Простирање топлоте. - Зрачењем (радијацијом) - Струјањем (конвекцијом) - Провођењем (кондукцијом)
|
|
- Απόστολος Αλεξιάδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Простирање топлоте
2 Простирање топлоте Према другом закону термодинамике, топлота се креће од топлијег тела ка хладнијем телу, односно од више према нижој температури. На тај начин је одређен смер простирања топлоте. Преношење топлоте се може одвијати на 3 начина: - Зрачењем (радијацијом) - Струјањем (конвекцијом) - Провођењем (кондукцијом)
3
4 Преношење топлоте зрачењем (радијацијом) Извор зрачења: Сунце или било које тело чија је температура виша од температуре околине. Начин преношења: Топлота извора зрачења преноси се тако што се унутрашња топлотна енергија трансформише у енергију електромагнетског зрачења, пропорционално температури тела. Ово зрачење се назива инфрацрвено зрачење. Када електромагнетни талас стигне до чврстог тела понаша се као светлосни талас: делимично се апсорбује, а делимично рефлектује - одбија).
5 Преношење топлоте зрачењем (радијацијом) Qzračenja = Qreflektovano + Qapsorbovano Однос одбијене и упијене топлоте зависи: - од природе зрачења (таласне дужине) и - од природе површине материјала. При томе значајну улогу има боја подлоге: - тамна боја - загревање објеката, - бела боја - смањење загревања код равних кровова.
6 Преношење топлоте зрачењем (радијацијом) Количине одбијене и упијене топлотне енергије дефинишу се коефицијентима: - рефлексије α R = 100 Qref / Qzra - апсорбције α А = 100 Qaps / Qzra
7 Преношење топлоте струјањем (конвекцијом) Овај начин преношења топлоте је карактеристичан за флуиде (гасове и течности). Начин преношења: Остварује се кретањем молекула, при чему молекули предају своју топлотну енергију другим молекулима.
8 Преношење топлоте струјањем (конвекцијом) Уколико је неки флуид у контакту са чврстим телом и постоји разлика у температури површине чврстог тела и флуида, доћи ће до преношења топлотне енергије са материје која има ВИШУ температуру на ону са НИЖОМ температуром. При томе, топлотна енергија треба да савлада ОТПОР КОЈИ ПРЕЛАЗ ТОПЛОТЕ пружа контактна површина између две средине. Величина којом се каректерише прелаз топлоте са чврстог на флуидни медијум и обратно, назива се КОЕФИЦИЈЕНТ ПРЕЛАЗА ТОПЛОТЕ.
9 Преношење топлоте струјањем (конвекцијом) Топлотна изолација било које преграде дефинише се коефицијентом пролаза топлоте U(k) (W/m K) pri čemu je: R = otpor prolazu toplote kroz pregradu sa jednim međuprostorom.
10 Преношење топлоте струјањем (конвекцијом) Дефиниција: Коефицијент прелаза топлоте је количина топлоте која се у јединици времена (1 sec) размени између јединичне површине чврстог тела и флуида при температурној разлици од 10C (K). Означава се са h. У грађевинским конструкцијама се разликују: hi - за унутрашњу страну објекта и he - за спољашњу страну објекта.
11 Преношење топлоте провођењем (кондукцијом) Топлота се преноси провођењем или кондукцијом кроз чврста тела. Овај процес у суштини представља размену кинетичке енергије и може се одвијати на два начина: Са молекула на молекул, осциловањем око равнотежног положаја (карактеристичан за термоизолационе материјале) и Преко слободних електрона који се сударају са атомима и јонима и предају им своју топлотну енергију (карактеристичан је за метале).
12 Преношење топлоте провођењем (кондукцијом
13 Изотермске површине У неком телу (средини) могуће је издвојити слојеве једнаки температура. Површине које граниче те слојеве називају се ИЗОТЕРМСКЕ ПОВРШИНЕ. Правила: - Температура на изот. површинама је константна и мења се само у правцу пресека кроз површине. - Две изотремске површине се не могу сећи, јер је физички немогуће да у истој тачки простора постоје истовремено две различите температуре. - Највећа промена температура је у правцу нормале на изотермске површине.
14 Начини преношења топлоте Питање кондукције (провођења) и конвекције (струјања) топлоте изискује објашњење одређених појмова: топлотни флукс F (Φ) количина топлоте у јединици времена, односно, брзина преношења топлотне енергије густина топлотног флукса /специфични топлотни флукс q(φa) - топлотни флукс по јединици површине, односно, топлотна енергија која у јединици времена прође кроз јединичну површину W s J t Q F m W m s J A t Q q
15 Проток топлотне енергије кроз конструкцију
16 Проток топлотне енергије кроз конструкцију у начелу, контрола протока топлотне енергије кроз неку конструкцију се заснива на 3 карактеристична механизма деловања: рефлексија топлоте (карактеристика метала, односно, материјала код којих преовлађује зрачење као начин преношења топлоте принцип се везано за правилно постављање металних фолија у склопу конструкција) отпор пролазу топлоте (принцип деловања термоизолационих материјала) складиштење (акумулирање) топлоте (карактеристика масивних конструкција) значајно за адекватну топлотну стабилност конструкције
17 Проток топлотне енергије кроз конструкцију за архитектонске објекте од значаја питање: преношења топлоте са неког флуида (течност или гас) на чврсто тело објекат и обрнуто услед разлике у температурама (прелазконвекција), као и преношења топлоте кроз саму конструкцију (пролаз кондукција) одређује се на основу отпора R: 1. прелазу топлоте са конструкције на ваздух. пролазу топлоте кроз конструкције
18 Прелаз топлоте Параметри дефинисани стандардом: коефицијент прелаза топлоте h (α) (са унутрашње и са спољашње стране конструкције) Q q W h T At t m K
19 Прелаз топлоте Параметри дефинисани стандардом: отпор граничне површине R 1 h m W K отпор прелазу топлоте, унутрашњи Rsi отпор прелазу топлоте, спољашњи Rse
20 Укупни отпор пролазу топлоте укупни отпор пролазу топлоте: R u R si R R se коефицијент пролаза топлоте U (k): (предмет стандарда) U R si 1 R R se W m K
21 Провођење топлоте Способност материјала да кроз своју масу пренесе топлоту као последицу разлике у температури између његових двеју површина представља његову проводљивост или проводност λ коефицијент топлотне проводљивости λ јесте својство самог материјала q d T m W K
22 Провођење топлоте коефицијент топлотне пропустљивости λ својство конструкције (грађ. елемента)
23 Провођење топлоте 4 основна типа конструкција: хомогена конструкција хетерогена конструкција из више хомогених слојева конструкција једноставне хетерогености конструкција сложене хетерогености
24 Провођење топлоте Хомогене (једнослојне конструкције) Хетерогене из више хомогених слојева(вишеслојне конструкције) K m W d K m W d d d n n i n i
25 Провођење топлоте отпор проласку топлоте који пружа конструкција : R n i 1 1 d 1 1 d... d n n m W K
26 Провођење топлоте K m W A U A U i i n n n A A A A U A U A U U
27 Хвала на пажњи!!!
Количина топлоте и топлотна равнотежа
Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина
Закони термодинамике
Закони термодинамике Први закон термодинамике Први закон термодинамике каже да додавање енергије систему може бити утрошено на: Вршење рада Повећање унутрашње енергије Први закон термодинамике је заправо
Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала
Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја
ДИЈАГРАМИ И ТАБЛИЦЕ ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ОДСЕК ЗА ПРОИЗВОДНО МАШИНСТВО ПРОЈЕКТОВАЊЕ ТЕХНОЛОГИЈЕ ТЕРМИЧКЕ ОБРАДЕ. Приредио: Александар Милетић
- ПТО ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ОДСЕК ЗА ПРОИЗВОДНО МАШИНСТВО ПРОЈЕКТОВАЊЕ ТЕХНОЛОГИЈЕ ТЕРМИЧКЕ ОБРАДЕ ДИЈАГРАМИ И ТАБЛИЦЕ Приредио: Александар Милетић 1 С т р а н а - ПТО Садржај Пренос топлоте... 3 Цементација...15
УСЛОВИ ГРАЂЕВИНСКЕ ФИЗИКЕ
Тематско поглавље 5.2 УСЛОВИ ГРАЂЕВИНСКЕ ФИЗИКЕ Проф. др Велиборка Богдановић Грађевинско-архитектонски факултет Универзитета у Нишу УСЛОВИ ГРАЂЕВИНСКЕ ФИЗИКЕ Пример прорачуна топлотно-заштитних својстава
УСЛОВИ ГРАЂЕВИНСКЕ ФИЗИКЕ
ОБУКА ЗА ПОЛАГАЊЕ СТРУЧНОГ ИСПИТА ЗА ОБЛАСТ ЕНЕРГЕТСКЕ ЕФИКАСНОСТИ ЗГРАДА УСЛОВИ ГРАЂЕВИНСКЕ ФИЗИКЕ Проф. др Властимир РАДОЊАНИН, дипл.инж.грађ. (radonv@uns.ac.rs) Проф. др Мирјана МАЛЕШЕВ, дипл.инж.грађ.
Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:
Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом
У к у п н о :
ГОДИШЊИ (ГЛОБАЛНИ) ПЛАН РАДА НАСТАВНИКА Наставни предмет: ФИЗИКА Разред: Седми Ред.број Н А С Т А В Н А Т Е М А / О Б Л А С Т Број часова по теми Број часова за остале обраду типове часова 1. КРЕТАЊЕ И
Теорија електричних кола
др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,
ФИЗИКА. Термодинамика
ФИЗИКА Понедељак, 8. децембар 2008 Термодинамика Ентропија Промена агрегатних стања Преношење топлоте Термодинамика Део физике који проучава појаве везане за претварање топлотне у друге врсте енергије
4. Зрачење у атмосфери и физиолошки процеси у биљкама (2)
4.1 4. Зрачење у атмосфери и физиолошки процеси у биљкама (2) 4.1 Основни појмови o зрачењу 4.2 Начини преношења енергије у природи Провођење (кондукција) пренос топлоте кроз чврста тела Конвекција (мешање)
Температура. везана за топло и хладно ово није једнозначно у субјективном смислу
ФИЗИКА 2010 Понедељак, 15. новембар и 22. новембар 2010 Температура Топлотно ширење чврстих тела и течности Закони који важе за идеални гас Кинетичка теорија Фазне трансформације Влажност, испаравање,
налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm
1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:
УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ. Томсонов ефекат. семинарски рад. Нови Сад, 2010.
УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Томсонов ефекат семинарски рад професор: Светлана Р. Лукић студент: Драгиња Прокић87/06 Нови Сад, 00. Термоелектричне
1.2. Сличност троуглова
математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)
Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.
Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу
Флукс, електрична енергија, електрични потенцијал
Флукс, електрична енергија, електрични потенцијал 1 Електрични флукс Ако линије поља пролазе кроз површину A која је нормална на њих Производ EA је флукс, Φ Генерално: Φ E = E A cos θ 2 Електрични флукс,
L кплп (Калем у кплу прпстпперипдичне струје)
L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве
Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.
VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне
b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:
Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног
Ротационо симетрична деформација средње површи ротационе љуске
Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну
ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда
ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.
Енергетски трансформатори рачунске вежбе
16. Трофазни трансформатор снаге S n = 400 kva има временску константу загревања T = 4 h, средњи пораст температуре после једночасовног рада са номиналним оптерећењем Â " =14 и максимални степен искоришћења
10.3. Запремина праве купе
0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка
КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.
КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг
6.5 Површина круга и његових делова
7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност
Стања материје. Чврсто Течно Гас Плазма
Флуиди 1 Стања материје Чврсто Течно Гас Плазма 2 Чврсто тело Има дефинисану запремину Има дефинисан облик Молекули се налазе на специфичним локацијама интерагују електричним силама Вибрирају око положаја
ФИЗИКА Веза протока и брзине струјања. Једначина континуитета. Проток запремински, масени,... Си јединица: кубни метар у секунди
ФИЗИКА 2008. Понедељак, 17. новембар 2008. године Статика флуида Густина и притисак флуида Промена притиска са дубином флуида Паскалов принцип Калибрација, апсолутни притисак и мерење притиска Архимедов
г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве
в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу
ФИЗИКА Веза протока и брзине струјања. Проток запремински, масени,... јединица: кубни метар у секунди
ФИЗИКА 2011. Понедељак, 14. новембар 2011. године Статика флуида Густина и притисак флуида Промена притиска са дубином флуида Паскалов принцип Калибрација, апсолутни притисак и мерење притиска Архимедов
Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА. Влажен воздух 3/22/2014
Проф. д-р Ѓорѓи Тромбев ГРАДЕЖНА ФИЗИКА Влажен воздух 1 1 Влажен воздух Влажен воздух смеша од сув воздух и водена пареа Водената пареа во влажниот воздух е претежно во прегреана состојба идеален гас.
Анализа Петријевих мрежа
Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,
МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ. Осиловање
МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ Понедељак, 29. децембар, 2010 Хуков закон Период и фреквенција осциловања Просто хармонијско кретање Просто клатно Енергија простог хармонијског осцилатора Веза са униформним кретањем
МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА. ttl. тракасти транспортери, капацитет - учинак, главни отпори кретања. Машине непрекидног транспорта. предавање 2.
МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА предавање.3 тракасти транспортери, капацитет учинак, главни отпори кретања Капацитет Капацитет представља полазни параметар при прорачуну транспортера задаје се пројектним
предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА
Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем
Разлика потенцијала није исто што и потенцијална енергија. V = V B V A = PE / q
Разлика потенцијала Разлика потенцијала између тачака A и B се дефинише као промена потенцијалне енергије (крајња минус почетна вредност) када се наелектрисање q помера из тачке A утачку B подељена са
Топлотна проводљивост
УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Топлотна проводљивост СЕМИНАРСКИ РАД Ментор: Студент: Ђорђе Вучковић др Светлана Лукић Број индекса : 6/06 Нови
6.2. Симетрала дужи. Примена
6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права
ФИЗИКА Веза протока и брзине струјања. Проток запремински, масени,... Си јединица: кубни метар у секунди
ФИЗИКА 2009. Понедељак, 9. новембар 2009. године Статика флуида Густина и притисак флуида Промена притиска са дубином флуида Паскалов принцип Калибрација, апсолутни притисак и мерење притиска Архимедов
Делове текста између маркера ТЕМПЕРАТУРА КАО ПАРАМЕАР КОЈИ ОДРЕЂУЈЕ НОМИНАЛНУ СНАГУ
Делове текста између маркера и прочитати информативно (из тог дела градива се неће постављати питања на испиту) 5. ЗАГРЕВАЊЕ ТРАНСФОРМАТОРА 5. 1. ТЕМПЕРАТУРА КАО ПАРАМЕАР КОЈИ ОДРЕЂУЈЕ НОМИНАЛНУ СНАГУ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
C кплп (Кпндензатпр у кплу прпстпперипдичне струје)
C кплп (Кпндензатпр у кплу прпстпперипдичне струје) i u За кплп са слике на крајевима кпндензатпра ппзнате капацитивнпсти C претппставићемп да делује ппзнат прпстпперипдичан наппн: u=u m sin(ωt + ϴ). Услед
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ
Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба
Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање ОРГАНИЗАЦИЈА ПАРКИРАЛИШТА 1. вежба Место за паркирање (паркинг место) Део простора намењен, технички опремљен и уређен за паркирање једног
ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце
РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез
Практикум из елемената електроенергетских система
Практикум из елемената електроенергетских система Вежба: Промена преносног капацитета вода у ветровитим регионима 1. Теоријски увод Повећање броја становника као и повећан привредни раст сваке земље праћен
Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10
Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење
ФИЗИКА Час број 11 Понедељак, 8. децембар, Aвогадров закон. Увод. Авогадров закон. Гасовито агрегатно стање
ФИЗИКА Час број Понедељак, 8. децембар, 008 Једначина стања идеалног и реалног гаса Притисак и температура гаса Молекуларно кинетичка теорија идеалног гаса Болцманова и Максвелова расподела Средњи слободни
Пешачки мостови. Метални мостови 1
Пешачки мостови Метални мостови 1 Особености пешачких мостова Мање оптерећење него код друмских мостова; Осетљиви су на вибрације. Неопходна је контрола SLS! Посебна динамичка анализа се захтева када је:
3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни
ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује
Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:
Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине
Предмет: Задатак 4: Слика 1.0
Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +
Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић
Скупови (наставак) Релације Професор : Рака Јовановић Асиситент : Јелена Јовановић Дефиниција дуалне скуповне формуле За скуповне формулу f, која се састоји из једног или више скуповних симбола и њихових
Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.
Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. = 0.2 dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2.
Примена првог извода функције
Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први
Осцилације система са једним степеном слободе кретања
03-ec-18 Осцилације система са једним степеном слободе кретања Опруга Принудна сила F(t) Вискозни пригушивач ( дампер ) 1 Принудна (пертурбациона) сила опруга Реституциона сила (сила еластичног отпора)
Зрачење - спектри. Непрекидни спектри Непрекидан спектар се може добити нпр у видљивом делу користећи било које тело које може да зрачи као црно тело
Зрачење - спектри Чврста тела, течности и гасови могу да емитују ЕМ зрачење Спектар непрекидни као црно тело емисиони апсорпциони 1 Непрекидни спектри Непрекидан спектар се може добити нпр у видљивом делу
Први колоквијум (први термин) из предмета Термички процеси у електроенергетици
ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У БЕОГРАДУ Катедра за енергетске претвараче и погоне Први колоквијум (први термин) из предмета Термички процеси у електроенергетици Колоквијум траје максимално 5 минута
Апсорпција γ зрачења
Универзитет у Крагујевцу Природно математички факултет Мр Владимир Марковић Предмет: Нуклеарна физика Експериментална вежба: Апсорпција γ зрачења Када сноп γ зрачења пролази кроз материју, његов интензитет
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,
РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45
Зрачење. Енергија Сунца симбол. Енергија Сунца. Енергија потиче од фузије водоника у хелијум Водоник је јонизован
Зрачење 1 Енергија Сунца симбол Састоји се од вреле плазме Полупречник 6,955 x 10 5 km (109 полупречника Земље Маса 2 x 10 30 kg = 330 000 маса Земље и чини 99,86% масе Сунчевог система ¾ масе је водоник,
Механика флуида Б - уводни поjмови
Механика флуида Б - уводни поjмови Александар Ћоћић Машински факултет Београд Александар Ћоћић (MФ Београд) MФБ-01 1 / 11 Информациjе o предмету, професору, итд. Александар Ћоћић, доцент email: acocic@mas.bg.ac.rs
РАДИЈАЦИОНА ФИЗИКА Рачунски задаци из Радијационе физике
Природно математички факултет Владимир Марковић РАДИЈАЦИОНА ФИЗИКА Рачунски задаци из Радијационе физике Боров модел атома Боров модел атома представља атом са малим позитивно наелектрисаним језгром око
МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА
Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два
6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре
0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских
ПРАВИЛНИК О МИНИМАЛНИМ ЗАХТЈЕВИМА ЗА ЕНЕРГЕТСКЕ КАРАКТЕРИСТИКЕ ЗГРАДА
РЕПУБЛИКА СРПСКА МИНИСТАРСТВО ЗА ПРОСТОРНО УРЕЂЕЊЕ, ГРАЂЕВИНАРСТВО И ЕКОЛОГИЈУ ПРАВИЛНИК О МИНИМАЛНИМ ЗАХТЈЕВИМА ЗА ЕНЕРГЕТСКЕ КАРАКТЕРИСТИКЕ ЗГРАДА Бања Лука, април 2015. године На основу члана 93. став
7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде
математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА
ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У БЕОГРАДУ
ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У БЕОГРАДУ Катедра за енергетске претвараче и погоне Други колоквијум први термин из предмета Термички процеси у електроенергетици Колоквијум траје максимално 50 минута
ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА
ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a
СКРИПТА ЗА ТРЕЋИ КОЛОКВИЈУМ ИЗ ОПШТЕГ КУРСА ФИЗИЧКЕ ХЕМИЈЕ II ПОЈАВЕ НА ГРАНИЦИ ФАЗА, КОЛОИДИ И МАКРОМОЛЕКУЛИ
СКРИПТА ЗА ТРЕЋИ КОЛОКВИЈУМ ИЗ ОПШТЕГ КУРСА ФИЗИЧКЕ ХЕМИЈЕ II ПОЈАВЕ НА ГРАНИЦИ ФАЗА, КОЛОИДИ И МАКРОМОЛЕКУЛИ 008/009 Програм III колоквијума Површински напон и површинска енергија. Угао додира *. Кохезиони
Ветар. Зашто ветар дува? Настанак ветра. гравитационе) тело остаје у стању мировања или раномерног праволинијског сила. 1. Њутнов закон: Свако
Ветар Зашто ветар дува? 1. Њутнов закон: Свако тело остаје у стању мировања или раномерног праволинијског кретања док год на њена не делује нека сила. 2. Њутнов закон: 3. Њутнов закон: При При интеракцији
Слика 1. Слика 1.1 Слика 1.2 Слика 1.3. Количина електрицитета која се налази на електродама кондензатора капацитивности C 3 је:
Три кондензатора познатих капацитивности 6 nf nf и nf везани су као на слици и прикључени на напон U Ако је позната количина наелектрисања на кондензатору капацитивности одредити: а) Напон на који је прикључена
Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.
СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању
Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.
Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ
Земљиште. Увод. Особине земљишта
1 Земљиште Увод Дискутовали смо како атмосфера интерагује са сунчевим зрачењем Интеракција са површином је напоменута кроз албедо, испаравање воде, зрачење земље. Површина земље није разматрана посебно
ФИЗИКА Појам флуида. Агрегатна стања. ваздух, вода, крв,... гасови и течности три агрегатна стања материје
ФИЗИКА 2010. Понедељак, 1. новембар 2010. године Статика флуида Густина и притисак флуида Промена притиска са дубином флуида Паскалов принцип Калибрација, апсолутни притисак и мерење притиска Архимедов
Слика 1. Слика 1.2 Слика 1.1
За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика
& 2. Брзина. (слика 3). Током кратког временског интервала Δt тачка пређе пут Δs и изврши елементарни (бесконачно мали) померај Δ r
&. Брзина Да би се окарактерисало кретање материјалне тачке уводи се векторска величина брзина, коју одређује како интензитет кретања тако и његов правац и смер у датом моменту времена. Претпоставимо да
2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА
. колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност
ИСТРАЖИВАЊЕ ТЕРМИЧКИХ И ХИДРАУЛИЧКИХ УСЛОВА НА ГРЕЈНОЈ ПОВРШИНИ ПРИ КЉУЧАЊУ И КРИЗИ РАЗМЕНЕ ТОПЛОТЕ
УНИВЕРЗИТЕТ У НИШУ МАШИНСКИ ФАКУЛТЕТ Андријана Д. Стојановић ИСТРАЖИВАЊЕ ТЕРМИЧКИХ И ХИДРАУЛИЧКИХ УСЛОВА НА ГРЕЈНОЈ ПОВРШИНИ ПРИ КЉУЧАЊУ И КРИЗИ РАЗМЕНЕ ТОПЛОТЕ ДОКТОРСКА ДИСЕРТАЦИЈА Ниш, 2017. UNIVERSITY
Теорија електричних кола
Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,
4. ГУБИЦИ СНАГЕ, СТЕПЕН ИСКОРИШЋЕЊА И ПРОМЕНА НАПОНА
Делове текста између маркера и прочитати информативно (из тог дела градива се неће постављати питања на испиту) 4. ГУБИЦИ СНАГЕ, СТЕПЕН ИСКОРИШЋЕЊА И ПРОМЕНА НАПОНА 4. 1. ГУБИЦИ У ГВОЖЂУ О губицима у гвожђу
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ
7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,
Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)
ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити
ТРОУГАО. права p садржи теме C и сече страницу. . Одредити највећи угао троугла ако је ABC
ТРОУГАО 1. У троуглу АВС израчунати оштар угао између: а)симетрале углова код А и В ако је угао код А 84 а код С 43 б)симетрале углова код А и В ако је угао код С 40 в)између симетрале угла код А и висине
КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН год.
КВАЛИФИКАЦИОНИ ИСПИТ ИЗ ФИЗИКЕ ЗА УПИС НА САОБРАЋАЈНИ ФАКУЛТЕТ ЈУН 7. год. Тест има задатака. Време за рад је 8 минута. Задаци са редним бројем -6 вреде по поена задаци 7- вреде по 5 поена задаци 5- вреде
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ
СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни
Тематско поглавље 6 ГРАЂЕВИНСКИ МАТЕРИЈАЛИ И СКЛОПОВИ
ОБУКА ЗА ПОЛАГАЊЕ СТРУЧНОГ ИСПИТА ЗА ОБЛАСТ ЕНЕРГЕТСКЕ ЕФИКАСНОСТИ ЗГРАДА Тематско поглавље 6 ГРАЂЕВИНСКИ МАТЕРИЈАЛИ И СКЛОПОВИ АРХИТЕКТОНСКИ СКЛОПОВИ: СТРУКТУРЕ ПОЗИЦИЈА ТЕРМИЧКОГ ОМОТАЧА У ФУНКЦИЈИ ОСТВАРИВАЊА
ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ
Хидросфера. Водени омотач (запремина воде km 3 )
Хидросфера Хидросфера Водени омотач (запремина воде 1 284 000 000 km 3 ) око 15 km навише у атмосферу око 1km наниже у литосферу 97%-океани 2.25% - поларне капе и глечери 0.75% - земљиште, језера, реке
УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ФАКУЛТЕТ МЕДИЦИНСКИХ НАУКА
УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ФАКУЛТЕТ МЕДИЦИНСКИХ НАУКА ИСПИТИВАЊЕ УТИЦАЈА АКЛИМАТИЗАЦИЈЕ НА ПРОМЕНУ КОНЦЕНТРАЦИЈЕ СТРЕСНИХ ХОРМОНА И ЧИНИЛАЦА ХЕМОСТАЗЕ У СЕРУМУ ВОЈНИКА ИЗЛОЖЕНИХ ТОПЛОТНОМ СТРЕСУ У ФИЗИЧКОМ
ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ПРЕДМЕТА ОСНОВИ МЕХАНИКЕ ФЛУИДА
ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ПРЕДМЕТА ОСНОВИ МЕХАНИКЕ ФЛУИДА Студент: Број индекса: Оверио: Нови Сад 014 1. СТРУЈАЊЕ ТЕЧНОСТИ 1.1 Опис лабораторијског постројења Лабораторијска вежба урадиће се на лабораторијском
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО
Теорија линеарних антена
Теорија линеарних антена Антене су уређаји који претварају електричну енергију у електромагнетну (предајне антене) и обрнуто (пријемне антене) Према фреквентном опсегу, антене се деле на каналске (за узан
РАДНА СВЕСКА ИЗ БИОФИЗИКЕ
ПОЉОПРИВРЕДНИ ФАКУЛТЕТ УНИВЕРЗИТЕТ У НОВОМ САДУ Драгутин Т. Михаиловић Бранислава Лалић Илија Арсенић РАДНА СВЕСКА ИЗ БИОФИЗИКЕ НОВИ САД, 2011. ПОЉОПРИВРЕДНИ ФАКУЛТЕТ УНИВЕРЗИТЕТ У НОВОМ САДУ Драгутин
1. Модел кретања (1.1)
1. Модел кретања Кинематика, у најопштијој формулацији, може да буде дефинисана као геометрија кретања. Другим речима, применом основног апарата математичке анализе успостављају се зависности између елементарних
ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У БЕОГРАДУ
ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У БЕОГРАДУ Катедра за енергетске претвараче и погоне Први колоквијум из предмета Термички процеси у електроенергетици Колоквијум траје максимално 150 минута 8. 1.