Εφαρμοσμένα Μαθηματικά 3η εργαστηριακή άσκηση

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εφαρμοσμένα Μαθηματικά 3η εργαστηριακή άσκηση"

Transcript

1 ΤΕΙ ΑΘΗΝΑΣ ΤΜΗΜΑ ΝΑΥΠΗΓΙΚΗΣ Εφαρμοσμένα Μαθηματικά 3η εργαστηριακή άσκηση ΣΠΟΥΔΑΣΤΗΣ: ΧΑΤΖΗΓΕΩΡΓΙΟΥ ΑΝΤΩΝΗΣ Α.Μ Εξάμηνο ΠΤΧ ΚΑΘΗΓΗΤΗΣ: ΔΡ. ΜΠΡΑΤΣΟΣ ΑΘΑΝΑΣΙΟΣ

2 Περιεχόμενα 3.1 Πολυωνυμική παρεμβολή Πολυώνυμο παρεμβολής Lagrange Υπολογισμός του πολυωνύμου παρεμβολής με την βοήθεια του Matlab Πολυώνυμο παρεμβολής του Newton Υπολογισμός πολυωνύμου παρεμβολής του Newton με Matlab Απόδειξη του παρακάτω Μέθοδος ελαχίστων τετραγώνων Πολυώνυμο 1 ου βαθμού Πολυώνυμο 2 ου βαθμού Splines Κυβική Spline Φυσική κυβική Spline Συγκριτικά-συγκεντρωτικά αποτελέσματα

3 3.1 Πολυωνυμική παρεμβολή Το πρώτο ερώτημα της 3 η εργασίας είναι η εύρεση πολυωνύμου με την μέθοδο Lagrange και την μέθοδο Newton. Η εκφώνηση του πρώτου ερωτήματος αναφέρει το παρακάτω ολοκλήρωμα: Με θεωρητική τιμή και κόμβους στα σημεία Πολυώνυμο παρεμβολής Lagrange Ο γενικός τύπος υπολογισμός του πολυωνύμου παρεμβολής με την μέθοδο Lagrange φαίνεται παρακάτω: Για την εύρεση των χρησιμοποιείτε ο παρακάτω γενικός τύπος: Η εκφώνηση, όπως ανέφερα παραπάνω, δίνει κόμβους σε 4 σημεία άρα είναι 3 ου βαθμού Με βάση τον γενικό τύπο για τον υπολογισμό των έχουμε: 3

4 4

5 Μετά από αντικατάσταση Άρα, το πολυώνυμο με την μέθοδο Lagrange έχει την παρακάτω μορφή: Συνεπώς η λύση του ολοκληρώματος με την βοήθεια του πολυωνύμου είναι: 5

6 Το σφάλμα, η σύγκριση της τιμής που βρέθηκε με την θεωρητική τιμή είναι: Υπολογισμός του πολυωνύμου παρεμβολής με την βοήθεια του Matlab. Για την δημιουργία των προγραμμάτων όλης της εργασίας, συνεργάστηκα με τον συμφοιτητή Χιονάτο Μιχάλη, ο οποίος επίσης παρακολουθεί το μάθημα. Για να μπορέσουμε να παρουσιάσουμε όσο γίνεται αρτιότερα προγράμματα χρειάστηκε να συνεργαστούμε, διότι οι γνώσεις που είχε ο καθένας μόνος του για τον τέλειο προγραμματισμό των προγραμμάτων που θα ακολουθήσουν δεν επαρκούσαν. Πιστεύουμε πως το αποτέλεσμα, ήταν το καλύτερο δυνατό. Έτσι λοιπόν δημιουργήσαμε την παρακάτω Function: function [yi,pn]=lagrange(xs,ys,x) n=length(xs); if length(ys)~=n,error('x and y must have same size'); end yi=0; Pn='0'; for i=1:n l=ys(i); type=num2str(ys(i)); for j=1:n if (i~=j) l=l*(x-xs(j))/(xs(i)-xs(j)); type=[type,'*(x- ',num2str(xs(j)),')/(',num2str(xs(i)),'-',num2str(xs(j)),')']; end end yi=yi+l; Pn=[Pn,'+',type]; end Pn=sym(Pn); Pn=simplify(Pn); 6

7 Μέσα σε αυτή την Function έχει μπει μέσα όλη η θεωρία της μεθόδου και το αποτέλεσμα παρουσιάζεται στην παρακάτω εικόνα. Εικόνα 1 Αποτελέσματα Function υπολογισμού πολυωνύμου παρεμβολής Legrange Όπως είναι φανερό, το μόνο που χρειάζεται να κάνει ο χρήστης, είναι να εισάγει τις συντεταγμένες, και το πρόγραμμα δίνει κατευθείαν το πολυώνυμο. Χωρίς κόπο, χωρίς πράξεις. Το πολυώνυμο που φαίνεται στο Command Window είναι: Και το πολυώνυμο που βρήκα παραπάνω είναι: Πολύ μικρές διαφορές, οι οποίες οφείλονται σε αριθμητικά σφάλματα Πολυώνυμο παρεμβολής του Newton Η μέθοδος αυτή είναι γνωστή και ως μέθοδος των διαιρεμένων διαφορών. Η διαιρεμένη διαφορά k-τάξης στα σημεία ισούται με: Χρησιμοποιώντας τον παραπάνω γενικό τύπο, δημιουργήθηκε το παρακάτω πινακάκι. Η άσκηση αναφέρει πως θα χρησιμοποιηθούν οι ίδιοι κόμβοι με το πρώτο ερώτημα. 7

8 Συνεπώς, στην πρώτη στήλη βρίσκονται οι τιμές των x και στην δεύτερη στήλη οι τιμές των y όπου. Στις επόμενες στήλες, έγινε χρήση του παραπάνω γενικού τύπου και βγήκαν τα παρακάτω αποτελέσματα: x y 0 1 f(x 0,x 1 ) -0,28690 f(x 0,x 1,x 2 ) 0,3 0, ,72326 f(x 0,x 1,x 2,x 3 ) -0, , ,6 0, , , , Έχουμε 4 σημεία, άρα είναι 3 ου πολυωνύμου είναι: βαθμού. Συνεπώς ο γενικός τύπος υπολογισμού του Άρα το πολυώνυμο με την μέθοδο του Newton είναι: Σύγκριση αποτελέσματος με την θεωρητική τιμή: 8

9 Το σφάλμα σε αυτή την περίπτωση είναι Παρατηρούμε μια μικρή διαφορά στα αποτελέσματα των δυο μεθόδων. Η μέθοδος του Newton είναι σαφώς γρηγορότερη, με λιγότερες πράξεις, άρα και μικρότερο σφάλμα. Μέθοδος Αποτελέσματα Σφάλμα Lagrange Newton Υπολογισμός πολυωνύμου παρεμβολής του Newton με Matlab. Και εδώ όπως παραπάνω, δημιουργήθηκε πρόγραμμα, το οποίο το εμφανίζω αμέσως παρακάτω: function [yi, D, d, Pn] = newton_polyn(xi, y, x) k = length(xi); d=y'; for j=2:k for i=j:k d(i,j)= ( d(i-1,j-1)-d(i,j-1)) / (xi(i-j+1)-xi(i)); end end D = diag(d)'; Df(1,:) = ones(size(x)); 9

10 c(1,:) = repmat(d(1), size(x)); for j = 2 : k Df(j,:)=(x - xi(j-1)).* Df(j-1,:); c(j,:) = D(j).* Df(j,:); end yi=sum(c); n=length(d); Pn=['1+( )*(x-0)+( )*(x-0)*(x-0.3) *(x- 0)*(x-0.3)*(x-0.6)']; Pn=sym(Pn); Pn=simplify(Pn); Pn=inline(char(Pn)); Τα αποτελέσματα του προγράμματος φαίνονται παρακάτω: Εικόνα 2 Αποτελέσματα Function υπολογισμού πολυωνύμου παρεμβολής με την μέθοδο του Newton Πάρα πολύ μικρές διαφορές με την προηγούμενη μέθοδο. Σχεδόν πανομοιότυπα αποτελέσματα. Για καλύτερη σύγκριση παρακάτω φαίνονται και τα δυο πολυώνυμα: Μέθοδος Newton με το χέρι: Μέθοδος Newton με την βοήθεια του Matlab 10

11 3.1.3 Απόδειξη του παρακάτω. Τα σημεία ισαπέχουν. Δηλαδή, για κάθε Να δείξουμε, ότι Και Με βάση τον προς τα εμπρός τύπος διαιρεμένων διαφορών του Newton το πολυώνυμο γράφεται Όπως λέει η θεωρία, μπορούμε να εισάγουμε τον συμβολισμό Δ για τις προς τα εμπρός διαιρεμένες διαφορές, και έτσι λοιπόν: Η γενική μορφή είναι: Έτσι λοιπόν, ο παραπάνω τύπος μετατρέπεται: Παρατηρώντας όλα τα παραπάνω, συνειδητοποιούμε ότι στο συμβολισμό Δ είναι υψωμένη η δύναμη k. Έχοντας στο μυαλό μας ότι το Δ δεν είναι ένας έτοιμος αριθμός, αλλά μία διαφορά, εύκολα τελικά λέμε ότι δημιουργείται μία ταυτότητα. 11

12 Έτσι λοιπόν, για k=2 Και για k=3 3.2 Μέθοδος ελαχίστων τετραγώνων Πολυώνυμο 1 ου βαθμού Στην άσκηση αυτή πρέπει να υπολογίσω το πολυώνυμο 1 ου βαθμού με την μέθοδο των ελαχίστων τετραγώνων. Το πολυώνυμο είναι της μορφής: Είναι φανερό, πως όπως λέει και ο τύπος του πολυωνύμου, με την παραπάνω τύπο, θα δημιουργηθεί μια ευθεία. Το α και το b του παραπάνω τύπου, υπολογίζεται από τους παρακάτω τύπους: και Στην συγκεκριμένη άσκηση, δίδονται τα παρακάτω δεδομένα: x i y i

13 Με τα παραπάνω δεδομένα, δημιουργήθηκε ο παρακάτω πίνακας: i x i y i x i y i x i 2 1 0,500 1,235 0,6175 0, ,150 1,750 0,2625 0, ,250 2,020 0,505 0, ,400-1,550-0,62 0, ,550-2,345-1, , ,700 0,435 0,3045 0,490 Σ 2,550 1,545-0, ,288 Εικόνα 3 Πίνακας υπολογισμού πολυωνύμου 1 ου βαθμού με την μέθοδο των ελαχίστων τετραγώνων. Εφαρμόζοντας λοιπόν τους γενικούς τύπους για τον υπολογισμό του α και του b παίρνουμε τα παρακάτω αποτελέσματα: Έχοντας υπολογίσει όλα τα παραπάνω, το πολυώνυμο παίρνει την εξής μορφή: Η αμέσως επόμενη εικόνα, είναι η γραφική παράσταση του πολυωνύμου 1 ου βαθμού που μόλις υπολογίστηκε: 13

14 Πολυώνυμο 1ου βαθμού 3,000 2,000 1,000 0,000-1, ,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8-2,000-3,000 Σειρά1 Σειρά2 Εικόνα 4 Γραφική παράσταση πολυωνύμου 1ου βαθμού με μέθοδο ελαχίστων τετραγώνων. Το ολικό σφάλμα υπολογίζεται από τη σχέση: Για τον υπολογισμό του σφάλματος, δημιούργησα το παρακάτω πινακάκι: 0,500 1,750 1, ,312 0,150 2,020 1, ,011 0,250-1,550 0, ,915 0,400 1,235-0, ,300 0,550-2,345-0,2793-2,066 0,700 0,435-0, ,358 Σ 0,00000 Εικόνα 5 Υπολογισμός σφάλματος σε πολυώνυμο 1ου βαθμού. Με βάση τον παραπάνω τύπο, το σφάλμα σε αυτή την περίπτωση, είναι, όπως φαίνεται και στο πινακάκι: Πολυώνυμο 2 ου βαθμού Αντίστοιχα με την μέθοδο των ελαχίστων τετραγώνων που προσέγγιζε τα δεδομένα με πολυώνυμο 1 ου βαθμού, αυτή την φορά θα προσεγγιστούν με πολυώνυμο 2 ου βαθμού. Τα δεδομένα είναι τα ίδια και φαίνονται πάλι στον παρακάτω πίνακα. 14

15 x i y i Τα σημεία είναι n=6. Σύμφωνα με την συνθήκη της θεωρίας για τα πολυώνυμα m-βαθμού, ο μεγαλύτερος δυνατός βαθμός του πολυωνύμου μπορεί να είναι: Εμείς εδώ, θέλουν το πολυώνυμο να είναι 2 ου βαθμού, συνεπώς: Έχοντας τα παραπάνω σημεία, δημιουργείτε ο παρακάτω πίνακας: i 1 0,500 1,235 0,6175 0,250 0,125 0,063 0, ,150 1,750 0,2625 0,023 0,003 0,001 0, ,250 2,020 0,505 0,063 0,016 0,004 0, ,400-1,550-0,62 0,160 0,064 0,026-0, ,550-2,345-1, ,303 0,166 0,092-0, ,700 0,435 0,3045 0,490 0,343 0,240 0,21315 Σ 2,550 1,545-0, ,288 0,717 0,424-0,270 Εικόνα 6 Πίνακας υπολογισμού πολυώνυμου 2ου βαθμού με μέθοδο ελαχίστων τετραγώνων Το σύστημα για τον υπολογισμό του πολυωνύμου είναι: Σύμφωνα με το παραπάνω σύστημα, και τον πίνακα της εικόνας 6 έχουμε: 15

16 Το παραπάνω σύστημα είναι ένα γραμμικό σύστημα με 3 αγνώστους και 3 εξισώσεις. Για την γρήγορη επίλυσή του θα χρησιμοποιήσω το πρόγραμμα υπολογισμού γραμμικών συστημάτων του Gauss-Seidel που έχω ήδη δημιουργήσει. Το σύστημα, αναλύεται στους παρακάτω πίνακες: Τον πίνακα των συντελεστών των αγνώστων: Τον πίνακα των αποτελεσμάτων: Μετά από το τρέξιμο του προγράμματος, οι άγνωστοι έχουν την παρακάτω μορφή: Στην παρακάτω εικόνα φαίνονται τα αποτελέσματα που εμφανίζονται στο Command Window του Matlab. 16

17 Οι άγνωστοι συνεπώς είναι οι παρακάτω: α α α Άρα λοιπόν το πολυώνυμο είναι το εξής: Παρακάτω φαίνεται η γραφική παράσταση του πολυωνύμου 2 ου βαθμού που μόλις υπολογίστηκε. 17

18 3,000 2,000 Πολυώνυμο 2ου βαθμού y = 18,816x 2-19,911x + 4,6807 1,000 0,000 0,000-1,000 0,100 0,200 0,300 0,400 0,500 0,600 0,700 0,800-2,000-3,000 Σειρά2 Σειρά1 Εικόνα 7 Γραφική παράσταση πολυωνύμου 2ου βαθμού με μέθοδο ελαχίστων τετραγώνων Τέλος, στην παρακάτω εικόνα, απεικονίζονται στο ίδιο γράφημα, και τα δύο πολυώνυμα, του 1 ου και του 2 ου βαθμού. Πολυώνυμα 1ου και 2ου βαθμού 3,000 2,000 y = -4,2944x + 2,0826 1,000 0,000-1,0000,000 0,100 0,200 0,300 0,400 0,500 0,600 0,700 0,800-2,000 y = 18,816x 2-19,911x + 4,6807-3,000 Σειρά2 Σειρά3 Γραμμική (Σειρά3) Σειρά1 Πολυωνυμική (Σειρά1) Εικόνα 8 Γραφική παράσταση πολυωνύμου 1 ου και 2 ου βαθμού με μέθοδο ελαχίστων τετραγώνων 18

19 3.3 Splines Κυβική Spline Έχουμε το παρακάτω σύστημα. Και επίσης οι κόμβοι με τα σημεία: i) Οι συνοριακές συνθήκες παρεμβολής στα άκρα της ολοκληρωτέας συνάρτησης στα άκρα σημεία είναι: και Ο αριθμός των κόμβων είναι και ο βαθμός της Spline είναι 3. Επομένως επαληθεύεται η συνθήκη, και η Spline υπάρχει. Υπάρχουν 2 εσωτερικοί κόμβοι, οπότε το πολυώνυμο θα είναι της μορφής: 19

20 Δηλαδή: Στην συνέχεια παραγωγίζοντας τον βασικό τύπο: Οπότε, από την εφαρμογή των συνοριακών συνθηκών παρεμβολής στην παραπάνω σχέση προκύπτει: Δηλαδή: 20

21 Έτσι λοιπόν έχουμε 6 αγνώστους και 6 εξισώσεις. Άρα μπορούμε να λύσουμε το σύστημα εύκολα, χρησιμοποιώντας μάλιστα κάποιο από τα προγράμματα του Jacobi ή Gauss-Seidel που έχω δημιουργήσει στην προηγούμενη εργασία. Έχοντας τα παραπάνω, δημιουργείτε ο παρακάτω πίνακας συντελεστών των αγνώστων: Και ο πίνακας των αποτελεσμάτων: Στους παραπάνω πίνακες, έγινε μια μικρή αλλαγή στην σειρά που εμφανίζονται τα αποτελέσματα, δηλαδή το άλλαξε σειρά με το, και αυτό διότι στην διαγώνιο του πίνακα των συντελεστών των αγνώστων, υπάρχει ένα μηδενικό, και αυτό δημιουργούσε πρόβλημα στην επίλυση του πίνακα με την βοήθεια των προγραμμάτων του Jacobi ή Gauss-Seidel. Έτσι λοιπόν, μετά την αλλαγή στην σειρά, οι πίνακες πήραν την τελική τους μορφή, η οποία και φαίνεται παρακάτω: 21

22 Έχοντας λοιπόν τους παραπάνω πίνακες, εισήγαγα όλα τα δεδομένα στο πρόγραμμα υπολογισμού γραμμικών συστημάτων του Gauss-Seidel, και πήρα τα παρακάτω αποτελέσματα: Απ ότι φαίνεται και στο Command Window του Matlab, οι άγνωστοι που είχαμε παραπάνω, φαίνονται με τις λύσεις τους στον παρακάτω πίνακα:

23 Έτσι λοιπόν κάνοντας αντικατάσταση τα παραπάνω νούμερα στον αρχικό τύπο του πολυωνύμου, το πολυώνυμο παίρνει την παρακάτω μορφή: Οι παρενθέσεις αναλύονται: Έτσι λοιπόν, το πολυώνυμο παίρνει την παρακάτω τελική του μορφή: Έχοντας υπολογίσει τελικά το τελικό πολυώνυμο, μπορώ να υπολογίσω το αρχικό ολοκλήρωμα της εκφώνησης: 23

24 Η θεωρητική τιμή του ολοκληρώματος, όπως έχω αναφέρει παραπάνω είναι: Το σφάλμα είναι: Το σφάλμα είναι πολύ μεγάλο. Έκανα αρκετές επαληθεύσεις, άρα, το μόνο που μου μένει να υποθέσω είναι πως το σφάλμα αυτό οφείλεται στον μεγάλο όγκο των αριθμητικών πράξεων, και της συσσωρεύσεις των πολλών μικρών σφαλμάτων, σε ένα αρκετά μεγάλο Φυσική κυβική Spline Η Spline σε αυτή την περίπτωση είναι μια φυσική Spline, με κόμβους όπως η παραπάνω άσκηση. Δηλαδή: Από την θεωρία των Splines, το πολυώνυμο θα έχει την μορφή: Από την εφαρμογή των συνθηκών παρεμβολής προκύπτει ότι: 24

25 Άρα, συγκεντρωτικά: Επίσης, εκτός από τα παραπάνω, ισχύει: Και Άρα Έχουμε 6 αγνώστους και 6 εξισώσεις. Και εδώ σε αυτή την περίπτωση, όπως και στην παραπάνω άσκηση, χρησιμοποίησα το πρόγραμμα του Gauss-Seidel για επίλυση γραμμικών συστημάτων και εμφανίστηκαν τα παρακάτω: Ο πίνακας συντελεστών των αγνώστων: 25

26 Ο πίνακας των αποτελεσμάτων: Και τέλος ο πίνακας των πρώην αγνώστων: Ολόκληρη η εικόνα του Command Window μετά το τρέξιμο του προγράμματος φαίνεται στην παρακάτω εικόνα: 26

27 Τα αποτελέσματα των αγνώστων παρατίθενται συγκεντρωτικά στον παρακάτω πίνακα: Έτσι λοιπόν, με αντικατάσταση των αγνώστων με τα υπολογισθέντα νούμερα, το πολυώνυμο παίρνει την παρακάτω μορφή: 27

28 Έχοντας υπολογίσει τελικά το τελικό πολυώνυμο, μπορώ να υπολογίσω και σε αυτή την περίπτωση το αρχικό ολοκλήρωμα της εκφώνησης: Η θεωρητική τιμή του ολοκληρώματος, όπως έχω αναφέρει παραπάνω είναι: Το σφάλμα είναι: Τώρα εδώ σε αυτή την περίπτωση, το σφάλμα είναι μικρότερο από την παραπάνω άσκηση και αυτό οφείλεται πιθανών στις λιγότερες πράξεις που έγιναν. 28

29 Στην παρακάτω εικόνα απεικονίζεται η Spline με τα σημεία της εκφώνησης, σχεδιασμένη στο Matlab. 29

30 3.4 Συγκριτικά-συγκεντρωτικά αποτελέσματα 3.1 Πολυωνυμική παρεμβολή Πολυώνυμο με την μέθοδο του Lagrange: Lagrange με Matlab: Σφάλμα θεωρητικής και υπολογιστικής τιμής(lagrange): Πολυώνυμο με την μέθοδο του Newton: Newton με Matlab: Σφάλμα θεωρητικής και υπολογιστικής τιμής(newton): 3.2 Μέθοδος ελαχίστων τετραγώνων: Πολυώνυμο 1 ου βαθμού: Πολυώνυμου 2 ου βαθμού: 30

31 3.3 Splines Κυβική Spline Σφάλμα θεωρητικής και υπολογιστικής τιμής(κυβικής) Φυσική κυβική Spline Σφάλμα θεωρητικής και υπολογιστικής τιμής(φυσική κυβική) 31

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 63 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Προσεγγιστική λύση Γραμμικών Συστημάτων με την μέθοδο Gauss-Seidel. Δημιουργία κώδικα στο Matlab

Προσεγγιστική λύση Γραμμικών Συστημάτων με την μέθοδο Gauss-Seidel. Δημιουργία κώδικα στο Matlab Προσεγγιστική λύση Γραμμικών Συστημάτων με την μέθοδο Gauss-Seidel Δημιουργία κώδικα στο Matlab Χατζηγεωργίου Αντώνης Νοέμβριος 2013 Περιεχόμενα 1. Αρχικό πρόβλημα.... 3 2. Εφαρμογή της θεωρίας.... 4 3.

Διαβάστε περισσότερα

Πίνακας Περιεχομένων

Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πρόλογος... 13 Πρώτο Μέρος: Γενικές Έννοιες Κεφάλαιο 1 ο : Αλγοριθμική... 19 1.1 Περιγραφή Αλγορίθμου... 19 1.2. Παράσταση Αλγορίθμων... 21 1.2.1 Διαγράμματα Ροής... 22 1.2.2 Ψευδογλώσσα

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 10, 12 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Παρεμβολή 2. Παράσταση και υπολογισμός του πολυωνύμου παρεμβολής

Διαβάστε περισσότερα

Κεφάλαιο 6. Αριθμητική παρεμβολή

Κεφάλαιο 6. Αριθμητική παρεμβολή Κεφάλαιο 6. Αριθμητική παρεμβολή Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η μέθοδος της Αριθμητικής Παρεμβολής, δηλαδή η εύρεση της τιμής y k μιας συνάρτησης για ένα δεδομένο x k, όταν δεν γνωρίζουμε την

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11 Περιεχόμενα Πρόλογος... 9 Εισαγωγή στη δεύτερη έκδοση... 0 Εισαγωγή... Ε. Εισαγωγή στην έννοια της Αριθμητικής Ανάλυσης... Ε. Ταξινόμηση των θεμάτων που απασχολούν την αριθμητική ανάλυση.. Ε.3 Μορφές σφαλμάτων...

Διαβάστε περισσότερα

Εργαστήρια Αριθμητικής Ανάλυσης Ι. 9 ο Εργαστήριο. Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη

Εργαστήρια Αριθμητικής Ανάλυσης Ι. 9 ο Εργαστήριο. Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη Εργαστήρια Αριθμητικής Ανάλυσης Ι 9 ο Εργαστήριο Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη 2018 Απαλοιφή Gauss Με Μερική Οδήγηση Για την εύρεση του οδηγού στοιχείου στο k ο βήμα, αναζητούμε το μέγιστο

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 68 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Β ΜΕΡΟΣ: ΕΦΑΡΜΟΓΗ ΤΟΥ MATLAB ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

Β ΜΕΡΟΣ: ΕΦΑΡΜΟΓΗ ΤΟΥ MATLAB ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Β ΜΕΡΟΣ: ΕΦΑΡΜΟΓΗ ΤΟΥ MATLAB ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ 1. Εύρεση ρίζας Στο κεφάλαιο αυτό θα ασχοληθούμε με την εύρεση ρίζας μιας συνάρτησης ή αλλιώς με την ευρεση λύσης της εξίσωσης: Πριν αναφερθούμε στην

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] Συγγραφείς ΝΤΑΟΥΤΙΔΗΣ ΠΡΟΔΡΟΜΟΣ Πανεπιστήμιο Minnesota, USA ΜΑΣΤΡΟΓΕΩΡΓΟΠΟΥΛΟΣ ΣΠΥΡΟΣ Αριστοτέλειο

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ:

ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: Ιανουάριος-Φεβρουάριος 7 ΜΑΘΗΜΑ: Αριθµητική Ανάλυση ΕΞΑΜΗΝΟ: ο Ι ΑΣΚΩΝ: Ε Κοφίδης Όλα τα ερωτήµατα είναι ισοδύναµα Καλή επιτυχία! Θέµα ο α Χρησιµοποιείστε

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ, --6 Επιμέλεια λύσεων: Γιώργος Τάτσιος Άσκηση [] Επιλύστε με μία απευθείας μέθοδο διατηρώντας τρία σημαντικά ψηφία σε

Διαβάστε περισσότερα

Πίνακας Περιεχομένων

Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πρόλογος... 11 Κεφάλαιο 1o: Εισαγωγικά... 15 1.1 Με τι ασχολείται η Αριθμητική Ανάλυση... 15 1.2 Πηγές Σφαλμάτων... 17 1.2.1 Εισόδου... 17 1.2.2 Αριθμητικής Υπολογιστών... 18 1.2.3

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων.

Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων. Πανεπιστήµιο Κύπρου Το µάθηµα περιλαµβάνει Αριθµητικές και Υπολογιστικές Μεθόδους για Μηχανικούς, µε έµφαση στις µεθόδους: αριθµητικής ολοκλήρωσης/παραγώγισης, αριθµητικών πράξεων µητρώων, λύσεων µητρώων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ . ΔΙΑΒΑΖΩ ΤΗ ΘΕΩΡΙΑ ΑΠΟ ΤΟ ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ Σελ.303: Ορισμός (Αρχική συνάρτηση ή παράγουσα) Σελ.304: Απόδειξη του

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΚΕΦΑΛΑΙΟ 4 Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΠΑΡΑΓΟΥΣΕΣ ΟΡΙΣΜΟΣ Έστω συνάρτηση : R, όπου Δ διάστημα

Διαβάστε περισσότερα

Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης

Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης 8 Αόριστο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμός Έστω μια συνάρτηση f ορισμένη σε διάστημα Δ. Ονομάζουμε αρχική συνάρτηση ή παράγουσα της f στο Δ, μια συνάρτηση F παραγωγίσιμη

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. x x

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. x x ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, --, ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ Βαρούτης Ποια είναι η γενική μορφή των πολυωνύμων παρεμβολής των μεθόδων Newto και grge; Τα πολυώνυμα παρεμβολής

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #4: ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης. με το πολυώνυμο παρεμβολής Lagrange 2 ης τάξης

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #4: ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης. με το πολυώνυμο παρεμβολής Lagrange 2 ης τάξης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 6-7, 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης. Διατυπώστε τον 1 ο κανόνα ολοκλήρωσης Smpson b f ( xdx ) ( 1 3 f f f ) a, αντικαθιστώντας τη συνάρτηση f

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς.

Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 5 Προσέγγιση Συναρτήσεων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 5 1 / 55 Παρεµβολή Ας υποθέσουµε ότι δίνονται

Διαβάστε περισσότερα

f x και τέσσερα ζευγάρια σημείων

f x και τέσσερα ζευγάρια σημείων ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 014 015, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 1 11 014 Ημερομηνία παράδοσης εργασίας: 18 11 014 Επιμέλεια απαντήσεων:

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ)

ΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ) ΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ) A. Εύρεση Πεδίου Ορισμού Συναρτήσεων-Άρτια και περιττή Συνάρτηση Η ανάλυση των πεδίων ορισμού για τις διαφορετικές πραγματικές

Διαβάστε περισσότερα

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 8//06 έως τις 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Ιανουαρίου 07 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α Έστω η συνάρτηση ()

Διαβάστε περισσότερα

15 εκεµβρίου εκεµβρίου / 64

15 εκεµβρίου εκεµβρίου / 64 15 εκεµβρίου 016 15 εκεµβρίου 016 1 / 64 Αριθµητική Ολοκλήρωση Κλειστοί τύποι αριθµητικής ολοκλήρωσης Εστω I(f) = b µε f(x) C[a, b], τότε I(f) = F(b) F(a), όπου F(x) είναι το αόριστο ολοκλήρωµα της f(x).

Διαβάστε περισσότερα

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) Θέμα 1 Θέματα A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ο βαθμός του υπολοίπου της διαίρεσης P(x)

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

ΑΝΤΩΝΙΟΥ Ν. ΑΝΔΡΙΩΤΗ ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ (Β

ΑΝΤΩΝΙΟΥ Ν. ΑΝΔΡΙΩΤΗ ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ (Β ΑΝΤΩΝΙΟΥ Ν. ΑΝΔΡΙΩΤΗ ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ (Β έκδοση) Κεφάλαιο Πρώτο Αντωνίου Ν. Ανδριώτη, Υπολογιστική Φυσική (Β έκδοση) 3 ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ Βασικές πράξεις της αριθμητικής ανάλυσης Θα ξεκινήσουμε τα μαθήματα

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα.

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα. 69: Υπολογιστικές Μέθοδοι για Μηχανικούς Ολοκληρώματα ttp://ecourses.cemeng.ntu.gr/courses/computtionl_metods_or_engineers/ Αριθμητική Ολοκλήρωση συναρτήσεων Χρησιμοποιούμε αριθμητικές μεθόδους για τον

Διαβάστε περισσότερα

2.3 Πολυωνυμικές Εξισώσεις

2.3 Πολυωνυμικές Εξισώσεις . Πολυωνυμικές Εξισώσεις η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να λύσουμε μια πολυωνυμική εξίσωση.. Να λυθούν οι εξισώσεις: i. + + + 6 = 0 ii. 7 = iii. ( + ) + 7 = 0 iv. 8 + 56 = 0 i. + + + 6 = 0 (

Διαβάστε περισσότερα

Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου

Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου Aριθμητική Ανάλυση, 4 ο Εξάμηνο Θ. Σ. Παπαθεοδώρου Άνοιξη 2002 ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ 1. Τι σημαίνει f ; f 2 ; f 1 ; Να υπολογισθούν αυτές οι ποσότητες για f(x)=(x-α) 3 (β-x) 3, α

Διαβάστε περισσότερα

Ένα πρόβλημα στη μετεωρολογία

Ένα πρόβλημα στη μετεωρολογία ΜΑΣ 191.1 Εαρινό Εξάμηνο 2018 ΠΑΡΑΔΕΙΓΜΑ ΕΡΓΑΣΙΑΣ Ένα πρόβλημα στη μετεωρολογία Ένας μετεωρολόγος καταγράφει τις εξής θερμοκρασίες ανά δίωρα διαστήματα: Θερμ. ( o F) Ωρα 60 56 39 32 40 45 70 12 μεσάνυχτα

Διαβάστε περισσότερα

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει Μαθηματικά Γ Λυκείου Θέμα 4o Α Δίνεται η συνάρτηση h ( ), η οποία είναι συνεχής και γνησίως αύξουσα στο διάστημα [, ] β αβ Να δείξετε ότι h d hαβα Β Δίνεται η συνάρτηση f α ( ) ln i Να βρείτε το πεδίο

Διαβάστε περισσότερα

x,f με j 012,,,...,n x,x S x f S x είναι 3 ης τάξης οι δεύτερες παράγωγοί τους S x S x y y Μέθοδος κυβικών splines: Έστω ότι έχουμε τα δεδομένα

x,f με j 012,,,...,n x,x S x f S x είναι 3 ης τάξης οι δεύτερες παράγωγοί τους S x S x y y Μέθοδος κυβικών splines: Έστω ότι έχουμε τα δεδομένα Μέθοδος κυβικών sples: Έστω ότι έχουμε τα δεδομένα,f με,,,...,,. Για κάθε διάστημα βρίσκουμε ένα πολυώνυμο παρεμβολής 3 ης τάξης S,,..., έτσι ώστε να ισχύουν τα παρακάτω: Συνθήκη Α: S f, S f S Συνθήκη

Διαβάστε περισσότερα

Εισαγωγή στην Αριθμητική Ανάλυση

Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Ολοκλήρωση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 5 Μαΐου 010 ιδάσκοντες:τµήµα Α ( Αρτιοι)

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 37 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α Α Σ Κ Η Σ Ε Ι Σ 1. Να υπολογιστεί το ολοκλήρωμα: Ι ΑΠ. 36 2. Να δείξετε ότι: i) Για κάθε x (0, + ), 2x e x + e x -1 > 0 ii) Θεωρώ την συνάρτηση f(x) = 2x e x + e x - 1 iii. Αρκεί

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΔΕΥΤΕΡΟ - Διανύσματα - Πράξεις με πίνακες - Διαφορικός λογισμός (1D) ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο.: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ Β Έστω μια παραγωγίσιμη στο συνάρτηση, τέτοια ώστε για κάθε x

Διαβάστε περισσότερα

2.2 ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ

2.2 ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΟΡΙΣΜΟΙ Πότε μια συνάρτηση λέγεται : α Παραγωγίσιμη στο σύνολο Α β Παραγωγίσιμη στο ανοικτό διάστημα αβ γ Παραγωγίσιμη στο κλειστό διάστημα [ αβ ] Β δ Τι ονομάζουμε

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 5/9/07 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να δειχθεί ότι το πεδίο F( x, y) = y cos x + y,sin x

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Η έννοια του ορίου στο x ο Υπάρχουν συναρτήσεις οι τιμές των οποίων πλησιάζουν ένα πραγματικό αριθμό L, όταν η ανεξάρτητη μεταβλητή

Διαβάστε περισσότερα

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

y 1 (x) f(x) W (y 1, y 2 )(x) dx, Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς.

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. 569: Υπολογιστικές Μέθοδοι για Μηχανικούς Παρεμβολή ttp://ecourses.cemeng.ntu.gr/courses/computtionl_metods_or_engineers/ Παρεµβολή Παρεµβολή interpoltion είναι η διαδικασία µε την οποία βρίσκεται µία

Διαβάστε περισσότερα

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α. Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1. Σφάλματα

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α. Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1. Σφάλματα Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1 Σφάλματα 1.1 Εισαγωγή...17 1.2 Αρχικά Σφάλματα (σφάλματα μετρήσεων)...18 1.2.1 Απλές μετρήσεις...18 1.2.2 Σύνθετες μετρήσεις...19 1.2.3 Σημαντικά ψηφία και

Διαβάστε περισσότερα

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι Παραδείγματα ( ο σετ) Διανυσματικοί Χώροι Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με y, V και του πολλαπλασιασμού:

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφείο 102, Στρόβολος 2003, Λευκωσία Τηλέφωνο: 357 22378101 Φαξ: 357 22379122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα.

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα. 69: Υπολογιστικές Μέθοδοι για Μηχανικούς Ολοκληρώματα ttp://ecourses.cemeng.ntu.gr/courses/computtionl_metods_or_engineers/ Αριθμητική Ολοκλήρωση συναρτήσεων Χρησιμοποιούμε αριθμητικές μεθόδους για τον

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4-ΩΡΟ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4-ΩΡΟ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 6, Γραφ. 102, Στρόβολος 200, Λευκωσία Τηλ. 7-2278101 Φαξ: 7-2279122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ -ΩΡΟ

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 106 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία Πολυώνυμα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 106 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία Πολυώνυμα ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 106 Β' Λυκείου Ον/μο:. Γεν. Παιδείας Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία - 15-01-17 Πολυώνυμα Θέμα 1 ο : Α. Πότε μία συνάρτηση f λέγεται περιοδική με περίοδο T;

Διαβάστε περισσότερα

Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΣΣΑΛΟΝΙΚΗ 2004 Κάθε γνήσιο αντίτυπο υπογράφεται από τη συγγραφέα ΑΡΙΘΜΗΤΙΚΗ

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. 1. Να βρεθεί το πολυώνυμο παρεμβολής Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. 1. Να βρεθεί το πολυώνυμο παρεμβολής Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 7: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Να βρεθεί το πολυώνυμο παρεμβολής Lagrage για τα σημεία (, ), (, ) και (4, ) Λύση: Για τα σημεία x, x, x 4, y, y, y υπολογίζουμε x x x x () x x x x x x 4 L

Διαβάστε περισσότερα

Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις 2- διαστάσεις

Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις 2- διαστάσεις Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις - διαστάσεις Στις -διαστάσεις, η περιγραφή της εκδοχής hp της ΜΠΣ είναι αρκετά πολύπλοκη. Στο παρόν κεφάλαιο θα δούμε κάποια στοιχεία της, ξεκινώντας με

Διαβάστε περισσότερα

όπου Η μήτρα ή πίνακας του συστήματος

όπου Η μήτρα ή πίνακας του συστήματος Έστω το γραμμικό σύστημα: Το ίδιο σύστημα σε μορφή πινάκων: 3 5 7 3 2 y x y x B X y x 3 7 5 3 2 όπου Η μήτρα ή πίνακας του συστήματος B Η μήτρα ή πίνακας των σταθερών όρων X Η μήτρα ή πίνακας των αγνώστων

Διαβάστε περισσότερα

Φίλη μαθήτρια, φίλε μαθητή,

Φίλη μαθήτρια, φίλε μαθητή, Φίλη μαθήτρια φίλε μαθητή Η εργασία αυτή έγινε με σκοπό να συμβάλει στην κατανόηση στην εμπέδωση και στην εμβάθυνση των μαθηματικών εννοιών που αναπτύσσονται στην Άλγεβρα της Β Λυκείου. Η ύλη είναι γραμμένη

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος 9/8/6 Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Να υπολογισθούν τα ακρότατα της συνάρτησης: y y y y 3 (, ) 3 3 3 Πεδίο ορισμού της συνάρτησης είναι το Υπολογίζουμε

Διαβάστε περισσότερα

Κεφάλαιο 0: Εισαγωγή

Κεφάλαιο 0: Εισαγωγή Κεφάλαιο : Εισαγωγή Διαφορικές εξισώσεις Οι Μερικές Διαφορικές Εξισώσεις (ΜΔΕ) αλλά και οι Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ) εμφανίζονται παντού στις επιστήμες από τη μηχανική μέχρι τη βιολογία Τις περισσότερες

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΟΥΝΤΑΣ ΠΡΟΛΟΓΟΣ:

ΝΙΚΟΣ ΤΟΥΝΤΑΣ ΠΡΟΛΟΓΟΣ: ΠΡΟΛΟΓΟΣ: Συνεχίζοντας το ταξίδι στον κόσμο των μαθηματικών αναρτώ την 2 η μου άσκηση η οποία ξεκινάει και αυτή από πρόβλημα του σχολικού. Υπάρχουν ενδεικτικές λύσεις και κάποια σημαντικά σχόλια. Ελπίζω

Διαβάστε περισσότερα

1 Πολυωνυµική Παρεµβολή

1 Πολυωνυµική Παρεµβολή 1 Πολυωνυµική Παρεµβολή εδοµένων n + 1 ανά δύο διαφορετικών σηµείων x o, x 1, x,..., x n και των αντίστοιχων συναρτησιακών τιµών y o = f(x o ), y 1 = f(x 1 ), y = f(x ),...,y n (x n ) επιθυµούµε να προσεγγίσουµε

Διαβάστε περισσότερα

Θέματα Εξετάσεων Σεπτεμβρίου 2012:

Θέματα Εξετάσεων Σεπτεμβρίου 2012: ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΤΕΜΒΡΙΟΣ Θέματα Εξετάσεων Σεπτεμβρίου : ΘΕΜΑ (μονάδες ) Καμπύλη Bezier δημιουργείται από σημεία ελέγχου, που κατά σειρά είναι τα: (,), (?,?),

Διαβάστε περισσότερα

Ευθείες και παράγωγοι

Ευθείες και παράγωγοι Ευθείες και παράγωγοι Όταν κατασκευάζουμε τη γραφική παράσταση μιας συνάρτησης, μπορούμε συχνά να σχεδιάζουμε ευθείες, οι οποίες περνούν «ξυστά» από τη γραφική παράσταση. Με άλλα λόγια, δεν την τέμνουν,

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ

ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Έστω ότι θέλουμε να υπολογίσουμε το ολοκλήρωμα: I F() x dx Η βασική ιδέα της αριθμητικής ολοκλήρωσης είναι ότι ψάχνουμε να βρούμε ένα πολυώνυμο Ρ(x) το οποίο: α) είναι μια καλή προσέγγιση

Διαβάστε περισσότερα

β) Με τη βοήθεια του αποτελέσµατος της απαλοιφής υπολογίστε την ορίζουσα του πίνακα του συστήµατος. x x = x

β) Με τη βοήθεια του αποτελέσµατος της απαλοιφής υπολογίστε την ορίζουσα του πίνακα του συστήµατος. x x = x ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΟΥΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: Φεβρουάριος 5 ΜΑΘΗΜΑ: Αριθµητική Ανάλυση ΕΞΑΜΗΝΟ: ο Ι ΑΣΚΩΝ: Ε Κοφίδης Όλα τα ερωτήµατα είναι ισοδύναµα Καλή επιτυία! Θέµα ο α Χρησιµοποιείστε τη µέθοδο

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΤΜΗΜΑ ΔΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΑ: ) ΠΙΝΑΚΕΣ ) ΟΡΙΖΟΥΣΕΣ ) ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4) ΠΑΡΑΓΩΓΟΙ ΜΑΡΙΑ ΡΟΥΣΟΥΛΗ ΚΕΦΑΛΑΙΟ ΠΙΝΑΚEΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Πίνακας

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα

Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Μάθημα: Μαθηματικά Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών (1 ο, 2 ο, 3 ο Κεφάλαιο) 11-10-2017, 18-10-2017 Διδάσκουσα: Αριστούλα Κοντογιάννη ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Για ποιες τιµές του, αν υπάρχουν, ισχύει κάθε µία από τις ισότητες α. log = log( ) β. log = log γ. log 4 log = Να λυθεί η εξίσωση 4 log ( ) + = 0 6 α) Θα πρέπει > 0 και > 0,

Διαβάστε περισσότερα

2 ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

2 ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ 8 ΟΡΙΣΜΟΣ, 9 Πότε μια συνάρτηση λέγεται παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού της ; Απάντηση : Μια συνάρτηση λέμε ότι είναι παραγωγίσιμη σ ένα σημείο

Διαβάστε περισσότερα

10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ)

10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) 10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) Χειμερινό εξάμηνο 2018 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Διατύπωση εξισώσεων ΜΠΣ βάσει μετακινήσεων

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων Ακαδ. Έτος Τμήμα Μηχανικών Η/Υ & Πληροφορικής. Παρασκευάς Τσανταρλιώτης Α.Μ. 318

Πανεπιστήμιο Ιωαννίνων Ακαδ. Έτος Τμήμα Μηχανικών Η/Υ & Πληροφορικής. Παρασκευάς Τσανταρλιώτης Α.Μ. 318 Πανεπιστήμιο Ιωαννίνων Ακαδ. Έτος 2014-15 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Εαρινό Εξάμηνο Παρασκευάς Τσανταρλιώτης Α.Μ. 318 Μηχανική Μάθηση Εργασία 1 Άσκηση 1 a. Αρχικά πρέπει να βρούμε τις παραμέτρους

Διαβάστε περισσότερα