaja arvutamisel on lähtutud lähiaastate prognoositavast elektrienergia hinnast 140 /MWh ja kaugküttehinnast 80 /MWh.

4 ENERGIAAUDIT: Peoleo 4, Sauga 4 1. Auditi tulemuste kokkuvõte ja ülevaade säästuettepanekutest Käesolevas peatükis on esitatud kokkuvõte korterelamu energiaauditi koostamise tulemustest. Soojuseenergia (elekterkütte soojusenergia) keskmine kogukulu aastatel on arvestatud 129 MWh/a. Normaalaastale taandatud nelja täisaasta soojusenergia keskmine kulu on 126 MWh/a ja lähtuvalt hoone köetavast pinnast 998 m² (eluruumid ja trepikojad) on normaalaasta keskmine soojusenergia eritarbimine pinnaühikule 127 kwh/m². Auditi tulemusena on hoone renoveerimiseks välja pakutud kolm säästumeetmete paketti, mille abil on võimalik kütteenergia kulu tehniliselt alandada ning lisaväärtuseks on inimeste heaolu tõus tänu paranenud sisekliimale. Samas tõuseb ka hoone kui kinnisvara väärtus. Säästupaketid on esitatud põhjusel, et teatud meetmetel on omavaheline koosmõju. Esimese paketi raames soojustatakse hoone katuslagi, välisseinad ja sokliosa. Kõik vanad aknad vahetatakse uute pakettakende vastu. Õhuvahetus intensiivistatakse optimaalsele tasemele. Investeering on ca. 95 tuhat ning aastane sääst on 33 MWh/a. Lihttasuvusaeg on ligikaudu 22 aastat ning energiasääst paketi realiseerimiseelse tarbimisega võrreldes on 26%. Paketi realiseerimise tulemusena saavutatakse hoones kvaliteetne sisekliima. Teise paketi realiseerimise käigus soojustatakse hoone katuslagi, välisseinad ja sokliosa. Hoonesse paigaldatakse energiatagastusega ventilatsioonisüsteem. Investeering on ca. 121 tuhat ning aastane sääst on 62 MWh/a. Lihttasuvusaeg on ligikaudu 15 aastat ning energiasääst paketi realiseerimiseelse tarbimisega võrreldes on 49%. Paketi realiseerimise tulemusena saavutatakse hoones kvaliteetne sisekliima. Kolmanda paketi realiseerimise käigus soojustatakse hoone katuslagi, välisseinad ja sokliosa. Hoonesse paigaldatakse energiatagastusega ventilatsioonisüsteem. Hoonele rajatakse kaugkütteühendus ning paigaldatakse kütteautomaatikaga varustatud soojussõlm. Majas ehitatakse välja uus, täielikult reguleeritav kahetoru-keskküttesüsteem. Investeering on ca. 165 tuhat ning aastane sääst on 62 MWh/a. Lihttasuvusaeg on ligikaudu 15 aastat ning energiasääst paketi realiseerimiseelse tarbimisega võrreldes on 49%. Paketi realiseerimise tulemusena saavutatakse hoones kvaliteetne sisekliima.

5 ENERGIAAUDIT: Peoleo 4, Sauga 5 Hoone energiasäästumeetmete pakettide realiseerimise tulemusena eeldatav kütteenergiasääst: Säästupotentsiaal Joonis 1 Pakett III 65 49% Pakett II 65 49% Pakett I 93 26% Praegune energiakulu MWh/a Kütteenergiatarbimine Sääst praegusest kütteenergiatarbimisest Energiaauditi raames väljapakutud energiasäästumeetmete pakettide detailsem kirjeldus on välja toodud käesoleva töö peatükis 4.1. Säästumeetmete paketid.

6 ENERGIAAUDIT: Peoleo 4, Sauga 6 2. Hoone energiakasutuse ülevaade ja analüüs 2.1 Hoone asukoht ja paiknemine Hoone asub Sauga alevikus, Pärnu maakonnas 2.2 Hoone üldandmed Tabel 1 Hoone aadress: Pärnu maakond, Sauga vald, Sauga alevik, Peoleo tn 4 EHR kood: Ehitusaasta: 1973 Hoone kasutamise otstarve: Muu kolme või enama korteriga elamu Ehitisalune pind (EHR ), m²: 437 Suletud netopind (EHR ), m²: 1229,6 Minimaalne korruste arv: 3 Maksimaalne korruste arv: 3 Hoone maht (EHR ), m³: 4450 Köetav pind, m²: 998 Eluruumide pind (EHR ), m²: 878,5 Mitteeluruumide pind (EHR ), m²: 0 Ruumide köetav sisekubatuur, m³: 2494 Korterite arv: 18 Tubade arv: 51 Elanike arv: 45 Keldri olemasolu: Jah Pööningu olemasolu: Ei Hoone trepikojad on köetava pinna ja kubatuuri sees, keldriruume ei ole köetava pinna hulka arvestatud.

7 ENERGIAAUDIT: Peoleo 4, Sauga Varem läbiviidud rekonstrueerimis/renoveerimistööd Tabel 2 Aasta Tööde nimetus ja maht Korterite vanade puitakende vahetamine uute pakettakende vastu. Uusi aknaid on Jooksvalt 91 % hoone akende kogupindalast 2.4 Energia- ja veevarustuse üldiseloomustus Põhiline kütteviis: Kasutatav kütus: Küttesüsteemi põhimõtteline lahendus: Tarbevee tarnija: Veevarustuse liik: Olmekanalisatsioon: Sooja tarbevee valmistamine: Sooja tarbevee arvestus: Ventilatsiooni liik: Kodugaasi tarbimine ja tarnija Elektrienergia tarnija: Elektrivõrgu pinge: Tabel 3 Kohtküte Elekter Elekterkütteseadmed, õhk-õhk välisõhusoojuspumbad Pärnu Vesi AS Tsentraalselt asulavõrgust Juhitakse tsentraalsesse asulavõrku Lokaalsed elektriboilerid Puudub Loomulik: õhu sissepääs akendest/ustest ning vä1jatõmme ventilatsioonilõõride kaudu Puudub Eesti Energia AS 3x400 V

8 ENERGIAAUDIT: Peoleo 4, Sauga 8 Hoones neljal aastal tarbitud üldelekter ning korterite olme- ja kütteelekter kokku jagunevad alljärgnevalt: Joonis 2 Hoone energiakasutus 66,1% 33,5% Korterite olmeelekter Üldelekter Kütteelekter 0,4% 2.5 Soojusenergia kulu Tabel 4 Soojusenergia tarbimine Keskmine Ühik Soojusenergia tarbimine (hinnanguline, elekterkütteseadmetega toodetud) MWh/a Soojustarbimine kütteks MWh/a Kraadpäevade võtmepiirkond 5 Pärnu Kraadpäevade arv C d Normaalaasta kraadpäevade arv 3456 C d Normaalaastale vastav soojustarbimine MWh/a Soojuse keskmine tariif/hind /MWh Kulutused soojusele /a Eritarbimine köetava pinna kohta kwh/m² a Eritarbimine eluruumide pinna kohta kwh/m² a Kütte- ja ventilatsioonienergia eritarbimine köetava pinna kohta kwh/m² a

9 ENERGIAAUDIT: Peoleo 4, Sauga 9 Kütteenergia tarbimise graafikud Joonis 3 Energiatarbimine aastate lõikes MWh Tarbitud soojusenergia Energia kütteks NormAasta küttekulu Joonis 4 Taandatud kütteenergia kulu kuude lõikes NormAasta MWh Kuu Jaan Veebr Märts Aprill Mai Juuni Juuli Aug Sept Okt Nov Dets Märkus: graafikutel on kajastatud hoones tarbitud summaarne (elektriradiaatorite ja soojuspumpade poolt toodetud soojusenergia) kütteenergiahulk Kraadpäevade abil on välistemperatuuri muutuste mõju kütteenergia tarbimisele elimineeritud ja erinevate aastate soojustarbimine on taandatud keskmise nn NormAasta soojustarbimise tasemele. Joonisel 4 markeerib NormAasta kütteenergia kulu graafik hoone arvutuslikku kütte ja ventilatsiooni energiavajadust. NormAasta nivoost kõrgemat energiatarbimist markeerivad tulbad näitavad maja ülekütmist antud perioodil ja madalamad tulbad tähendavad vaegkütmist. Elanike poolt kütteseadmete soojusväljastuse individuaalse reguleerimise ja sisetemperatuuri erineval tasemel hoidmise tõttu on kütteenergia tarbimine kuude ja aastate lõikes erineval tasemel. Hoone energiabilansi põhjal tehtud analüüs näitab, et hoone tervikuna on kütteperioodide vältel olnud mõnevõrra alaköetud, samal ajal jääb ka hoone keskmine ventileeritus allapoole vastavat normväärtust. Välisõhu kõrge niiskusetase sügisel ja kütmata ruumide suhteliselt madal temperatuur soodustavad välisseinte külmade piirkondade küllastumist niiskusega ja hallituse tekkimist. Juba kasvama hakanud hallitusest on väga raske lahti saada. Hoone niiskuserežiimi parandamiseks on

10 ENERGIAAUDIT: Peoleo 4, Sauga 10 soovitav sügisel kütmist alustada pigem varem ja tugevamalt, kui välistemperatuur seda eeldab (tagamaks niiskuse väljakuivamine piiretest). Edaspidistes arvutustes on kasutatud hoone aastase energiavajadusena küttele ja ventilatsioonile nelja aasta keskmist normaalaastale teisendatud energiavajadust 126 MWh/aastas. 2.6 Elektrienergia kulu Tabel 5 Elektrienergia tarbimine Keskmine Ühik Elektrienergia tarbimine (üldelekter) Elektrienergia tarbimine 0,5 0,48 0,48 0,48 0,48 MWh/a Eritarbimine köetava pinna kohta 0,5 0,48 0,48 0,48 0,48 kwh/m² a Eritarbimine eluruumide pinna kohta 0,5 0,55 0,55 0,55 0,55 kwh/m² a Elektrienergia tarbimine (korterid) Elektrienergia tarbimine 121,6 141,8 122,3 132,3 129,5 MWh/a Elektrienergia sooja tarbevee valmistamiseks (hinnanguline) Elektrienergia tarbimine kütteks (hinnanguline) Soojuspumpade abil toodetud lisakütteenergia (hinnanguline) Kraadpäevade võtmepiirkond 5 Pärnu 22,5 22,5 23,5 20,8 22,3 MWh/a 79,8 100,1 79,8 83,9 85,9 MWh/a 39,9 50,0 39,9 41,9 43,0 MWh/a Kraadpäevade arv C d Normaalaasta kraadpäevade arv 3456 C d Normaalaastale vastav soojustarbimine MWh/a Eritarbimine köetava pinna kohta kwh/m² a Elektrienergia tarbimine olmelisteks vajadusteks MWh/a Olmeelektri eritarbimine köetava pinna kohta kwh/m² a Olmeelektri eritarbimine eluruumide pinna kohta kwh/m² a Üldelektri tarbimine moodustab kogu hoone elektritarbimisest keskmiselt 0,4% ning kulub üldvalgustusseadmetele. Korterites on kasutusel kütmiseks elekterkütteseadmed, hoone korterite koguelektritarbimisest kulub hinnanguliselt 66 % elekterküttele. Võimalusi üldelektri tarbimise vähendamiseks auditi käigus ei leitud.

11 ENERGIAAUDIT: Peoleo 4, Sauga 11 Hoones tarbitava koguelektrienergia proportsionaalne jaotus on järgmine: Elektritarve Joonis 5 korterite olmeelekter soe tarbevesi üldelekter kütteelekter 100,0 MWh 50,0 0, Korterite olmeelektritarbimine on vaadeldaval perioodil kasvava iseloomuga. Soovitatav on seadmete valikul eelistada säästlikumaid lahendusi, pidurdamaks elektrienergia kasutamise kasvutrendi. Olmeelektri kõige suurem säästuvõimalus on seadmete täielik väljalülitamine kui neid ei kasutata. See kehtib nii valgustite, olmeelektroonika kui ka telefonilaadijate kohta. Väljalülitatud kuid n.ö. puldivalmiduses seade tarbib keskmiselt 20W, mis kõigi seadmete peale kokku võib teha W ööpäevaringset elektritarbimist, ehk kwh kuus. Säästupirnide (gaaslahendusega) kasutamine on efektiivne üldvalgustites, mida tihti sisse-välja ei lülitata. Sagedane sisse-välja lülitamine kahandab oluliselt säästupirnide eluiga ja muudab rahalise säästu olematuks. LED-valgustid on sellest puudusest vabad. Olmeelektri arvestuslik statistiline keskmine eritarbimine kortermajade eluruumide pinna kohta on kwh/m² a ja antud hoones on see näitaja hinnanguliselt keskmisega samal tasemel.

12 ENERGIAAUDIT: Peoleo 4, Sauga Vee kulu Tarbevesi -erikulu köetava pinna kohta -erikulu eluruumide pinna kohta Vee hind Vee eest tasutud Soe tarbevesi Tarbevee kulu -erikulu köetava pinna kohta -erikulu eluruumide pinna kohta Elektrienergia kulu vee soojendamiseks (hinnanguline) Keskmine Ühik m³/a Tabel 6 0,97 0,97 1,01 0,90 0,96 m³/(m² a) 1,10 1,10 1,15 1,02 1,09 m³/(m² a) 2,53 2,58 2,58 2,58 2,57 /m³ /a m³/a 0,39 0,39 0,41 0,36 0,38 m³/(m² a) 0,44 0,44 0,46 0,41 0,44 m³/(m² a) 22,5 22,5 23,5 20,8 22,3 MWh/a Kogu veetarbimine kortermajas on kõikuva iseloomuga, selget trendi välja ei joonistu. Soe tarbevesi valmistatakse lokaalsete elektriboileritega korterites. Soe tarbevesi moodustab kogu veekasutusest hinnanguliselt keskmiselt 40%, mis on samaväärne kortermajade keskmise näitajaga (40-45%). Sooja tarbevee erikulud on korterelamutes enamasti vahemikus 0,55 0,90 m³/(m²a) eluruumide pinna kohta. Antud hoones on see näitaja keskmisest statistilisest väärtusest mõnevõrra madalamal tasemel ja sõltub ilmselt nii leibkondade koosseisust kui ka tarbimisharjumustest. Joonis 6 Vee kulu Kogu külm vesi Soe vesi m³

13 ENERGIAAUDIT: Peoleo 4, Sauga Hoone soojusbilanss Hoones tarbitud soojusenergia, elektrienergia ja inimeste elutegevuse tagamiseks vajalik ning sellega kaasnev energia (vabaenergia ) moodustavad hoone energiabilansi ühe poole. Soojakaod läbi välispiirete, kanalisatsiooni lastud reovesi ja ventilatsiooniks vajaliku õhu soojendamise energiakulu moodustavad hoone energiabilansi teise poole. Soojakadude arvutamisel on oluline arvestada hoone tasakaalutemperatuuri, mis antud juhul on vabaenergia arvutuste ja soojusenergia kasutamise kaudu määratud 15 C. Kõik soojuskadude arvutused on tehtud tuginedes normaalaasta Pärnu piirkonna kraadpäevade arvule. Hoone iga välispiirde osa jahtumises ja kogu soojusenergia kadu läbi välispiirete on toodud alljärgnevas: Tabel 7 Piirde nimetus Pindala Soojusjuhtivus, U Erisoojuskadu, H vp Soojuskadu aastas m² W/m² C W/ C MWh Otsaseinad 139 1, Küljeseinad 591 0, Katuslagi 407 0, Aknad vanad 21 2, Aknad uued 202 1, Välisuksed 10 1, I korruse põrand 407 0, Kokku Alltoodud õhuvahetuse kordarv on leitud hoone kui terviku jaoks ja on kütteperioodi keskmine väärtus. Tabel 8 Hoone soojusbilanss Energia sisse Energia välja Soojusenergia tarbimine, MWh/a Arvutatud soojuskadu läbi välispiirete, MWh/a Energia õhuvahetuseks ja infiltratsiooniks, MWh/a Õhuvahetuse kordarv, 1/h Kokku ,29 Tasakaalutemperatuur, C 15

14 ENERGIAAUDIT: Peoleo 4, Sauga 14 Hoones tarbitava soojusenergia proportsionaalne jaotus vastavalt kaoliikide kaupa: 19% 1% 12% 3% 10% Joonis 7 15% 10% 30% Ventilatsioon Otsaseinad Küljeseinad Katuslagi Aknad uued Välisuksed I korruse põrand Aknad vanad Hoones soojusenergia kasutamise üldine visuaalne jaotus: Joonis 8 Soojusenergia Kadu läbi Osakaal hoonesse piirete bilansis 126 MWh/a 107 MWh/a 85% Tasakaalutemperatuur hoones 15 C Õhuvahetus 20 MWh/a 15% Reovesi 0 MWh/a

15 ENERGIAAUDIT: Peoleo 4, Sauga Hinnang hoone energiakasutuse kohta, säästumeetmed ja nende majanduslik tasuvus 3.1 Hoone piirdetarindid Piirdetarind või selle osa Praegune olukord Materjal/tüüp, olukorra kirjeldus Piirded kokku Pindala U-arv Tehnilised parendusvõimalused ja vastav lihttasuvusaeg Soojuskaod Meetmed energiasäästuks U-arv Soojuskaod Energiasääst Investeering Tabel 9 Lihttasuvusaeg m² W/m²K MWh/a W/m²K MWh/a MWh/a aasta Otsaseinad Silikaattellised 139 1,10 12 Lisasoojustus 150 mm 0, Aknad vanad 9%,vanatüübi puitraamidel aknad 21 2,50 4 Asendamine uute pakettakendega 1, Küljeseinad Suurplokk 591 0,80 37 Lisasoojustus 150 mm 0, I kor. põrand Vundamendiplokid, r/b (taandatud)* paneelid 407 0,47 15 Sokli lisasoojustus 90mm 0, Katuslagi Aknad uued Laepaneelid, ehitusaegne soojustus 407 0,40 13 Lisasoojustus 200 mm 0, klaasiga pakettaknad, plastikraamiga 202 1,50 24 Tarindit ei renoveerita 1, Välisuksed Metallist välisuksed 10 1,70 1 Tarindit ei renoveerita 1, * I korruse põranda soojusjuhtivus väljendab eluruumide ja keldrikorruse vahelist kogusoojusvahetust, mis on teisendatud I korruse põrandat läbivaks soojusvooks, millest on tuletatud taandatud soojusjuhtivusnäitaja. Märkus: Investeeringute loetelu on üksnes informatiivne ja üksiku investeeringu teostamisel ilma täiendavate meetmete rakendamiseta ei pruugi loodetud säästu saavutada. Investeerimistegevuse kavandamisel tuleks lähtuda koosmõjulistest säästupakettidest.

16 ENERGIAAUDIT: Peoleo 4, Sauga Katuslagi Maja katuslagi on ehitatud madala kaldega hoone keskosast väljaspoole, katusekatteks on SBS rullmaterjal. Lähtuvalt termograafilise ülevaatuse põhjal teostatud kaudsest hinnangust ning hoone piirdekonstruktsiooni analüüsist, jääb hoone laepiirde soojusjuhtivus suurusjärku U=0,3 0,5 W/m 2 C, mis ületab EVS 837-1:2003 Piirdetarindid. Osa 1: Üldnõuded soovitatud laekonstruktsioonide soojusjuhtivuse väärtust U max =0,22 W/m 2 C (seda toatemperatuuril 18 C. Ruumides, mille temperatuur on 22 C, peab välispiirete soojusjuhtivus olema 20% väiksem, so U max =0,18 W/m 2 C). Laepiirde normijärgse soojapidavuse saavutamiseks tuleb olemasolevale soojustuskihile lisada keskmiselt vähemalt 200 mm paksune lisasoojustuse (materjali soojusjuhtivustegur λ max = 0,04 W/m K) kiht. Lisasoojustamise tehnilise lahenduse osas on soovitav konsulteerida projekteerijatega (soojustuse paigaldus vahelae peale või katuse välimisele kaldosale). Lisasoojustamise tulemusena väheneb soojuskadu läbi katuslae ning vähenevad suured külmasillad katuse ja välisseina liitekohas ning katuse paneelide toetuskohtades. Seejuures peab lisasoojustus katma ka otsaseinte parapetiosa, vastasel juhul säilib külmasild läbi parapetipaneeli: Joonis 9 Märkus: Joonis 9 on illustratiivse tähendusega, selgitamaks lisasoojustamise põhimõttelist lahendust. Lisasoojustuse paksus ja katuse tuulutuse lahendus peavad tagama katuse niiskustehnilise toimivuse. Kui jäetakse vana katusekate alles ja lisasoojustus tuleb selle peale, peab lisasoojustuse paksus olema selline, et vana katusekatte alla ei tekiks niiskustehniliselt kriitilisi keskkonnatingimusi: ei teki veeauru kondenseerumise või hallituse kasvu ohtu. Katuse

17 ENERGIAAUDIT: Peoleo 4, Sauga 17 renoveerimisel tuleb olla kindel, et liigniiskus (põhjustatud näiteks katuse läbijooksust) on välja kuivanud. Kui välispiiretest soojustatakse ainult katuslagi, tuleb katuslae ja välisseinte vahelise külmasilla mõju vähendamiseks siiski ka välisseinu soojustada vähemalt kuni ülemiste akendeni. Katuse lisasoojustamine on mõistlik teha koos fassaadide lisasoojustamisega Välisseinad Hoone pikivälisseinad on ehitatud suurplokkidest. Maja fassaadide krohvkate on hoone ehitusaegne ning valdavas osas amortiseerunud. Kahjustusi on ka seinaplokkidel (plokid murenenud ja terasest tugiarmatuurid nähtaval). Maja välisseinad Maja soojustamata välisseinad on ebaühtlase ning vähese soojuspidavusega. Otsasein -5.0 C Ar File name IR_1542.jpg Ar1 Max. Temperature -5.9 C Ar1 Min. Temperature C Ar1 Average Temperature -8.9 C Välisseina soojusjuhtivus ebaühtlane. Lähtuvalt termograafilise ülevaatuse põhjal teostatud kaudsest hinnangust ning hoone piirdekonstruktsiooni analüüsist, jääb hoone pikivälisseinte soojusjuhtivus suurusjärku U= 0,8 0,9 W/m 2 C. Vastavalt EVS 837-1:2003 Piirdetarindid. Osa 1: Üldnõuded on soovitatud

18 ENERGIAAUDIT: Peoleo 4, Sauga 18 välisseinte soojusjuhtivuse väärtuseks U max =0,28 W/m 2 C (seda toatemperatuuril 18 C. Ruumides, mille temperatuur on 22 C, peab välispiirete soojusjuhtivus olema 20% väiksem, so U max =0,23 W/m 2 C). Maja pikivälisseinte soojuspidavuse viimine vastavusse soovituslike normväärtusega eeldab vähemalt 150 mm paksuse välise lisasoojustuse (materjali soojusjuhtivustegur λ max =0,04W/m K) paigaldamist piiretele. Lähtuvalt termograafilise ülevaatuse põhjal teostatud kaudsest hinnangust ning hoone piirdekonstruktsiooni analüüsist, jääb hoone otsavälisseinte soojusjuhtivus suurusjärku U= 0,9 1,1 W/m 2 C. Maja otsavälisseinte soojuspidavuse viimine vastavusse soovituslike normväärtusega eeldab vähemalt 150 mm paksuse välise lisasoojustuse (materjali soojusjuhtivustegur λ max =0,04W/m K) paigaldamist piiretele. Osades korterites on välisseinad soojustatud seespidiselt. Sisemise soojustuskihiga on oht, et külmade ilmadega tekib soojustuse ning välisseina vahelises külmas tsoonis kondensaat, mis ajapikku loob soodsad tingimused hallituse tekkeks. Mida paksem sisemine soojustuskiht, seda suurem on kondensaadi tekkimise võimalikkus. Juba olemasolevalt korterite välisseinte siseküljele paigaldatud soojustusekiht võib säilida, kui piirded soojustada efektiivselt ka välispidiselt. Kuivõrd soojustuskiht kaitseb edaspidi seinu väliskeskkonna lagundava mõju eest, aitab lisasoojustamine ühtlasi ka pikendada hoone kasutusaega. Seinte soojustamisel on lisaks energia kokkuhoiule ka täiendavaid efekte, millised omavad olulist väärtust küll maja kasutusmugavuse tõstmisel, kuid millele on raske tasuvust arvutada. Nimelt pärast soojustamist tõuseb seinte sisepinna temperatuur, mille tulemusena suureneb oluliselt hoone kasutusmugavus.

19 ENERGIAAUDIT: Peoleo 4, Sauga I korruse põrand/ sokkel Keldri sisetemperatuur kujuneb keldrisse suunatud ja keldrist välja suunatud energiavoogude koosmõjul. Antud hoone keldrisse satub soojusenergia läbi I korruse põranda. Keldrist välja liigub soojusenergia läbi keldri välispiirete (sokkel, vundament, keldripõrand, keldri aknad ja välisuks) ning koos sooja õhuga keldriruumide ventileerimise käigus. Sellest kõigest lähtuvalt tuleb ka keldriruumide soojuskadude vähendamist vaadata laiemas meetmete kontekstis. Arvutustes on võetud aluseks keldriruumide kogusoojusvahetus, mis on teisendatud I korruse põrandat läbivaks soojusvooks. Antud soojusvoost on omakorda tuletatud I korruse põranda taandatud soojusjuhtivusnäitaja, mis on arvutatud vastavalt standardile EVS EN ISO 13370:2008 ning selle väärtuseks antud soojustamata hoone puhul on U=0,47 W/m 2 C. Käesolevas töös on käsitletud kahte võimalikku varianti keldri soojuskadude vähendamiseks. Variant 1. Keldri lae soojustamine. Kui isoleerida ära keldri lagi, siis väheneb soojusvoog läbi I korruse põranda, mille tulemusena alaneb keldriruumide sisetemperatuur. Vähenev temperatuur vähendab soojuskadusid läbi välispiirete, samuti väheneb ka ventilatsiooni õhuga keldrist väljakanduv soojusenergia hulk. Nii kujuneb keldrisse uus soojusliku tasakaalu olukord. Vähendamaks olulisel määral soojuskadusid läbi esimese korruse põranda peab keldrilae lisasoojustuse (materjali soojusjuhtivustegur λ max = 0,04 W/m K) kihipaksus olema vähemalt 70 mm. Soojustamise tulemusena kujuneb I korruse põranda taandatud soojusjuhtivuse väärtuseks U=0,32 W/m 2 C. Keldrilae soojustustööde teostamiseks tehtav investeering on ca. 20 tuhat ning aastane kütteenergiasääst on 5 MWh/a. Investeeringu lihttasuvusajaks kujuneb ca 30 aastat. Tehniliselt on keldrilae soojustamine keerukas operatsioon, kuna laega liitub hulk vaheseinu ja lage läbistavad erinevad kommunikatsioonid. Nii on ühest küljest töö teostamine tülikas ja teisest küljest jäävad soojustusest läbiulatuvad seinaosad moodustama külmasildu, mis vähendavad tulemuse efektiivsust. Samuti jäävad isoleerimata sokli-põranda-seina liites olevad konstruktiivsed külmasillad, mis esimese korruse põranda välisääred külmaks muudavad ning seal niiskuse kondenseerumise tõttu ka probleeme võivad tekitada. Samuti tuleb arvestada asjaoluga, et isoleeritud keldrilae puhul võib madalate välistemperatuuride (-22ºC ning alla selle) pikaajalisel esinemisel, keldri sisetemperatuur langeda miinuskraadideni. Sellises olukorras toimub sokli- ja vundamendikonstruktsioonide läbikülmumine, mis omakorda lühendab tarindite eluiga. Osade keldriruumide puhul on ka probleemiks ruumide ebapiisav kõrgus, mida lakke paigaldatav soojustuskiht vähendab. Keldrilae lisasoojustuseks kasutatav materjal peab olema mittepõlev, et ei süvendaks probleeme kui keldris peaks juhtuma tuleõnnetus. Variant 2. Sokli soojustamine. Soklikonstruktsiooni soojustamise tulemusena vähenevad keldriruumide välisjahtumise kaod, ja keldri sisetemperatuur hakkab kasvama. Sisetemperatuuri tõusuga koos vähenevad soojusvood läbi I korruse põranda. Selle kõige tulemusena kujuneb samuti välja uus tasakaaluolukord. Sokliosa soojuspidavuse tagamiseks tuleb paigaldada vähemalt 90 mm paksune väline lisasoojustuskiht (materjali soojusjuhtivustegur λ max = 0,045 W/m K). Soojustamise tulemusena kujuneb I korruse põranda taandatud soojusjuhtivuse väärtuseks U=0,32 W/m 2 C. Sokliosa soojustustööde teostamiseks tehtav investeering on ca. 8,7 tuhat ning aastane kütteenergiasääst on 5 MWh/a. Investeeringu lihttasuvusajaks kujuneb ca 13 aastat. NB! Antud kalkulatsioon lähtub üksnes sokliosa soojuslikust režiimist. Kuivõrd hoone vundament ja sokkel on pinnaseniiskuse seisukohalt kriitilises piirkonnas asuv konstruktsiooniosa, siis riskid on seoses niiskuse liikumisega vundamendi konstruktsioonis. Kuna

20 ENERGIAAUDIT: Peoleo 4, Sauga 20 vundamendi taldmik ei ole olemasolevate hoonete puhul niiskuslikult pinnasest eraldatud, siis toimub kapillaarniiskuse püsiv tõus mööda vundamenti kuni soklini välja, kust toimub aurumine väliskeskkonda. Kui sokkel soojustada, siis soojustus moodustab täiendava takistuse auru liikumise teele. Sellest lähtuvalt on oht, et sokli soojustamise tulemusena võib vundamendi ja soklikonstruktsiooni niiskusrežiim saada häiritud. Osad allikad soovitavad seetõttu kategooriliselt sokli soojustamist vältida. Kogemused hoonete inspekteerimisega kinnitavad aga, et õnneks see probleem ei ole valdav, kuid seda siiski esineb. Probleeme esineb eelkõige nendes hoonetes, kus üldine pinnasevee tase on kõrgem või ei ole sadeveed hoonest efektiivselt eemale juhitud. Sellistes hoonetes on probleemid niiskusega enamasti keldrites jälgitavad ka ilma sokli lisasoojustamiseta. Hoone keldriruumidesse imbub pinnavesi. Ülevaatuse ajal oli maja keldripõrandale kogunenud veekiht. Probleemi lahenduseks on ilmselt hoone ümber oleva drenaažitorustiku puhastamine /korrastamine. Hoone soklisein ja panduseosa Vältimaks sadevete kogunemist hoone vundamendiseina juurde ning imbumist vundamendiseina kaudu keldriruumidesse, tuleb koos sokliseina soojustamisega renoveerida ka betoonist pandus (piisava kaldega väljapoole). Kokkuvõtteks võib öelda, et hoones energiasäästu saavutamiseks keldri soojuskadude vähendamise kaudu on efektiivsemaks lahenduseks sokliseina lisasoojustamine (tehniliselt lihtsam teostada, väiksem maksumus ja lühem tasuvusaeg ning soojustamisest tulenevate võimalike probleemide väiksem tõenäosus). Nimetatud põhjusel on käesolevas töös hoone renoveerimispakettidesse säästumeetmena valitud sokliseina lisasoojustamine.

21 ENERGIAAUDIT: Peoleo 4, Sauga Aknad Vanemat tüüpi kahe eraldiseisva klaasiga akende soojusjuhtivus on minimaalselt U=2,7 W/m 2 C, millele lisanduvad akende ebatihedusest tingitud soojuskaod. Akende soojuspidavust aitavad parandada kardinate ja ruloode kasutamine, mille tõttu on akende efektiivseks soojusjuhtivuseks hinnatud U=2,5 W/m 2 C. Akende vahetamine kaasaegsete pakettakende vastu viib nende soojusjuhtivuse väärtusele U=1,5 W/m 2 C (soovitatavalt 1,1 W/m 2 C). Ülevaatuse ajaks oli kortermaja akendest ~91% vahetatud. Vanatüübi puitaken sokliseinas Paigaldatud uus pakettaken eluruumil Vanade puitakende vahetamisel kitsa piidaga pakettakende vastu tekkib oht, et kitsa piida kõrvale jääb seina sisse külmasild, mis enne oli parema soojapidavusega ja laiema puitpiidaga kaetud. Hoonete termograafilisel ülevaatusel on tihti näha, et uute, paigaldatud akende ümbrus on külmal ajal külm ja märg. Nimetatud külmasilla katmiseks on peale uue akna paigaldamist vaja soojustada aknapõsed väljastpoolt 2-3 cm paksuse soojustuskihiga ja viimistleda. Veelgi tõhusama lahenduse saab, kui hoone soojustamise käigus kõik aknad tõsta väljapoole e. soojustuskihi sisse. Puitakende ebatihedus on olnud loomuliku ventilatsiooniga majade värske õhu sissevoolu kanaliks, mis kaasaegsete akende (nii plast- kui ka puitraamiga aknad) paigaldamise tagajärjel kaob. Ebapiisava ventilatsiooni tagajärjel tõuseb ruumide niiskusesisaldus, mis soojustamata seintel niiskusekahjustusi ja lõpuks ka hallitust põhjustavad. Seepärast on uute akende paigaldamisel vaja jälgida, et ventilatsiooniõhu sissepääs oleks tagatud (tuulutusklappidega aknaraamid või ventilatsiooniavad seinas). Õhuvahetus peab toimuma mitte läbi juhuslike pilude, vaid selleks ettenähtud moodusel ja reguleeritavalt. Alternatiivina väljavahetamisele võib vajadusel kaaluda akende põhjaliku korrastamist (klaaside hermetiseerimine silikooniga, tihendite paigaldamine, aknapiida ja seina vaheliste vahede tihendamine). Sellised tööd tasub ette võtta, kui akna puitosa on alles korralik. Nii tuleb tööde maksumus oluliselt odavam, kuid võimalik on saavutada mõningast soojuspidavuse tõusu.

22 ENERGIAAUDIT: Peoleo 4, Sauga Välisuksed. Maja välisuksed on varasemate renoveerimiste käigus väljavahetatud. Uksed vajavad kerget remonti (katmist uue värvkattega). Välisuste keskmine soojusjuhtivus on hinnanguliselt suurusjärgus U~ 1,7 W/m 2 C. Soojuskadu läbi antud piirdeosa oleks võimalik vähendada uste vahetamisel soojapidavamate vastu ( U 1,0 W/m 2 C ), samas on aga uksed suhteliselt heas tehnilises seisukorras, mistõttu väljavahetamine ainult energiasäästu eesmärgil on kriitilise tasuvusega investeering. Trepikojauks Kindlasti peab jälgima kõikidel ustel sulgurite ja tihendite korrasolekut, et soojuskaod ei suureneks ka tänu uste ülemäärasele lahtiolekule. 3.2 Hoone tehnosüsteemid Tabel 10 Osa nimetus Kirjeldus Hinnang olukorrale ja parendusettepanekud Hoone soojusvarustus Küttesüsteemi tüüp Kohtküte Kütteseadmed Sooja tarbevee valmistamine Elektriradiaatorid, õhk-õhk välisõhusoojuspumbad Elektriboilerid, pliidid Soovitav rajada kogu hoonet hõlmav ja ühtne küttesüsteem Vee- ja kanalisatsioonisüsteemid Külm tarbevesi saadakse kohalikust asulavõrgust tsentraalselt. Tarnija on Pärnu Vesi AS. Soe tarbevesi valmistatakse lokaalsete elektriboileritega korterites. Hoone olmekanalisatsioon juhitakse asulavõrku. Hoonesisene torustik on töökorras.

23 ENERGIAAUDIT: Peoleo 4, Sauga Küttesüsteem Hinnang küttesüsteemi toimivusele. Maja kortereid varustatakse kütteenergiaga elektrikütteseadmete abil. Elanike poolt kütteseadmete soojusväljastuse individuaalse reguleerimise ja tsüklilise kütmise tõttu on raskendatud kõikides korterites stabiilselt ühesuguse sisetemperatuuri hoidmine. Juhul kui korteri kütteseadmete soojusväljastust piiratakse rohkem optimaalselt otstarbekast säästurežiimist (individuaalse kütmise või seadistamise tulemusena sisetemperatuuri viimine alla +18ºC), on raskendatud ka teistes korterites stabiilselt ühesuguse sisetemperatuuri hoidmine. Kui korterite lõikes sisetemperatuurid erinevad oluliselt, siis hakkavad soojemad korterid läbi vaheseinte kanduva soojusega kütma külmemaid kortereid. Samas ei ole aga soojade naaberkorterite kütteseadmete võimsuse valikul arvestatud sellise lisakütmise vajadusega ning tekib olukord, kus ka naaberkorterite ruumitemperatuur langeb alla soovitusliku taseme. Hoone kõikides (ka kasutuseta) eluruumides peab olema kütteperioodil tagatud minimaalne soovituslik sisetemperatuur +18ºC. Kogu hoone kui ühe terviku sisetemperatuuri hoidmine on oluline ka välistarindite säilimise seisukohalt. Optimaalsel tasemel hoitud sisetemperatuuri kaudu välditakse maja välispiirete läbikülmumist madalatel välisõhu temperatuuridel ja sulamist soojematel perioodidel ehk minimeeritakse oluliselt hoone tarindite külmatsüklite arvu. Läbitud külmatsüklid määravad aga hoone piirde eluea. Seega on kogu hoones vajalikul tasemel sisetemperatuuri hoidmine oluline nii üldise mugavuse, kui ka maja konstruktsioonide säilimise seisukohalt. Tagamaks kogu hoones ühtlast ning vajalikul tasemel sisetemperatuuri, on soovitav rajada kogu hoonet hõlmav ning kaugkütte baasil (pidades silmas kaugkütte odavamat energiahinda, keskkonnasõbralikumat iseloomu ning elekterküttega samaväärset reguleerimis- ja kasutusmugavust) toimiv reguleerimisseadmetega varustatud keskküttesüsteem. Ühtne küttesüsteem, mis on tsentraalselt juhitav ning hoone küttevajadust (vastavalt välisõhu temperatuurile) arvestav, võimaldab hoone varustamist kütteenergiaga optimaalsel tasemel. Kuna hoones praegusel hetkel tsentraalne süsteem puudub, siis tuleb rajada nii kaugkütteühendus, ehitada välja kütteautomaatikaga soojussõlm ning reguleerimisseadmetega (püstikute seadeventiilid, radiaatorite termostaatventiilid) varustatud kahetoruküttesüsteem Elektriseadmed Hoone on ühendatud Eesti Energia AS elektrivõrguga. Üldelektri tarbijaks on trepikodade üldvalgustusseadmed. Maja trepikodadesse on paigaldatud aegreleedega varustatud üldvalgustusseadmed.

24 ENERGIAAUDIT: Peoleo 4, Sauga Ventilatsioonisüsteem Hoone energiabilansist tulenev õhuvahetuse kordarv 0,29 1/h näitab, et hoone tervikuna on alaventileeritud. Kvaliteetse sisekliimaga eluruumide optimaalseks õhuvahetus-kordsuseks loetakse 0,5 1/h. Korterite ebapiisava õhuvahetuse esmaseks indikaatoriks on kõrgenenud toaõhu niiskus, mis külmadele pindadele (näiteks seintele, lagedele, akendele) kondenseerudes tekitab niiskuskahjustusi ja hallitust. Hallitusjäljed välispiiretel Siseruumide õhku eralduva CO 2 hulk sõltub ruumis viibivate inimeste arvust, nende kehalisest aktiivsusest jne. Maja ülevaatuse ajal oli eluruumide õhus CO 2 sisaldus vahemikus ppm (elanike arv 1-2 korteri kohta). Mõõtmistel jäi CO 2 sisaldus ülespoole kvaliteetset õhuvahetust näitavat piirväärtust (1000 ppm). Kuna külastatud korterite kasutuskoormus oli ülevaatuse hetkel suhteliselt madalal tasemel, siis võib eeldata, et inimeste arvu suurenedes (elanike arv 3 ja enam korteri kohta) halvenevad ruumide sisekliimanäitajad olulisel määral. Ventilatsioonisüsteem on hoone ehitusaegne ja loomuliku väljatõmbega. Välisõhu juurdevool oli ette nähtud toimuma läbi akende ja uste ebatiheduste. Ventilatsiooniõhu väljatõmme toimub loomulikul teel ventilatsioonilõõride kaudu. Ventilatsiooni väljatõmbelõõride avad ruumis Akende vahetuse käigus vähendatakse olulisel määral nende õhuläbilaskvust ning aja jooksul ummistuvad ka väljatõmbelõõrid. See on ka peamiseks põhjuseks, miks hoone õhuvahetuskordsus jääb alla nõutava taseme. Lihtsaimaks viisiks õhuvahetusega seonduvate probleemide vältimiseks on elanike teavitamine ja vajaliku õhutamise intensiivsuse tagamine siseruumides. Praktikas ei anna see siiski enamasti kvaliteetset tulemust.

25 ENERGIAAUDIT: Peoleo 4, Sauga 25 Hoone normaalse õhuvahetuse tagamiseks ja säilimiseks tuleb olemasolevaid õhu väljatõmbelõõre perioodiliselt puhastada, samuti tuleb kontrollida ventilatsioonilõõride ja korstnate tehnilist korrasolekud. Loomuliku väljatõmbe toimimiseks peavad ventilatsioonilõõride ja -korstnate seinad olema õhutihedad-pragudeta, samuti on määrav katusel asuvate korstnate töötava osa kõrgus (kõrgem korsten suurendab loomuliku ventilatsiooni väljatõmbeefekti). Näide: lisa väljatõmbeavaga köögikubuühendus Võimaldamaks köögis asuva ventilatsioonilõõri kaudu ventilatsiooniõhu loomuliku väljatõmbe pidevat toimimist on soovitav pliidikubu väljaviskekanal ühendada n.ö. kahesüsteemsena. Pakettakendesse või välisseintesse on soovitav paigaldada reguleeritavad värskeõhuklapid. Hädapärase lahendusena saab ka eemaldada ilma tuulutuspiludeta akendelt ülaservast osa tihendist, et luua võimalus loomuliku ventilatsiooni pidevaks toimimiseks, kuid tulemus on kontrollimatu ja enamasti ka ebapiisav. Nõuetekohase ventilatsiooni tagamisel kulub värske õhu soojendamiseks ca. 33 MWh/a, (praeguse alaventileerituse olukorras on soojusenergiakulu õhuvahetusele ~ 20 MWh/a). Seega õhuvahetuse intensiivistamisel (ilma soojustagastuseta tehnilised lahendused) tuleb arvestada asjaoluga, et suurenevad kütteenergiakulud siseneva külma värske välisõhu soojendamiseks. Kütteenergia kokkuhoiu saavutamiseks ventilatsioonienergia arvelt, ilma sisekliima kvaliteeti kahjustamata, tuleb hoonesse paigaldada ventilatsiooniõhu soojustagastusseadmed. Ventilatsioonienergia soojustagastusseadmed võimaldavad teostada eluruumide õhuvahetust optimaalsete kütteenergiakuludega. Võimalik on valida lokaalselt toimivate seadmete või tsentraalse õhutrakte ja ventilatsiooniagregaate sisaldava ventilatsioonisüsteemi vahel. Lokaalsete seadmete korral paigaldatakse igasse korterisse individuaalse üksusena toimiv agregaatide komplekt. Tsentraalselt toimiva ventilatsioonisüsteemi korral käsitletakse hoonet tervikuna, mille puhul tuleb ehitada välja nii sisse- kui ka väljapuhketrakt ning paigaldada soojustagastusagregaadid. Tehniliselt otstarbekaks tsentraalse energiatagastuse lahenduseks on väljatõmbelõõridele paigaldatav soojuspumpsüsteem, kust energia suunatakse tagasi hoone sooja tarbevee valmistamise süsteemi või küttesüsteemi. Kuna praeguselt hoones tsentraalne soojavee valmistamine ja keskküttesüsteem puudub, siis soojuspumba kasutusele võtmine eeldab tsentraalsete süsteemide väljaehitamist. Renoveerimismeetodi valikul tuleb arvestada olemasolevat olukorda ja võimalusi. Meetodi valikul on ka oluline, kas ventilatsiooni renoveerimine toimub korterite kaupa või terves hoones korraga. Esmajärjekorras tuleb renoveerimislahenduste valikul otsustada nende ulatuse ja taotletava taseme üle. Korterelamu renoveerimisel on soovitav lähtuda terviklikkuse printsiibist. Hoone välispiirete soojapidavus ning kütte- ja ventilatsioonisüsteemi efektiivsus moodustavad ühtse terviku, mille toimimisest sõltub hoone kui eluruumi väärtus ja ülalpidamiskulud. Hoonesse sobivaima konkreetse tehnilise lahenduse valimiseks on soovitav konsulteerida vastava ala spetsialistidega.

26 ENERGIAAUDIT: Peoleo 4, Sauga Kütte- ja ventilatsioonisüsteemide säästumeetmed ja nende majanduslik tasuvus Osa Küttesüsteem Tabel 13 Liht- Meetme tasuvus- aeg eluiga Ventilatsioonisüsteem Ventilatsioonisüsteem Parendusmeede Õhuvahetuse intensiivistamine (värskeõhuklapid, vent. lõõride puhastamine) Tehnilised komplekslahendused Kaugkütteühenduse loomine, kütteautomaatikaga soojussõlme ja kahetoruküttesüsteemi paigaldus Soojustagastusega ventilatsioonisüsteemi paigaldamine Meetme maksumus Säästu väärtus Energiasääst MWh/a /a aasta aasta Kõikidesse korteritesse ühtse ning tsentraalselt toimiva ning reguleerimisseadmetega varustatud küttesüsteemi rajamisega on võimalik ruumide sisetemperatuuri hoidmine ühtlasel ning soovitud tasemel. Samas on võimalik kütteenergiat täiendavalt kokku hoida, lisades kõikidele radiaatoritele termostaatventiilid. Termostaatventiilid annavad olulise mugavustõusu, võimaldades igas toas välja häälestada elanikele enim meeldiva temperatuuri. Kevadkuudel, kui päikeseenergia küttele olulist lisa annab, võimaldavad just termostaatventiilid efektiivselt energiat kokku hoida. Õhuvahetuse reguleerimiseks saab paigaldada hoone välisseintesse värskeõhuklapid, millede abil on võimalik tagada ventilatsiooniks vajaliku välisõhu juurdepääs eluruumidesse. Tabelis 13 on toodud arvestuslik kütteenergiakulu aastas optimaalse (0,5 1/h) õhuvahetuse tagamisel praeguse olukorraga ( alaventileeritus) võrreldes. Hoone ventilatsiooni väljatõmbeõhu energiatagastus võimaldab olulisel määral kütteenergiat säästa. Soojustagastusseadmetes kasutatakse väljatõmbeõhust saadavat energiat eluruumidesse sissepuhutava värske külma õhu soojendamiseks, teise variandina saab energia suunata tagasi hoone küttevee või sooja tarbevee valmistamise süsteemi. Tabelis 13 arvutatud säästuväärtus aastas ventilatsioonienergiatagastusele on arvestatud olukorrale, kus korterites on eelnevalt tagatud optimaalne (0,5 1/h) õhuvahetuskordsus. Konkreetne tehniline lahendus sõltub antud hoone eripärasid ja võimalusi arvestades ning ka omanike soovist lähtuvalt.

27 ENERGIAAUDIT: Peoleo 4, Sauga Hoone vabasoojus ja tasakaalutemperatuurid Normaalse elutegevuse käigus tekib ja kasutatakse energiat, mille allikaks on inimesed, kodumasinad, elektrivalgustus ja päikesekiirgus. Seda lisaenergiat nimetatakse vabasoojuseks ja selle energia kasutamine on sõltumatu välistemperatuurist. Hoone energiakaod tasakaalutemperatuurist kuni ruumi siseõhu temperatuurini kaetakse vabasoojusega ja välist küttenergiat vajatakse alles siis, kui välisõhu keskmine temperatuur on langenud alla hoone tasakaalutemperatuuri. Vabaenergia katab hoone energiavajadusest seda suurema osa, mida paremini on hoone soojustatud. Tasakaalutemperatuur langeb peale hoone renoveerimist, mille kaudu tekkib täiendav energiasääst. Hoone vabasoojuse arvutamisel on lähtutud järgmistest algandmetest: Köetav pind 998 m² Eluruumide pind 879 m² Elanike arv Inimese soojuseraldus W Kohaloleku profiil 0,6 Kogu vabasoojus kujuneb järgmistest komponentidest (arvutatud eluruumide pinna jaoks): Tabel 14 Tabel 15 Hinnanguline vabasoojus Mõõdetud vabasoojus Vabasoojus Päikese eritootlikkus Päikese soojus Inimeste soojus Olmeelekter Pliidigaas kokku Vaba-soojuskoormus kwh/m² MWh MWh MWh MWh MWh Φ VS, kw Jaanuar 0,8 0,8 2,5 1,7 5,0 6,7 Veebruar 1,7 1,7 2,3 1,7 5,7 8,5 Märts 4,4 4,4 2,5 1,5 8,4 11,3 Aprill 4,5 4,5 2,4 1,7 8,6 11,9 Mai 5,6 5,6 2,5 1,7 9,8 13,1 September 3,4 3,4 2,4 1,9 7,7 10,7 Oktoober 1,6 1,6 2,5 1,9 6,0 8,1 November 0,7 0,7 2,4 1,8 4,9 6,8 Detsember 0,3 0,3 2,5 1,9 4,7 6,4 Kokku 23,0 22,9 22,1 15,7 60,8 Keskmine Vabasoojus eluruumide pinna kohta, kwh/m² 69,2 9,3 Kogu hoones genereeritud vabasoojuse kasutamise tase sõltub küttesüsteemi automatiseerituse astmest. Kuna vabasoojus ei eraldu ajaliselt ja ruumiliselt ühtlaselt, peab küttesüsteem vabasoojuse efektiivseks ärakasutamiseks reageerima koheselt vabasoojuse eraldumisele ja samapalju antud ruumiosas vähendama majja antavat soojusenergiat. Keskküttesüsteemiga hoonetes ning väljas asuva temperatuurianduriga automaatse soojussõlme ja ilma radiaatorite termostaatventiilideta küttesüsteemi korral on vabasoojuse kasutustegur 0,55. Kui radiaatoritele paigaldatakse automaatsed termostaatventiilid, kasutatakse vabasoojust paremini ära ja

28 ENERGIAAUDIT: Peoleo 4, Sauga 28 vabasoojuse kasutustegur on 0,7. Antud hoones on kasutusel termoregulaatoritega varustatud elekterkütteseadmed ning vabasoojuse kasutusteguriks võib lugeda 0,7. Tabel 16 Ühik Praegune Säästumeetmed olukord Pakett I Pakett II Pakett III Arvutuslik vabasoojuskoormus, ΦVS kw 9,3 9,3 9,3 9,3 Vabasoojuse kasutustegur 0,7 0,7 0,7 0,7 Kasutatav vabasoojuskoormus, ΦVS kw 6,5 6,5 6,5 6,5 Erisoojuskaod läbi välispiirete, Hvp kw/ C 1,35 0,76 0,76 0,76 Õhuvahetuskordaja, n 1/h 0,29 0,50 0,50 0,50 Erisoojuskaod õhuvahetusele, Hvent kw/ C 0,25 0,42 0,19 0,19 Erisoojuskaod kokku, H=Hvp+Hvent kw/ C 1,60 1,18 0,96 0,96 Temperatuuritõus vabasoojuse arvelt, tvs= Φvs / H C 4,1 5,5 6,8 6,8 Tasakaalutemperatuur, tb C Hoone arvutuslik tasakaalutemperatuur on 15 C. Maja kogu köetava mahu keskmiseks temperatuuriks kujuneb 19 C.

29 ENERGIAAUDIT: Peoleo 4, Sauga Kokkuvõte säästumeetmetest Hoone välispiirete olukorra ja sellest tulenevate säästuvõimaluste ning tehnosüsteemide parendusvõimalustest tulenevate säästumeetmete põhjal on hoone kohta koostatud kolm säästumeetmete paketti. Pakettide koostamisel on lähtutud põhimõttest, et paketis sisalduvad meetmed peavad tagama omavahel säästu saavutamist ja ideaalis sünergia tõttu tekitama üksikmeetme rakendamisest suurema energiakokkuhoiu. 4.1 Säästumeetmete paketid Säästumeetmete pakett I sisaldab vajalikke meetmeid, et muuta elamistingimused kogu hoones paremaks ning saavutades sealjuures ka energiasäästu. Soojustatakse hoone katuslagi, välisseinad ja sokliosa. Hooned vanad aknad vahetatakse uute pakettakende vastu. Õhuvahetus intensiivistatakse vajalikule tasemele. Energiaarvutuste tasakaalutemperatuuriks kujuneb hinnanguliselt 15 C. Tabel 17 Säästumeetmete Meetme Energia Säästu Liht- Meetme tb= 15 ºC pakett I maksumus sääst väärtus tasuvusaeg eluiga Hoone osa Parendusmeetmed MWh/a /a aasta aasta Otsaseinad Aknad vanad Küljeseinad I kor. põrand (taandatud)* Katuslagi Ventilatsioonisüsteem Lisasoojustus 150 mm Asendamine uute pakettakendega Lisasoojustus 150 mm Sokli lisasoojustus 90mm Lisasoojustus 200 mm Õhuvahetuse intensiivistus (vent.lõõridepuhastus, värskeõhuklapid) Kokku Paketi teostamise tulemusena on hoone eeldatav energiakulu küttele ja ventilatsioonile 93 MWh/a, saavutatav kütteenergiasääst on 26% paketi realiseerimiseelse tarbimisega võrreldes ning ühtlasi saavutatakse korterites kvaliteetne sisekliima. Peale paketi realiseerimist on eeldatav kütte- ja ventilatsioonienergia eritarbimine köetava pinna kohta 94 kwh/m 2. a. Hoone saavutab peale kõigi renoveerimistööde kompleksset teostamist eeldatavalt energiamärgise klassi E (arvutuslik).

30 ENERGIAAUDIT: Peoleo 4, Sauga 30 Säästumeetmete pakett II hoone energeetiline saneerimine, mille käigus teostatakse järgmised tööd: soojustatakse hoone katuslagi, välisseinad ja sokliosa. Lisaks vahetatakse hoone vanad aknad uute pakettakende vastu. Hoonesse paigaldatakse energiatagastusega ventilatsioonisüsteem. Energiaarvutuste tasakaalutemperatuuriks kujuneb hinnanguliselt 13 C. Tabel 18 Säästumeetmete Meetme Energia Säästu Liht- Meetme tb= 13 ºC pakett II maksumus sääst väärtus tasuvusaeg eluiga Hoone osa Parendusmeetmed MWh/a /a aasta aasta Otsaseinad Aknad vanad Küljeseinad I kor. põrand (taandatud)* Katuslagi Ventilatsioonisüsteem Lisasoojustus 150 mm Asendamine uute pakettakendega Lisasoojustus 150 mm Sokli lisasoojustus 90mm Lisasoojustus 200 mm Soojustagastusega ventilatsioonisüsteemi paigaldamine Kokku Paketi teostamise tulemusena on hoone eeldatav energiakulu küttele ja ventilatsioonile 65 MWh/a, saavutatav kütteenergiasääst on 49% paketi realiseerimiseelse tarbimisega võrreldes ning ühtlasi saavutatakse korterites kvaliteetne sisekliima. Peale paketi realiseerimist on eeldatav kütte- ja ventilatsioonienergia eritarbimine köetava pinna kohta 65 kwh/m 2. a. Hoone saavutab peale kõigi renoveerimistööde kompleksset teostamist eeldatavalt energiamärgise klassi D (arvutuslik).

31 ENERGIAAUDIT: Peoleo 4, Sauga 31 Säästumeetmete pakett III hoone energeetiline saneerimine, mille käigus teostatakse järgmised tööd: soojustatakse hoone katuslagi, välisseinad ja sokliosa. Lisaks vahetatakse hoone vanad aknad uute pakettakende vastu. Hoonesse paigaldatakse energiatagastusega ventilatsioonisüsteem. Rajatakse kaugkütteühendus, ehitatakse hoonesse soojussõlm ning kogu hoonet hõlmav ja reguleerimisseadmetega varustatud kahetoruühenduses keskküttesüsteem. Energiaarvutuste tasakaalutemperatuuriks kujuneb hinnanguliselt 13 C. Tabel 18 Säästumeetmete Meetme Energia Säästu Liht- Meetme tb= 13 ºC pakett III maksumus sääst väärtus tasuvusaeg eluiga Hoone osa Parendusmeetmed MWh/a /a aasta aasta Otsaseinad Lisasoojustus 150 mm Aknad vanad Asendamine uute pakettakendega Küljeseinad Lisasoojustus 150 mm I kor. põrand (taandatud)* Sokli lisasoojustus 90mm Katuslagi Lisasoojustus 200 mm Kaugkütteühenduse loomine, kütteautomaatikaga soojussõlme ja kahetoruküttesüsteemi Küttesüsteem paigaldus Ventilatsioonisüsteem Soojustagastusega ventilatsioonisüsteemi paigaldamine Kokku Paketi teostamise tulemusena on hoone eeldatav energiakulu küttele ja ventilatsioonile 46 MWh/a, saavutatav kütteenergiasääst on 49% paketi realiseerimiseelse tarbimisega võrreldes ning ühtlasi saavutatakse korterites kvaliteetne sisekliima. Paketi realiseerimise raames kaugkütte odavamast energiahinnast tulenev hinnanguline rahaline sääst 2900 eurot/aastas. Peale paketi realiseerimist on eeldatav kütte- ja ventilatsioonienergia eritarbimine köetava pinna kohta 65 kwh/m 2. a. Hoone saavutab peale kõigi renoveerimistööde kompleksset teostamist eeldatavalt energiamärgise klassi C (arvutuslik).

Hoone energiaaudit. Töö nr ENE korruseline 12 korteriga elamu Aadress: Paide tee 25, Koeru Diplomeeritud energiaaudiitor: Aadu Vares

Hoone energiaaudit. Töö nr ENE korruseline 12 korteriga elamu Aadress: Paide tee 25, Koeru Diplomeeritud energiaaudiitor: Aadu Vares Hoone energiaaudit Töö nr ENE 1016 2 korruseline 12 korteriga elamu Aadress: Paide tee 25, Koeru 73001 Diplomeeritud energiaaudiitor: Aadu Vares Allkiri.. Tallinn 2010 Meie oskused on Teie edu! Tellija

Διαβάστε περισσότερα

Ülase 3, Vinni HOONE ENERGIAAUDITI ARUANNE

Ülase 3, Vinni HOONE ENERGIAAUDITI ARUANNE Ülase 3, Vinni HOONE ENERGIAAUDITI ARUANNE 3 KORRUSELINE 24- KORTERIGA HOONE Ülase 3 Vinni alevik, Vinni vald Lääne-Virumaa 46601 Tellija: KÜ Võsaülane Koostaja: Raul Metsunt Ülase 3,Vinni, Vinni vald,

Διαβάστε περισσότερα

Korterelamu energiaaudit

Korterelamu energiaaudit Tellija: Korteriühistu Observatooriumi 5 Tellija kontaktisik: Andres Juur Aadress: Tel.: 55 600 224 E-post: andres.juur@gmail.com Korterelamu energiaaudit Töö nr TA-14-16 Kobinaathoone, sh 29 korteriga

Διαβάστε περισσότερα

Energiabilanss netoenergiavajadus

Energiabilanss netoenergiavajadus Energiabilanss netoenergiajadus 1/26 Eelmisel loengul soojuskadude arvutus (võimsus) φ + + + tot = φ φ φ juht v inf φ sv Energia = tunnivõimsuste summa kwh Netoenergiajadus (ruumis), energiakasutus (tehnosüsteemis)

Διαβάστε περισσότερα

LEMBITU 4, RAKVERE ENERGIAAUDIT

LEMBITU 4, RAKVERE ENERGIAAUDIT Tellija: Korteriühistu Rakvere Lembitu (80082710) Tellija kontaktisik: Garry Pavlov Aadress: Lembitu 4-49, Rakvere linn, Lääne-Viru maakond, 44308 Telefon: 5264230 e-post: rakinvent@gmail.com LEMBITU 4,

Διαβάστε περισσότερα

ÜHISKONDLIKU HOONE ENERGIAAUDIT. Obinitsa küla, Meremäe vald, Võrumaa 2 -korruseline muuseum

ÜHISKONDLIKU HOONE ENERGIAAUDIT. Obinitsa küla, Meremäe vald, Võrumaa 2 -korruseline muuseum ÜHISKONDLIKU HOONE ENERGIAAUDIT Obinitsa küla, Meremäe vald, Võrumaa 2 -korruseline muuseum Tellija: Piiriäärne Energiaarenduse MTÜ Kontaktisik: Urmo Lehtveer Aadress: Obinitsa küla, Meremäe vald, Võrumaa

Διαβάστε περισσότερα

Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013

Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013 55 C 35 C A A B C D E F G 50 11 12 11 11 10 11 db kw kw db 2015 811/2013 A A B C D E F G 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi

Διαβάστε περισσότερα

STM A ++ A + A B C D E F G A B C D E F G. kw kw /2013

STM A ++ A + A B C D E F G A B C D E F G. kw kw /2013 Ι 47 d 11 11 10 kw kw kw d 2015 811/2013 Ι 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi 2010/30/ täiendavates määrustes () nr 811/2013,

Διαβάστε περισσότερα

Eessõna. Õppehoone energiaaudit Pae tn 5, Tallinn

Eessõna. Õppehoone energiaaudit Pae tn 5, Tallinn Tellija andmed: Tellija: Riigi Kinnisvara AS Aadress: Lasnamäe tn 2, Tallinn HOONE ENERGIAAUDIIT 4-KORRUSELINE KOOLIHOONE Pae tn 5, Tallinn, Harjumaa Auditeerimise aeg: 06.10.2011-13.09.2012 Aruanne esitatud:

Διαβάστε περισσότερα

30-KRT ELAMU ENERGIAAUDIT PAIDE TEE 17 KOERUS

30-KRT ELAMU ENERGIAAUDIT PAIDE TEE 17 KOERUS 30-KRT ELAMU ENERGIAAUDIT PAIDE TEE 17 KOERUS KORREKTUUR OKTOOBER 2010 ENERGIAAUDIITOR: AADU VARES Toome 10-40 Viljandi 71010 5217244 2005/2010 1/21 Üldosa Käesolev energiaauditi korrektuur on tehtud oktoobris

Διαβάστε περισσότερα

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS

Διαβάστε περισσότερα

HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G

HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G HSM TT 1578 EST 682-00.1/G 6720 611 95 EE (0.08) RBLV Sisukord Sisukord Ohutustehnika alased nõuanded 3 Sümbolite selgitused 3 1. Seadme andmed 1. 1. Tarnekomplekt 1. 2. Tehnilised andmed 1. 3. Tarvikud

Διαβάστε περισσότερα

Tüüpiliste korterelamute senisest energiatarbest ja välispiirete soojustamise võimalikust mõjust.

Tüüpiliste korterelamute senisest energiatarbest ja välispiirete soojustamise võimalikust mõjust. Tüüpiliste korterelamute senisest energiatarbest ja välispiirete soojustamise võimalikust mõjust. Sisukord. Elamuehitus Rakveres... 2 Rakvere korterelamute taustast.... 2 Tabel 1. Rakvere elamute valmimise

Διαβάστε περισσότερα

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}

Διαβάστε περισσότερα

Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus

Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus 1. Haljala valla metsa pindala Haljala valla üldpindala oli Maa-Ameti

Διαβάστε περισσότερα

Lokaalsed ekstreemumid

Lokaalsed ekstreemumid Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,

Διαβάστε περισσότερα

Geomeetrilised vektorid

Geomeetrilised vektorid Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse

Διαβάστε περισσότερα

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].

Διαβάστε περισσότερα

Sisekliima ja energiatarve soojuslik sisekliima, õhu kvaliteet ja puhtus

Sisekliima ja energiatarve soojuslik sisekliima, õhu kvaliteet ja puhtus Sisekliima ja energiatarve soojuslik sisekliima, õhu kvaliteet ja puhtus Kaido Hääl Tallinna Tehnikaülikool Keskkonnatehnika instituut 1 ELUASE NÕUAB HOOLT Olemasolevast elamufondist tingituna tuleb praegustel

Διαβάστε περισσότερα

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori

Διαβάστε περισσότερα

PLASTSED DEFORMATSIOONID

PLASTSED DEFORMATSIOONID PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb

Διαβάστε περισσότερα

kus: = T (3.1) külmasilla punktsoojusläbivus χ p, W/K, mis statsionaarsetes tingimustes on arvutatav valemist: = χ (T T ), W

kus: = T (3.1) külmasilla punktsoojusläbivus χ p, W/K, mis statsionaarsetes tingimustes on arvutatav valemist: = χ (T T ), W Külmasillad Külmasillad on kohad piirdetarindis, kus soojusläbivus on lokaalselt suurem ümbritseva tarindi soojusläbivusest. Külmasillad võivad olla geomeetrilised (näiteks välisseina välisnurk, põranda

Διαβάστε περισσότερα

Ruumilise jõusüsteemi taandamine lihtsaimale kujule

Ruumilise jõusüsteemi taandamine lihtsaimale kujule Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D

Διαβάστε περισσότερα

HOONETE ENERGIAAUDITITE JUHEND

HOONETE ENERGIAAUDITITE JUHEND HOONETE ENERGIAAUDITITE JUHEND T a l l i n n 2 0 0 1 1 OPET EST NIA A X C O N S U L T I N G A X O V A A T I O O Y Eesti Energeetika Instituut / OPET Eesti Aadress: Kuokkamaantie 4 Postiaadress: P/k 428

Διαβάστε περισσότερα

HAPE-ALUS TASAKAAL. Teema nr 2

HAPE-ALUS TASAKAAL. Teema nr 2 PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused

Διαβάστε περισσότερα

LIGINULLENERGIA ELUHOONED RIDA- JA KORTERELAMUD

LIGINULLENERGIA ELUHOONED RIDA- JA KORTERELAMUD LIGINULLENERGIA ELUHOONED RIDA- JA KORTERELAMUD TALLINN November 2017 Sisukord 1 SISSEJUHATUS... 4 2 TELLIJA ROLL... 5 3 ENERGIAIATÕHUSUSE PÕHINÄITAJAD... 7 3.1 ENERGIATÕHUSUSE DEFINITSIOON... 7 3.2 ENERGIATÕHUSUSE

Διαβάστε περισσότερα

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1 laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad

Διαβάστε περισσότερα

2.2.1 Geomeetriline interpretatsioon

2.2.1 Geomeetriline interpretatsioon 2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides

Διαβάστε περισσότερα

9. AM ja FM detektorid

9. AM ja FM detektorid 1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58

Διαβάστε περισσότερα

Kompleksarvu algebraline kuju

Kompleksarvu algebraline kuju Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa

Διαβάστε περισσότερα

Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus

Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus Antud: Õhuke raudbetoonist gravitatsioontugisein maapinna kõrguste vahega h = 4,5 m ja taldmiku sügavusega d = 1,5 m. Maapinnal tugiseina

Διαβάστε περισσότερα

Valgustus ja energiasääst, koostöö teiste eriosadega EKVÜ koolitus 2. Tiiu Tamm Elektrotehnika instituut

Valgustus ja energiasääst, koostöö teiste eriosadega EKVÜ koolitus 2. Tiiu Tamm Elektrotehnika instituut Valgustus ja energiasääst, koostöö teiste eriosadega 14.11.2013 EKVÜ koolitus 2 Tiiu Tamm Elektrotehnika instituut Energiasäästu reguleerivad standardid : Küte ja soojaveevarustus EVS-EN 15316, 4 osa 2007

Διαβάστε περισσότερα

Funktsiooni diferentsiaal

Funktsiooni diferentsiaal Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on

Διαβάστε περισσότερα

Ecophon Line LED. Süsteemi info. Mõõdud, mm 1200x x x600 T24 Paksus (t) M329, M330, M331. Paigaldusjoonis M397 M397

Ecophon Line LED. Süsteemi info. Mõõdud, mm 1200x x x600 T24 Paksus (t) M329, M330, M331. Paigaldusjoonis M397 M397 Ecophon Line LED Ecophon Line on täisintegreeritud süvistatud valgusti. Kokkusobiv erinevate Focus-laesüsteemidega. Valgusti, mida sobib kasutada erinevates ruumides: avatud planeeringuga kontorites; vahekäigus

Διαβάστε περισσότερα

Lahendused korterelamute renoveerimiseks.

Lahendused korterelamute renoveerimiseks. Lahendused korterelamute renoveerimiseks www.rockwool.ee Sisukord Energiasääst soojustamise abil... 3 Energiatõhusus... 6 Nõuded välispiirete soojapidavusele... 7 Krohvialuse välisseina soojustamine...

Διαβάστε περισσότερα

Ehitusmehaanika harjutus

Ehitusmehaanika harjutus Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative

Διαβάστε περισσότερα

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass 2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH

Διαβάστε περισσότερα

Kandvad profiilplekid

Kandvad profiilplekid Kandvad profiilplekid Koosanud voliaud ehiusinsener, professor Kalju Looris ja ehnikalisensiaa Indrek Tärno C 301 Pärnu 2003 SISUKORD 1. RANNILA KANDVATE PROFIILPLEKKIDE ÜLDANDMED... 3 2. DIMENSIOONIMINE

Διαβάστε περισσότερα

AS MÕÕTELABOR Tellija:... Tuule 11, Tallinn XXXXXXX Objekt:... ISOLATSIOONITAKISTUSE MÕÕTMISPROTOKOLL NR.

AS MÕÕTELABOR Tellija:... Tuule 11, Tallinn XXXXXXX Objekt:... ISOLATSIOONITAKISTUSE MÕÕTMISPROTOKOLL NR. AS Mõõtelabor ISOLATSIOONITAKISTUSE MÕÕTMISPROTOKOLL NR. Mõõtmised teostati 200 a mõõteriistaga... nr.... (kalibreerimistähtaeg...) pingega V vastavalt EVS-HD 384.6.61 S2:2004 nõuetele. Jaotus- Kontrollitava

Διαβάστε περισσότερα

Click to edit Master title style

Click to edit Master title style 1 Welcome English 2 Ecodesign directive EU COMMISSION REGULATION No 1253/2014 Ecodesign requirements for ventilation units Done at Brussels, 7 July 2014. For the Commission The President José Manuel BARROSO

Διαβάστε περισσότερα

Ecophon Square 43 LED

Ecophon Square 43 LED Ecophon Square 43 LED Ecophon Square 43 on täisintegreeritud süvistatud valgusti, saadaval Dg, Ds, E ja Ez servaga toodetele. Loodud kokkusobima Akutex FT pinnakattega Ecophoni laeplaatidega. Valgusti,

Διαβάστε περισσότερα

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika

Διαβάστε περισσότερα

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem

Διαβάστε περισσότερα

Fibo Lux 88 vaheseina süsteem. Margus Tint

Fibo Lux 88 vaheseina süsteem. Margus Tint Fibo Lux 88 vaheseina süsteem Margus Tint 1 Fibo Lux 88 vahesein LIHTNE JA KIIRE PAIGALDADA TÄIUSLIK TERVIKLAHENDUS LAOTAKSE KIVILIIMIGA TAPID KÕIKIDEL OTSTEL HEA VIIMISTLEDA TÄIUSTATUD PROFIIL, SIIA KUULUVAD

Διαβάστε περισσότερα

Kontekstivabad keeled

Kontekstivabad keeled Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,

Διαβάστε περισσότερα

Vundamentide ja põrandate soojustamine XPS soojustusega Styrofoam

Vundamentide ja põrandate soojustamine XPS soojustusega Styrofoam Vundamentide ja põrandate soojustamine XPS soojustusega Styrofoam 10.03.2009 Indrek Sniker DOW müügijuht / ISOVER, DOW tehniline konsultant ISOVER EESTI AS DOW CHEMICAL COMPANY - STYROFOAM Dow Chemical

Διαβάστε περισσότερα

HULGATEOORIA ELEMENTE

HULGATEOORIA ELEMENTE HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad

Διαβάστε περισσότερα

SISUKORD Klaas Eterniit Tõrvapapp Klaasvill... 18

SISUKORD Klaas Eterniit Tõrvapapp Klaasvill... 18 SISUKORD SISSEJUHATUSEKS...2 OSA I: LINNAEHITUSLIK ANALÜÜS 1. ELAMUTE TÜPOLOOGIA...4 1.1 TÜÜPELAMU 1-317 EHK HRUŠTŠOVKA...4 1.1.1 Hruštšovka ajalooline taust...4 1.2 HRUŠTŠOVKA ISELOOMULIKUD TUNNUSJOONED...5

Διαβάστε περισσότερα

Click & Plug põrandaküte. Paigaldusjuhend Devidry

Click & Plug põrandaküte. Paigaldusjuhend Devidry Click & Plug põrandaküte EE Paigaldusjuhend Devidry Devidry Õnnitleme Teid DEVI põrandaküttesüsteemi ostu puhul. DEVI on juhtiv põrandaküttesüsteemide tootja Euroopas, kel on antud valdkonnas rohkem, kui

Διαβάστε περισσότερα

PÕLEMINE. KÜTTEKOLDED. HOONETE SOOJUSVAJADUS. KÜTTESÜSTEEMIDE KAVANDAMINE.

PÕLEMINE. KÜTTEKOLDED. HOONETE SOOJUSVAJADUS. KÜTTESÜSTEEMIDE KAVANDAMINE. PÕLEMINE. KÜTTEKOLDED. HOONETE SOOJUSVAJADUS. KÜTTESÜSTEEMIDE KAVANDAMINE. ÜLO KASK TARTU REGIOONI ENERGIAAGENTUUR, EBÜ. SEMINAR POTTSEPPADELE JA KJV PROJEKTEERIJATELE. 18.04.2017, TARTU. KÄSITLETAVAD

Διαβάστε περισσότερα

ISOVER MATERJALID JA LAHENDUSED ARDI SALUS ISOVER MÜÜGIESINDAJA

ISOVER MATERJALID JA LAHENDUSED ARDI SALUS ISOVER MÜÜGIESINDAJA ISOVER MATERJALID JA LAHENDUSED 08.11.2017 ARDI SALUS ISOVER MÜÜGIESINDAJA UUED TOOTED JA LAHENDUSED 2017 ISOVER PUISTEVILL VARIO ÕHU- JA AURUTÕKKESÜSTEEM UUT RENOVEERIMIS- JA UUSEHITISTELE Abimaterjalid

Διαβάστε περισσότερα

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning

Διαβάστε περισσότερα

Kaspar Tennokese. Lennusadama meresoojuspumba KOLLEKTORI PROJEKT. Lennusadama meresoojuspumba KOLLEKTORI PROJEKT

Kaspar Tennokese. Lennusadama meresoojuspumba KOLLEKTORI PROJEKT. Lennusadama meresoojuspumba KOLLEKTORI PROJEKT Lennusadama meresoojuspumba KOLLEKTORI PROJEKT Lennusadama meresoojuspumba KOLLEKTORI PROJEKT Merepõhja ca 10 m sügavusele on kavandatud 44 kollektorit (PEM40x2,4 ). Ühe kollektori aktiivosa pikkus on

Διαβάστε περισσότερα

2-, 3- ja 4 - tee ventiilid VZ

2-, 3- ja 4 - tee ventiilid VZ Kirjelus VZ 2 VZ 3 VZ 4 VZ ventiili pakuva kõrgekvaliteeilist ja kulusi kokkuhoivat lahenust kütte- ja/või jahutusvee reguleerimiseks jahutuskassettie (fan-coil), väikeste eelsoojenite ning -jahutite temperatuuri

Διαβάστε περισσότερα

Kingspan-juhend nr 106

Kingspan-juhend nr 106 Aprill 2017 Kingspan-juhend nr 106 Tänu Kingspan Therma -soojustusplaatide väikesele soojusjuhtivusele ja suurele veeaurutakistusele kasutatakse Kingspan Therma -soojustusplaate villaga soojustatud seina-

Διαβάστε περισσότερα

2. bauroc POORBETOONI TEHNILISED JA EHITUSFÜÜSIKALISED OMADUSED

2. bauroc POORBETOONI TEHNILISED JA EHITUSFÜÜSIKALISED OMADUSED 2. bauroc POORBETOONI TEHNILISED JA EHITUSFÜÜSIKALISED OMADUSED 2.1. Üldist Erinevate bauroc toodete tugevusomadused on toodud osas 3 ja müüritise tugevusomadused osas 5. Bauroc tehases valmistatavatel

Διαβάστε περισσότερα

Miks just Vaillant? mõtleb tulevikule. Aga sellepärast, et pakume 10-aastase garantiiga taastuvenergial põhinevat küttetehnikat.

Miks just Vaillant? mõtleb tulevikule. Aga sellepärast, et pakume 10-aastase garantiiga taastuvenergial põhinevat küttetehnikat. 17 maasoojuspumbad Miks just Vaillant? ga sellepärast, et pakume aastase garantiiga taastuvenergial põhinevat küttetehnikat. geotherm plus geotherm exclusiv geotherm Sest mõtleb tulevikule. Tuleviku energia

Διαβάστε περισσότερα

Hoone osad Loengukonspekt

Hoone osad Loengukonspekt Eesti Põllumajandusülikool Maainseneriteaduskond Maaehituse instituut Hoone osad Loengukonspekt Koostanud Meeli Kams Tartu 2002 Konspekt on koostatud mitte-ehituseriala üliõpilastele õppeaine Ehitusõpetus

Διαβάστε περισσότερα

2. AEROC poorbetooni tehnilised ja ehitusfüüsikalised omadused.

2. AEROC poorbetooni tehnilised ja ehitusfüüsikalised omadused. 2. AEROC poorbetooni tehnilised ja ehitusfüüsikalised omadused. 2.1. Üldist Erinevate AEROC toodete tugevusomadused on toodud osas 3 ja müüritise tugevusomadused osas 5. Aeroc tehases valmistatavatel toodetel

Διαβάστε περισσότερα

Regupol. Löögimüra summutus. Vastupidav, madal konstruktsiooni kõrgus, madal emissioon.

Regupol. Löögimüra summutus. Vastupidav, madal konstruktsiooni kõrgus, madal emissioon. 139 Löögimüra summutus Vastupidav, madal konstruktsiooni kõrgus, madal emissioon. Mimekülgne elastne alusmaterjal iga põrandakatte alla Regupol löögimüra summutus on juba pikka aega pakkunud segamatut

Διαβάστε περισσότερα

ISOVER kaasaegsed soojustuslahendused Ardi Salus

ISOVER kaasaegsed soojustuslahendused Ardi Salus ISOVER kaasaegsed soojustuslahendused 29.04.2014. Ardi Salus 50 28 604 ardi@isover.ee G3 touch Uus sideaine: glükoos KÕIK Hyvinkää tehases toodetavad pehmed ehitusvillad Pakenditele tulevad uued kiled

Διαβάστε περισσότερα

Teemad. Energiatõhus ehitamine. Firmast. AEROC tehas Lääne-Virumaal. AEROC tehas Saulkalnes, Lätis. JÄMERÄ Soomes. Tartu Ehitusmess,

Teemad. Energiatõhus ehitamine. Firmast. AEROC tehas Lääne-Virumaal. AEROC tehas Saulkalnes, Lätis. JÄMERÄ Soomes. Tartu Ehitusmess, Energiatõhus ehitamine Tartu Ehitusmess, 12.10.2012 Artur Froš Aeroc AS, Väike-Männiku 3, 11216, Tallinn www.aeroc.ee mail: aeroc@aeroc.ee Teemad Firma lühitutvustus Energiatõhusus, mis see on? Eesti seadusandlus

Διαβάστε περισσότερα

Suitsugaasi ärajuhtimise juhised Logamax plus

Suitsugaasi ärajuhtimise juhised Logamax plus Gaasi-kondensatsioonikatel 6 720 808 116 (2013/08) EE 6 720 643 912-000.1TD Suitsugaasi ärajuhtimise juhised Logamax plus GB162-15...45 V3 Palun lugege hoolikalt enne paigaldus- ja hooldustöid Sisukord

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke

Διαβάστε περισσότερα

Väikeehitiste vundamentide soojustamine Styrofoam XPS toodetega

Väikeehitiste vundamentide soojustamine Styrofoam XPS toodetega 04.2011 Väikeehitiste vundamentide soojustamine Styrofoam XPS toodetega 2 Styrofoami XPS soojustusplaadid Styrofoami soojustusplaadid valmistatakse ekstrudeeritud polüstüreenist. Neid XPS soojustusplaate

Διαβάστε περισσότερα

1 Funktsioon, piirväärtus, pidevus

1 Funktsioon, piirväärtus, pidevus Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks

Διαβάστε περισσότερα

Eesti koolinoorte 43. keemiaolümpiaad

Eesti koolinoorte 43. keemiaolümpiaad Eesti koolinoorte 4. keeiaolüpiaad Koolivooru ülesannete lahendused 9. klass. Võrdsetes tingiustes on kõikide gaaside ühe ooli ruuala ühesugune. Loetletud gaaside ühe aarruuala ass on järgine: a 2 + 6

Διαβάστε περισσότερα

PEATÜKK 5 LUMEKOORMUS KATUSEL. 5.1 Koormuse iseloom. 5.2 Koormuse paiknemine

PEATÜKK 5 LUMEKOORMUS KATUSEL. 5.1 Koormuse iseloom. 5.2 Koormuse paiknemine PEATÜKK 5 LUMEKOORMUS KATUSEL 5.1 Koormuse iseloom (1) P Projekt peab arvestama asjaolu, et lumi võib katustele sadestuda paljude erinevate mudelite kohaselt. (2) Erinevate mudelite rakendumise põhjuseks

Διαβάστε περισσότερα

Raudbetoonkonstruktsioonid I. Raudbetoon-ribilae ja posti projekteerimine

Raudbetoonkonstruktsioonid I. Raudbetoon-ribilae ja posti projekteerimine Raudbetoonkonstruktsioonid I MI.0437 Raudbetoon-ribilae ja posti projekteerimine Juhend kursuseprojekti koostamiseks Dots. J. Valgur Tartu 2016 SISUKORD LÄHTEÜLESANNE... 3 ARVUTUSKÄIK... 3 1. Vahelae konstruktiivne

Διαβάστε περισσότερα

Sisukord. Töö nr: 163/15 Projekti nimetus: Kortermaja küttesüsteemi projekt Aadress: Harju-Risti 7, Padise vald, Harjumaa

Sisukord. Töö nr: 163/15 Projekti nimetus: Kortermaja küttesüsteemi projekt Aadress: Harju-Risti 7, Padise vald, Harjumaa Sisukord 1. SELETUSKIRI... 2 1.1. ÜLDOSA.... 2 Hoone olukord... 3 1.2. KÜTTESÜSTEEM... 3 Arvutuste alused... 3 Küttekehad... 4 Torustik... 4 Isolatsioon... 4 Küttesüsteemi uuendamise tuleohutusnõuded....

Διαβάστε περισσότερα

Kärla valla energiamajanduse uuendatud arengukava

Kärla valla energiamajanduse uuendatud arengukava Pilvero OÜ Kärla valla energiamajanduse uuendatud arengukava Lõpparuanne Kärla-Tallinn 2013 OÜ Pilvero, 2013-05-30 1 Sisukord SISUKORD... 2 SISSEJUHATUS... 5 A. KÄRLA VALLA LÜHIISELOOMUSTUS. ENERGEETIKASÜSTEEMIDE

Διαβάστε περισσότερα

Andmeanalüüs molekulaarbioloogias

Andmeanalüüs molekulaarbioloogias Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.

Διαβάστε περισσότερα

Suruõhutehnika Põhitõed ja praktilised nõuanded

Suruõhutehnika Põhitõed ja praktilised nõuanded Suruõhutehnika Põhitõed ja praktilised nõuanded Sisukord Eessõna Põhitõed. peatükk Suruõhutootmise põhimõisted... 2. peatükk Suruõhu ökonoomne töötlemine... 6 3. peatükk Miks on vaja suruõhku kuivatada?...

Διαβάστε περισσότερα

Hallitusseened ja peened osakesed eluruumide õhus ning nende võimalik mõju tervisele

Hallitusseened ja peened osakesed eluruumide õhus ning nende võimalik mõju tervisele Hallitusseened ja peened osakesed eluruumide õhus ning nende võimalik mõju tervisele Hans Orru Ene Indermitte TÜ tervishoiu instituut Teema olulisus Inimesed veedavad kuni 90% ajast siseruumides Majad

Διαβάστε περισσότερα

Vastseliina kaugkütte võrgupiirkonna soojamajanduse arengukava

Vastseliina kaugkütte võrgupiirkonna soojamajanduse arengukava 2016 Vastseliina kaugkütte võrgupiirkonna soojamajanduse arengukava 2016 2026 Koostas: Pavel Bogdanov, PhD,MTÜ LETEK Kinnitan: Aare Vabamägi, volitatud soojustehnika insener, tase 8 MTÜ LETEK Leht 1 SISUKORD

Διαβάστε περισσότερα

T~oestatavalt korrektne transleerimine

T~oestatavalt korrektne transleerimine T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:

Διαβάστε περισσότερα

Töökeskkonna füüsikaliste ohutegurite parameetrite mõõtmine. Juhend

Töökeskkonna füüsikaliste ohutegurite parameetrite mõõtmine. Juhend Töökeskkonna füüsikaliste ohutegurite parameetrite mõõtmine Juhend 2010 Juhendi koostas Tartu Ülikooli Keemia Instituudi katsekoda Sotsiaalministeeriumi tellimusel. Töögrupis osalesid: Olev Saks (töögrupi

Διαβάστε περισσότερα

Sissejuhatus mehhatroonikasse MHK0120

Sissejuhatus mehhatroonikasse MHK0120 Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti

Διαβάστε περισσότερα

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui Ülesnded j lhendused utomtjuhtimisest Ülesnne. Süsteem oosneb hest jdmisi ühendtud erioodilisest lülist, mille jonstndid on 0,08 j 0,5 ning õimendustegurid stlt 0 j 50. Leid süsteemi summrne ülendefuntsioon.

Διαβάστε περισσότερα

Smith i diagramm. Peegeldustegur

Smith i diagramm. Peegeldustegur Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes

Διαβάστε περισσότερα

Sõiduki tehnonõuded ja varustus peavad vastama järgmistele nõuetele: Grupp 1 Varustus

Sõiduki tehnonõuded ja varustus peavad vastama järgmistele nõuetele: Grupp 1 Varustus Majandus- ja kommunikatsiooniministri 13.06.2011. a määruse nr 42 Mootorsõiduki ja selle haagise tehnonõuded ning nõuded varustusele lisa 1 NÕUDED ALATES 1. JAANUARIST 1997. A LIIKLUSREGISTRISSE KANTUD

Διαβάστε περισσότερα

Kehade soojendamisel või jahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks.

Kehade soojendamisel või jahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks. KOOLIFÜÜSIKA: SOOJUS 3 (kaugõppele) 6. FAASISIIRDED Kehade sooendamisel või ahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks. Sooendamisel vaaminev

Διαβάστε περισσότερα

Juhend. Kuupäev: Teema: Välisõhu ja õhuheidete mõõtmised. 1. Juhendi eesmärk

Juhend. Kuupäev: Teema: Välisõhu ja õhuheidete mõõtmised. 1. Juhendi eesmärk Juhend Kuupäev: 13.10.2015 Teema: Välisõhu ja õhuheidete mõõtmised 1. Juhendi eesmärk Käesolev juhend on mõeldud abivahendiks välisõhus sisalduvate saasteainete või saasteallikast väljuva saasteaine heite

Διαβάστε περισσότερα

6. Boilerid ja puhverpaagid

6. Boilerid ja puhverpaagid oilerid ja puhverpaagid. oilerid ja puhverpaagid lamcol on suur valik boilereid ja puhverpaake tarbevee ja keskkütte paigaldamiseks- mõlemad emaleeritud ja roostevaba terasest 1.4521 mudelid. Valmistatud

Διαβάστε περισσότερα

Välisseinte soojustamine. Krohvitavad ja ventileeritavad välisseinad

Välisseinte soojustamine. Krohvitavad ja ventileeritavad välisseinad Rockwool EESTI Välisseinte soojustamine Krohvitavad ja ventileeritavad välisseinad Krohvitavate välisseinte soojustamine Hoonete välisseinte soojustamiseks ja fassaadide uuendamiseks kasutatavatele kivivillatoodetele

Διαβάστε περισσότερα

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil. 8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,

Διαβάστε περισσότερα

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna

Διαβάστε περισσότερα

Eesti elektrienergia hinna analüüs ja ühesammuline prognoosimine ARIMA tüüpi mudelitega

Eesti elektrienergia hinna analüüs ja ühesammuline prognoosimine ARIMA tüüpi mudelitega TARTU ÜLIKOOL MATEMAATIKA INFORMAATIKATEADUSKOND Matemaatilise statistika instituut Finants- ja kindlustusmatemaatika eriala Kärt Päll Eesti elektrienergia hinna analüüs ja ühesammuline prognoosimine ARIMA

Διαβάστε περισσότερα

Väärtlahendus veevärgile ja küttele

Väärtlahendus veevärgile ja küttele Wavin Estonia Jaanuar 2006 Wavin TIGRIS ALUPEX.. SÜSTEEM VEEVÄRGILE, KÜTTELE JA PÕRANDAKÜTTELE Väärtlahendus veevärgile ja küttele Sisukord Sisukord Sissejuhatus Wavin Tigris Alupex s steem 3 Tigris Alupex

Διαβάστε περισσότερα

VENTILATSIOONI ALUSED FELIKS ANGELSTOK

VENTILATSIOONI ALUSED FELIKS ANGELSTOK VENTILATSIOONI ALUSED FELIKS ANGELSTOK Õppevahend on mõeldud kasutamiseks Sisekaitseakadeemia päästeteenistuse eriala rakenduskõrghariduse õppekava järgi õppivatele üliõpilastele samanimelise õppeaine

Διαβάστε περισσότερα

Pesumasin Πλυντήριο ρούχων Mosógép Veļas mašīna

Pesumasin Πλυντήριο ρούχων Mosógép Veļas mašīna ET Kasutusjuhend 2 EL Οδηγίες Χρήσης 17 HU Használati útmutató 34 LV Lietošanas instrukcija 50 Pesumasin Πλυντήριο ρούχων Mosógép Veļas mašīna ZWG 6120K Sisukord Ohutusinfo _ 2 Ohutusjuhised _ 3 Jäätmekäitlus

Διαβάστε περισσότερα

TECE logo. Tehniline teave

TECE logo. Tehniline teave TECE logo Tehniline teave Seisuga: 15. september 2008 Sisukord 1 Süsteemi kirjeldus 4 1.1 TECElogo PE-XC-komposiittoru kuni 90 C 4 1.2 TECElogo PE-RT-komposiittoru kuni 70 C 5 1.3 Liitmikud 5 1.4 Kasutuspiirid

Διαβάστε περισσότερα

Juhistikusüsteeme tähistatakse vastavate prantsuskeelsete sõnade esitähtedega: TN-süsteem TT-süsteem IT-süsteem

Juhistikusüsteeme tähistatakse vastavate prantsuskeelsete sõnade esitähtedega: TN-süsteem TT-süsteem IT-süsteem JUHISTIKUD JA JUHISTIKE KAITSE Madalpingevõrkude juhistiku süsteemid Madalpingelisi vahelduvvoolu juhistikusüsteeme eristatakse üksteisest selle järgi, kas juhistik on maandatud või mitte, ja kas juhistikuga

Διαβάστε περισσότερα

Kontrollijate kommentaarid a. piirkondliku matemaatikaolümpiaadi

Kontrollijate kommentaarid a. piirkondliku matemaatikaolümpiaadi Kontrollijate kommentaarid 2002. a. piirkondliku matemaatikaolümpiaadi tööde kohta Kokkuvõtteks Uuendusena oli tänavusel piirkondlikul olümpiaadil 10.-12. klassides senise 5 asemel 6 ülesannet, millest

Διαβάστε περισσότερα

Tuulekoormus hoonetele

Tuulekoormus hoonetele Tuulekoormus hoonetele Ivar Talvik 2009 TUULEKOORMUSE OLEMUSEST Tuule poolt avaldatav rõhk konstruktsioonist eemal: 2 ρ v q=, [Pa, N/m 2 2 ] kus on ρ on õhu tihedus ja v on õhu liikumise kiirus ρ = 1,

Διαβάστε περισσότερα

ISOVER i kaasaegsed soojustussüsteemid/lahendused Fibo plokkseintele

ISOVER i kaasaegsed soojustussüsteemid/lahendused Fibo plokkseintele ISOVER i kaasaegsed soojustussüsteemid/lahendused Fibo plokkseintele. 22.01.2013. Indrek Sniker ISOVER tehniline konsultant 52 08 898 indrek@isover.ee Energiatõhususarv ja lubatud maksimaaslsed väärtused

Διαβάστε περισσότερα

Funktsioonide õpetamisest põhikooli matemaatikakursuses

Funktsioonide õpetamisest põhikooli matemaatikakursuses Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,

Διαβάστε περισσότερα