ОБРАЗАЦ ЗА ПРИЈАВУ ТЕХНИЧКОГ РЕШЕЊА

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ОБРАЗАЦ ЗА ПРИЈАВУ ТЕХНИЧКОГ РЕШЕЊА"

Transcript

1 ЕЛЕКТРОНСКИ ФАКУЛТЕТ У НИШУ ОБРАЗАЦ ЗА ПРИЈАВУ ТЕХНИЧКОГ РЕШЕЊА У складу са одредбама Правилника о поступку и начину вредновања, и квантативном исказивању научноистраживачких резултата истраживача, који је донео Национални савет за научни и технолошки развој Републике Србије («Службени гласник РС», бр. 38/2008) достављам следеће податке. Обавезни подаци: Аутор/аутори решења: Борисав Јовановић, Милунка Дамњановић Назив техничког решења: Процесорски систем базиран на Standby Sparing методи Категорија техничког решења (навести према одредбама Правилника садржаним у НАПОМЕНИ* ): прототип, нове методе, софтвер, инструмент, нове генске пробе, микроорганизми и сл. -лабораторијски прототип М85 За кога је решење рађено и у оквиру ког пројекта МНТР: Коло процесорског система базираног на Standby Sparing методи пројектовано је у LEDA Лабораторији Електронског факултета Универзитета у Нишу према спецификацијама корисника резултата EWG, огранак Ниш. Ово техничко решење проистекло је из рада на пројекту под називом НАПРЕДНЕ ТЕХНОЛОГИЈЕ ЕЛЕКТРОНСКОГ МЕРЕЊА, УПРАВЉАЊА И КОМУНИКАЦИЈЕ НА ЕЛЕКТРИЧНОЈ ДИСТРИБУТИВНОЈ МРЕЖИ, које је финансирало Министарство за науку Републике Србије под шифром ТР Ко решење користи тј. Ко је прихватио-примењује решење: Коло процесорског система базираног на Standby Sparing методи директно је пројектованo по спецификацији корисника резултата истраживања, а то је EWG огранак Ниш који развија прототип трофазног вишефункциалног бројила и система за даљинско очитавање и управљање потрошњом електричне енергије Година када је решење урађено: година Како су резултати верификовани (од стране кога тела): Решење је верификовао корисник истраживања EWG огранак Ниш, а његови поједини делови прихваћени су и од стране ресорног Министарства за науку Републике Србије

2 усвајањем завршног извештаја за 202. годину за пројекат под називом НАПРЕДНЕ ТЕХНОЛОГИЈЕ ЕЛЕКТРОНСКОГ МЕРЕЊА, УПРАВЉАЊА И КОМУНИКАЦИЈЕ НА ЕЛЕКТРИЧНОЈ ДИСТРИБУТИВНОЈ МРЕЖИ, под шифром ТР На који начин се резултати користе Остварено техничко решење доступно је као VHDL опис (дигитални део), као Verilog опис, као детаљно описана процедура за пројектовање и у GDSII формату у виду претпројектоване структурe реализоване на бази CMOS технологије Synopsys 90nm. Област на коју се техничко решење односи Коло процесорског система базираног на Standby Sparing методи примењује се у технологији мерења, контроле и управљање електричном енергијом. Овај блок налази примену као претпројектована структура која се примењује у пројектовању интегрисаних мерача потрошње електричне енергије. Проблем који се техничким решењем решава У модерном системима на чипу, нове технологије фабрикације кола омогућиле су интеграцију мноштва нових функција на истој површини силицијума, затим, знатно веће брзине тактног сигнала, мању динамичку компоненту снаге дисипације, али је нажалост, генерално повећана статичка потрошња кола. Технике динамичког скалирања напона и фреквенције (Dynamic Voltage and Frequency Scaling - DVFS) и искључивања напона напајања (Power gating) постале су веома популарне технике за смањење снаге дисипације и оне се данас примењују у многим електронским колима и системима. Динамичко скалирање напона и фреквенције је најчешће коришћени метод за смањење потрошње кола. DVFS смањује напон напајања што доводи до квадратног смањења динамичке компоненте снаге. Повећање удела статичке снаге у укупној потрошњи представља један од главних изазова у пројектовању савремених интегрисаних кола. На пример, произвођачи микропроцесора усвојили су примену технике Power gating и уградњу нових програмабилних Standby режима рада са циљем што ефикасније примене микропроцесора у сензорима мале снаге, бројним мобилним и бежичним апликацијама. У примењеним техникама као прекидачи се користе специјални транзистори који искључују напајање свих неактивних делова кола што доводи значајног смањења статичке снаге. Микропроцесори који се уграђују у Hard real-time системе, морају да раде исправно чак и у присуству грешака. Грешке се могу класификовати у две категорије - перманантне и транзијентне. Перманентне грешке могу довести систем у неисправно стање које се не може превазићи без неког облика хардверске редундансе, тј. уградње додатног хардвера. Транзијентне грешке су дешавају спорадично и случајно и могу се јавити, а затим нестати након кратког временског интервала. Показано је да са скалирањем технологија фабрикације интегрисаних кола, и нарочито, радом кола на све нижим напонима напајања, савремени микропроцесори постају подложнији транзијентним грешакама, па је стога неопходна примена нових метода који ове проблеме решавају. Стање решености овог проблема у свету Standby sparing метода користи се у системима за рад у реалном времену у условима када перманентне или транзијентне грешке ометају поуздан рад електронксих кола и система. Standby sparing се заснива на редундантности хардвера и систем који ради по овој методи састоји се од два микропроцесора. Поред главног микропроцесора који извршава задати низ задатака, користи се додатни микропроцесор (у њему се огледа редундантност

3 хардвера) који извршава резервне копије задатака и обезбеђује поуздани рад. Данас је потрошња енергије важан аспект пројектовања интегрисаних кола, па тако пројектовани Standby sparing систем користи неке технике које смањују потрошњу кола - DVFS (Dynamic Voltage and Frequancy Scaling - скалирање напона напајања) и Power gating (искључивање напона напајања у свим нективним деловима интегрисаног кола). Објашњење суштине техничког решења и детаљан опис са карактеристикама, укључујући и пратеће илустрације и техничке цртеже Пројектовано је интегрисано коло у коме је примењена Standby sparing техника. Коло се састоји од два идентична микроконтролера 805. Примарно језгро 805 микроконтролера ради на максималној фреквенцији f max, при вредности напона напајања V max. Потрошња примарног језгра може да се смањи применом DVFS технике, када се смањује вредност напона напајања. Она се скалира фактором ρ који припада интервалу [ρ min, ]. V ρ = () Промена вредности напона напајања мења максималну вредност фреквенције такта - f max због ограничења: f ( V V V V max 2 T ) clk, (2) где је V T напон прага, који зависи од технологије у којој се имплементира коло. Радна фреквенција кола приближно је пропорционална вредности напона напајања, па се фактор ρ може искористити за представљање брзине микроконтролера. Фактор скалирања ρ је једнак односу стварне брзине f и максималне f max. Промена максималне фреквенције такта може да поквари перформансе Real-time система, посебно када постоје јака временска ограничења за испуњавање задатака (hard deadlines). Додатно језгро 805 микроконтролера (Spare) обезбеђује имуност система на сталне или пролазне грешке. Ово језгро је идентично примарном 805 језгру, извршава исти низ задатака, али углавном ради у пасивном режиму рада (Standby) и укључује се по потреби. Поред тога, Spare ради при максималним вредностима радне фреквенције и напона напајања - f max и V max, дакле не користи DVFS за смањење потрошње, јер је познато да само при овом условима постоји најмања вероватноћа појављивања транзијентних грешака. Рад Standby sparing система може се објаснити на примеру групе задатака. Нека микроконтролер ради на V max и f max, и потребно је извршити задатак T i из групе, у временском интервалу АЕТ i. Трајање интервала АЕТ i је мање од времена WCET i - најгорег случаја временa извршења T i. Од Real-time система се захтева да задаци буду извршени пре одређеног времена D (Deadline time). За сваки задатак који се извршава на примарном језгру, и то на нижем напону напајања од V max, постоји потреба да се додатна копија задатка (back-up задатак) извршава на Spare језгру. Да би се обезбедио поуздани рад и извршавање свих задатака пре истека Deadline времена, често се прво укључује Spare језгро, а затим примарно језгро заврши задатак T i и провери резултате свога рада. Ако примарно језгро заврши задатак без грешке, резервно језгро отказује даљи рад, јер нема потребе да даље ради и враћа се у Standby мод рада. У супротном, back-up задатак се извршава до краја на Spare језгру.

4 Слика. Приказ два задатка који се извршавају на примарном и додатном (Spare) језгру Сл. показује пример извршења два узастопна задатака T i и T i+. Примарнo језгро, које ради на брзини ρ, извршава задатак у оквиру временског интервала АЕТ i /ρ. Spare микроконтролер, који ради на f max, почиње извршење након кашњења d i и завршава рад после временског интервала АЕТ i. До тада је Spare микроконтролер у неактивном Standby моду рада. У тренутку када примарно језгро заврши задатак T i, рад овог задатка се проверава. Ако грешка није пронађена, отказује се извршавање резервног задатка. У супротном, следећи задатак T i+ може бити покренут тек након што Spare заврши резервни задатак T i. Да би се смањила укупна дисипација, јасно је да треба смањити временски интервал у коме је Standby микроконтролер у активном моду рада. Зато време кашњења d i треба да се повећа. Међутим, повећање времена кашњења d i условљено је коначном вредношћу Deadline времена. Inter-task временски интервал r i дефинише се као временски размак два суседна задатка T i и T i+ : r i = di AETi ( / ρ ) (3) Потрошња енергије додатног језгра зависи од дужине трајања активног стања језгра a i : AET a i i = AETi ri = di ρ (4) Последња једнакост се може трансформисати у: a i + ri = AETi (5) Збир свих Inter-task времена једнако је временском интервалу слека (Slack time interval) N N SLT = ( ri ) max = D AETi (6) i= ρ i= Време активног рада Spare jeзгра, A доприноси укупној потрошњи. Време активног рада износи: N N N A = ai = AETi ri (7) i= i= i= Минимална вредност времена активног рада Spare jeзгра A, је: N N ( A ) min = AETi D, AETi > D / + i= i= ρ (8) N ( A ) min = 0, AETi D / + i= ρ Проблем код технике Standby sparing је тај што потрошња Spare јединице може бити већа од потрошње примарне јединице. Ово се нарочито испољава у условима када постоје строга временска ограничења за извршење задатака (hard deadlines). Укупна потрошња система може да буде смањена модификацијом која се заснива на спајању узастопних задатака и која је описана у даљем тексту. Модификација је објашњена на примеру два узастопна задатака T i и T i+. У примеру, примарно језгро ради на брзини ρ и извршава задатке T i и T i+. Трајања извршења задатака на примарном језгру једнака су AET i /ρ и AET i+ /ρ. Када примарно језгро заврши задатак T i, започиње извршавање следећег задатка T i+. Сада временски интервал између задатака

5 T i и T i+ на примарном језгру не постоји. Spare језгро почиње са извршавањем после кашњења d i. Ако се задатак T i изврши без грешке, извршење backup задатка T i се зауставља. Истовремено наредни задатак T i+ је већ почео да се извршава на примарној јединици. У тренутку када примарно језгро заврши T i+, проверава се рад T i+. Ако je задатак T i+ такође завршен без грешке, backup задатак T i+, такође се отказује. Backup задаци T i и T i+ се извршавају до краја у случају да се појаве грешке у раду примарног језгра. Само у овом случају, укупна потрошња енергије се повећава, јер Spare јединица изршава оба задатка - T i и T i+. Толеранција на грешке задатка T i је очувана, али је за T i+ је незнатно смањена јер се овај задатак извршава само на Spare језгру. Вероватноћа појављивања грешака је мала јер се за напајањсе Spare језгра користи максимални напон напајања V max. Слика 2. Модификација Standby sparing технике - случај. AET i > AET i+ /ρ Анализа модификације Standby sparing технике је спроведена разматрајући три случаја. Први случај је описан једначином (9) и приказан је на слици 2. AETi + AET i > (9) ρ У случају да Spare језгру извршава само део backup задатка T i, сума Inter-task времена и временског интервала активног стања Spare језгра током извршења T i и T i+ је једнакa: ( rj + a j ) = AETi + AETi+ j= i, i+ ρ (0) ri + AETi+, AETi + AETi+ ρ Када Spare језгро извршава делове оба backup задатка T i и T i+, сума је једнака: ( r j + a j ) = AETi + AETi+ 2 ri +, j= i, i+ ρ () ri + [ 0, AETi+ ] Други случај је описан једначином (2) и приказан је на слици 3.

6 Слика 3. Модификација Standby sparing технике - случај 2. AET i+ <AET i < AET i+ /ρ AETi + AET i+ < AETi < (2) ρ У случају ако Spare језгру извршава само део backup задатка T i+, сума Inter-task времена и временског интервала активног стања Spare језгра током извршења T i и T i+ је једнакa: ( rj + a j ) = AETi+, j= i, i+ (3) ri + AETi + AETi+, AETi+ ρ Када Spare језгро извршава делове оба backup задатка T i и T i+, сума је једнака: ( r j + a j ) = AETi + AETi+ 2 ri +, j= i, i+ ρ (4) ri + 0, AETi + AETi+ ρ Трећи случај је описан једначином (5) и приказан је на слици 4. AET i < AETi+ (5) Сума интер-таск времена и временског интервала активног стања Spare језгра је једнака: ( r + a ) = AET, j= i, i+ [, AET ] ri + 0 i+ j j i+ Потрошња Spare језгра може да се смањи уколико се смањи његово активно време рада. Модификација технике, која се базира на спајању задатака, смањује суму Inter-task времена и временског интервала активног стања Spare језгра. У првом случају, који је приказан у Сл. 2, ова сума се смањује за вредност AET i+ /ρ. У друга два случаја добија се смањење за време трајања интервала AET i. Описана операција се понавља све док сума Inter-task времена и временског интервала активног стања Spare језгра постане једнака или мања од временског интервала слека. Даље смањење суме не доприноси енергетској ефикасности. (6)

7 Слика 4. Модификација Standby sparing технике - случај 3. AET i < AET i+ Пројектовани систем састоји се од два микроконтролера, одликује се малом потрошњом и толеранцијом на присуство грешака. Микроконтролер 805 је искоришћен при реализацији система. Глобална архитектура микроконтролера састоји се од језгра, меморијских блокова и периферијских јединица. Периферијске јединице се састоје од три кола тајмера/бројача, три паралелна улазно/излазна порта, једног асинхроног серијског примопредајног блока и I2C комуникационог блока. У пројектованом колу налазе се три меморије: програмска меморија (8kB SRAM блок који је реализован за чипу), 2kB SRAM блок екстерне меморије за податке, и 256B интерне SRAM меморије. Микроконтролер је имплементиран у технологији стандардних ћелија Synopsys 90nm. Layout пројекта је подељен на три Power домена. Језгро микроконтролера, периферијске јединице и меморије смештени су у различите Power домене који дозвољавају да тренутно неактивне области буду искључене. Као прекидачи за имплементацију Power домена коришћени су Header MTCMOS транзистори. Tоком Standby мода рада напајање језгра чипа је искључено док су периферијске јединице и меморије под напајањем. Слика 5. Приказ распореда које примарно и додатно језгро извршавају применом Standby sparing технике Пројектован је систем који се састоји од два језгра 805 микроконтролера: примарне и додатне јединице. Примарна и додатна јединица имплементиране су у одвојеним Power доменима. Пошто додатна јединица извршава исти програмски код као и примарна јединица, она са примарном јединицом дели исте меморијске блокове. RAM меморије предстаљају највеће области layout-a, површина језгра микроконтролера је три пута мања од површине меморијских блокова. Зато, додатно језгро не повећава значајно укупну површину чипа.

8 Додатно језгро ради на напону напајања V max =.2V и извршава инструкције на максималној фреквенцији такта f max =20MHz. Користећи технику DVFS, напон напајања може да се смањи са почетне вредности V max до минималне V reduced =0.84V. Систем је испитиван на примеру који се састоји од низа задатака T, T 2, T 3 и T 4, чија су времена извршења респективно 0ms, 4ms, 6ms и 8ms. Најпре је примењен Standby sparing метод, а затим извршене три симулације система са различитиом параметрима ρ. Нормализована брзина примарног језгра ρ се мења у опсегу од ρ=0.9 до ρ=0.7. Притом се за вредност напона напајања узимају следеће вредности:.08v, 0.96V and 0.84V. Слика 6. Приказ распореда које примарно и додатно језгро извршавају применом модификоване Standby sparing технике Табела. Добијене енергије дисипације примарног и додатног језгра пре и после оптимизације Нормализована Укупна енергија брзина ρ [μj] Напон напајања примарног језгра [V] Енергија дисипације примарног језгра [μj] Енергија дисипације додтаног језгра [μj] Пре оптимизације V V V После оптимизације V V V Након што је layout система имплементиран и верификована нетлиста layout-a, могу се одредити снаге дисипације. Резултати су дати у Табели. Вредности дисипиране енергије током извршења задатака, када је Standby sparing техника примењена у изворном облику, су редом 33.25μJ, μJ и 35.04μJ. Након тога је примењена, модификована Standby sparing техника. Задаци T и T 2 су спојени, док је задатак T 3 спојен са задатком T 4. Параметар ρ, тј. брзина Spare јединице мења се у опсегу од 0.9 до 0.7. Слика 6 приказује распоред задатака када је применњена модификована Standby sparing метода. Добијене су следеће вредности потрошње енергије: 223.9μJ, 98.μJ и 200.μJ. Другим речима, добија

9 се побољшање од приближно 33% у потрошњи енергије у односу на неоптимизовано решење. Како је реализовано и где се примењује, односно које су могућности примене Коло процесорског система базираног на Standby Sparing методи реализовано је заједничким радом стручњака из LEDA Лабораторије Електронског факултета Универзитета у Нишу, према спецификацијама које је дао корисник резултата EWG огранак Ниш, који развија прототип трофазног вишефункционалног бројила и система за даљинско очитавање и управљање потрошњом електричне енергије. Коло је реализовано у CMOS технологији Synopsys 90nm. Истовремено, отворене су могућности да се пројекат прилагођава новим технологијама производње. Документација коју кандидати поднесу може садржати на 5-0 страница, укључујући илустрације и техничке цртеже. Подносилац пријаве Ниш,

10

11

12

13

14

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm 1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

ОБРАЗАЦ ЗА ПРИЈАВУ ТЕХНИЧКОГ РЕШЕЊА

ОБРАЗАЦ ЗА ПРИЈАВУ ТЕХНИЧКОГ РЕШЕЊА ЕЛЕКТРОНСКИ ФАКУЛТЕТ У НИШУ ОБРАЗАЦ ЗА ПРИЈАВУ ТЕХНИЧКОГ РЕШЕЊА У складу са одредбама Правилника о поступку и начину вредновања, и квантативном исказивању научноистраживачких резултата истраживача, који

Διαβάστε περισσότερα

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА . колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

ОБРАЗАЦ ЗА ПРИЈАВУ ТЕХНИЧКОГ РЕШЕЊА

ОБРАЗАЦ ЗА ПРИЈАВУ ТЕХНИЧКОГ РЕШЕЊА ЕЛЕКТРОНСКОМ ФАКУЛТЕТУ У НИШУ ОБРАЗАЦ ЗА ПРИЈАВУ ТЕХНИЧКОГ РЕШЕЊА У складу са одредбама Правилника о поступку и начину вредновања, и квантитавном исказивању научноистраживачких резултата истраживача, који

Διαβάστε περισσότερα

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016.

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016. ЕНЕРГЕТСКИ ПРЕТВАРАЧИ (3Е03ЕП) октобар 06.. Батерија напона B = 00 пуни се преко трофазног полууправљивог мосног исправљача, који је повезан на мрежу 3x380, 50 Hz преко трансформатора у спрези y, са преносним

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја. СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

2.3. Решавање линеарних једначина с једном непознатом

2.3. Решавање линеарних једначина с једном непознатом . Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ОДГОВОРИ И РЕШЕЊА ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ

Διαβάστε περισσότερα

Могућности и планови ЕПС на пољу напонско реактивне подршке. Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије

Могућности и планови ЕПС на пољу напонско реактивне подршке. Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије Могућности и планови ЕПС на пољу напонско реактивне подршке Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије 1 Обавезе ЈП ЕПС као КПС... ЗАКОН О ЕНЕРГЕТИЦИ ЧЛАН 94. Енергетски

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила. Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, предавања, Универзитет у Београду Електротехнички факултет, 07. Вишефазне електричне системе је патентирао српски истраживач Никола Тесла

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези Регулциј електромоторних погон 8 ЛАБОРАТОРИЈСКА ВЕЖБА Здтк вежбе: Изрчунвње фктор појчњ мотор нпонским упрвљњем у отвореној повртној спрези Увод Преносн функциј мотор којим се нпонски упрвљ Кд се з нулте

Διαβάστε περισσότερα

РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004

РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004 РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 004 ТРАНСФОРМАТОРИ Tрофазни енергетски трансформатор 100 VA има напон и реактансу кратког споја u 4% и x % респективно При номиналном оптерећењу

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.

Διαβάστε περισσότερα

Количина топлоте и топлотна равнотежа

Количина топлоте и топлотна равнотежа Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 Метод разликовања случајева је један од најексплоатисанијих метода за решавање математичких проблема. У теорији Диофантових једначина он није свемогућ, али је сигурно

Διαβάστε περισσότερα

L кплп (Калем у кплу прпстпперипдичне струје)

L кплп (Калем у кплу прпстпперипдичне струје) L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева

ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције Diffie-Hellman размена кључева Преглед Биће објашњено: Diffie-Hellman размена кључева 2/13 Diffie-Hellman размена кључева први алгоритам са јавним

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

8.5 ЛАБОРАТОРИЈСКА ВЕЖБА 5 Задатак вежбе: PI регулација брзине напонски управљаним микромотором једносмерне струје

8.5 ЛАБОРАТОРИЈСКА ВЕЖБА 5 Задатак вежбе: PI регулација брзине напонски управљаним микромотором једносмерне струје Регулација електромоторних погона 8.5 ЛАБОРАТОРИЈСКА ВЕЖБА 5 Задатак вежбе: регулација брзине напонски управљаним микромотором једносмерне струје Увод Simulik модел На основу упрошћеног блок дијаграма

Διαβάστε περισσότερα

Нивелмански инструмент (нивелир) - конструкција и саставни делови, испитивање и ректификација нивелира, мерење висинских разлика техничким нивелманом

Нивелмански инструмент (нивелир) - конструкција и саставни делови, испитивање и ректификација нивелира, мерење висинских разлика техничким нивелманом висинских техничким нивелманом Страна 1 Радна секција: 1.. 3. 4. 5. 6. Задатак 1. За нивелмански инструмент нивелир са компензатором серијски број испитати услове за мерење висинских : 1) Проверити правилност

Διαβάστε περισσότερα

Погодност за одржавање, Расположивост, Марковљеви ланци

Погодност за одржавање, Расположивост, Марковљеви ланци Погност за ржавање, Расположивост, Марковљеви ланци Погност за ржавање Одржавање обухвата све радње (осим рутинског сервисирања у току рада као што је замена горива или сличне мање активности) чији је

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

Катедра за електронику, Основи електронике

Катедра за електронику, Основи електронике Лабораторијске вежбе из основа електронике, 13. 7. 215. Презиме, име и број индекса. Трајање испита: 12 минута Тест за лабораторијске вежбе 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 5 1 5 1 5 5 2 3 5 1

Διαβάστε περισσότερα

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 1 МОНОФАЗНИ ФАЗНИ РЕГУЛАТОР СА ОТПОРНИМ И ОТПОРНО-ИНДУКТИВНИМ ОПТЕРЕЋЕЊЕМ

Διαβάστε περισσότερα

Слика 1 Ако се са RFe отпорника, онда су ова два температурно зависна отпорника везана на ред, па је укупна отпорност,

Слика 1 Ако се са RFe отпорника, онда су ова два температурно зависна отпорника везана на ред, па је укупна отпорност, Температурно стабилан отпорник састоји се од два једнака цилиндрична дела начињена од различитих материјала (гвожђе и графит) У ком односу стоје отпорности ова два дела отпорника ако се претпостави да

Διαβάστε περισσότερα

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова 4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 2 ПОЈАЧАВАЧ СНАГЕ У КЛАСИ Б 1. 2. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ

Διαβάστε περισσότερα

ОБРАЗАЦ ЗА ПРИЈАВУ ТЕХНИЧКОГ РЕШЕЊА

ОБРАЗАЦ ЗА ПРИЈАВУ ТЕХНИЧКОГ РЕШЕЊА ЕЛЕКТРОНСКОМ ФАКУЛТЕТУ У НИШУ ОБРАЗАЦ ЗА ПРИЈАВУ ТЕХНИЧКОГ РЕШЕЊА У складу са одредбама Правилника о поступку и начину вредновања, и квантитавном исказивању научноистраживачких резултата истраживача, који

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

PERT метода. Анализом структуре пројекта установљена су карактеристична својства активности која су у табели 1. Taбела 1

PERT метода. Анализом структуре пројекта установљена су карактеристична својства активности која су у табели 1. Taбела 1 PERT метода Задатак Анализом структуре пројекта установљена су карактеристична својства активности која су у табели. Taбела Зависи од Трајање (в.ј.) Директни трошкови (н.ј.) a ij m ij b ij C nij C uij

Διαβάστε περισσότερα

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ: Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a

Διαβάστε περισσότερα

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу

Διαβάστε περισσότερα

Упутство за избор домаћих задатака

Упутство за избор домаћих задатака Упутство за избор домаћих задатака Студент од изабраних задатака области Математике 2: Комбинаторика, Вероватноћа и статистика бира по 20 задатака. Студент може бирати задатке помоћу програмског пакета

Διαβάστε περισσότερα

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису. ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),

Διαβάστε περισσότερα

Бојан Јовановић АНАЛИТИЧКИ МОДЕЛ ЗА ПРОЦЕНУ ДИНАМИЧКЕ ПОТРОШЊЕ АРИТМЕТИЧКИХ КОЛА ИМПЛЕМЕНТИРАНИХ НА FPGA

Бојан Јовановић АНАЛИТИЧКИ МОДЕЛ ЗА ПРОЦЕНУ ДИНАМИЧКЕ ПОТРОШЊЕ АРИТМЕТИЧКИХ КОЛА ИМПЛЕМЕНТИРАНИХ НА FPGA УНИВЕРЗИТЕТ У НИШУ ЕЛЕКТРОНСКИ ФАКУЛТЕТ Бојан Јовановић АНАЛИТИЧКИ МОДЕЛ ЗА ПРОЦЕНУ ДИНАМИЧКЕ ПОТРОШЊЕ АРИТМЕТИЧКИХ КОЛА ИМПЛЕМЕНТИРАНИХ НА FPGA Докторска дисертација НИШ, 22. Пошљи, Господе, утјехе у

Διαβάστε περισσότερα

Примена првог извода функције

Примена првог извода функције Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први

Διαβάστε περισσότερα

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности,

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 3 ИСПРАВЉАЧИ И ФИЛТРИ.. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ У ЛАБОРАТОРИЈИ

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ Испит из предмета Електротехника са електроником 1. Шест тачкастих наелектрисања Q 1, Q, Q, Q, Q 5 и Q налазе се у теменима правилног шестоугла, као на слици. Познато је: Q1 = Q = Q = Q = Q5 = Q ; Q 1,

Διαβάστε περισσότερα

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА 4. Закон великих бројева 4. ЗАКОН ВЕЛИКИХ БРОЈЕВА Аксиоматска дефиниција вероватноће не одређује начин на који ће вероватноће случајних догађаја бити одређене у неком реалном експерименту. Зато треба наћи

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА Стандардна девијација показује расподелу резултата мерења око средње вредности, али не указује на облик расподеле. У табели 1 су дате вредности за 50 поновљених одређивања

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

ДОЊА И ГОРЊА ГРАНИЦА ОПТЕРЕЋЕЊА ПРАВОУГАОНИХ И КРУЖНИХ ПЛОЧА

ДОЊА И ГОРЊА ГРАНИЦА ОПТЕРЕЋЕЊА ПРАВОУГАОНИХ И КРУЖНИХ ПЛОЧА ДОЊА И ГОРЊА ГРАНИЦА ОПТЕРЕЋЕЊА ПРАВОУГАОНИХ И КРУЖНИХ ПЛОЧА Саша Ковачевић 1 УДК: 64.04 DOI:10.14415/zbornikGFS6.06 Резиме: Тема рада се односи на одређивање граничног оптерећења правоугаоних и кружних

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

Мерење електричних параметара соларног система за напајање

Мерење електричних параметара соларног система за напајање Мерење електричних параметара соларног система за напајање Игор Шарац Факултет техничких наука, Чачак Електротехничко и рачунарско инжењерство, Рачунарско инжењерство, 2012/2013. sharacigor@gmail.com Ментор

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ

Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ Прва година ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА Г1: ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА 10 ЕСПБ бодова. Недељно има 20 часова

Διαβάστε περισσότερα

У н и в е р з и т е т у Б е о г р а д у Математички факултет. Семинарски рад. Методологија стручног и научног рада. Тема: НП-тешки проблеми паковања

У н и в е р з и т е т у Б е о г р а д у Математички факултет. Семинарски рад. Методологија стручног и научног рада. Тема: НП-тешки проблеми паковања У н и в е р з и т е т у Б е о г р а д у Математички факултет Семинарски рад из предмета Методологија стручног и научног рада Тема: НП-тешки проблеми паковања Професор: др Владимир Филиповић Студент: Владимир

Διαβάστε περισσότερα

Слика бр.1 Површина лежишта

Слика бр.1 Површина лежишта . Конвенционалне методе процене.. Параметри за процену рудних резерви... Површина лежишта Површине лежишта ограничавају се спајањем тачака у којима је истражним радом утврђен контакт руде са јаловином.

Διαβάστε περισσότερα

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ 21.11.2009. I група Име и презиме студента: Број индекса: Термин у ком студент ради вежбе: Напомена: Бира се и одговара ИСКЉУЧИВО на шест питања заокруживањем

Διαβάστε περισσότερα

МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ. Осиловање

МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ. Осиловање МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ Понедељак, 29. децембар, 2010 Хуков закон Период и фреквенција осциловања Просто хармонијско кретање Просто клатно Енергија простог хармонијског осцилатора Веза са униформним кретањем

Διαβάστε περισσότερα

Нумеричко решавање парцијалних диференцијалних једначина и интегралних једначина

Нумеричко решавање парцијалних диференцијалних једначина и интегралних једначина Нумеричко решавање парцијалних диференцијалних једначина и интегралних једначина Метода мреже за Дирихлеове проблеме Метода мреже се приближно решавају диференцијалне једначине тако што се диференцијална

Διαβάστε περισσότερα

Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба

Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање ОРГАНИЗАЦИЈА ПАРКИРАЛИШТА 1. вежба Место за паркирање (паркинг место) Део простора намењен, технички опремљен и уређен за паркирање једног

Διαβάστε περισσότερα

1. Функција интензитета отказа и век трајања система

1. Функција интензитета отказа и век трајања система f(t). Функција интензитета отказа и век трајања система На почетку коришћења неког система јављају се откази који као узрок имају почетне слабости или пропуштене дефекте у току производње и то су рани

Διαβάστε περισσότερα

ОСНОВА ЕЛЕКТРОТЕНИКЕ

ОСНОВА ЕЛЕКТРОТЕНИКЕ МИНИСТАРСТВО ПРОСВЕТЕ РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ЧЕТРНАЕСТО РЕГИОНАЛНО ТАКМИЧЕЊЕ ПИТАЊА И ЗАДАЦИ ИЗ ОСНОВА ЕЛЕКТРОТЕНИКЕ ЗА УЧЕНИКЕ ДРУГОГ РАЗРЕДА број задатка 1

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић

Скупови (наставак) Релације. Професор : Рака Јовановић Асиситент : Јелена Јовановић Скупови (наставак) Релације Професор : Рака Јовановић Асиситент : Јелена Јовановић Дефиниција дуалне скуповне формуле За скуповне формулу f, која се састоји из једног или више скуповних симбола и њихових

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике

Διαβάστε περισσότερα

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ 1. Удео снаге и енергије ветра у производњи електричне енергије - стање и предвиђања у свету и Европи. 2. Навести називе најмање две међународне организације

Διαβάστε περισσότερα

Cook-Levin: SAT је NP-комплетан. Теодор Најдан Трифунов 305M/12

Cook-Levin: SAT је NP-комплетан. Теодор Најдан Трифунов 305M/12 Cook-Levin: SAT је NP-комплетан Теодор Најдан Трифунов 305M/12 1 Основни појмови Недетерминистичка Тјурингова машина (НТМ) је уређена седморка M = (Q, Σ, Γ, δ, q 0,, ) Q коначан скуп стања контролног механизма

Διαβάστε περισσότερα

Апсорпција γ зрачења

Апсорпција γ зрачења Универзитет у Крагујевцу Природно математички факултет Мр Владимир Марковић Предмет: Нуклеарна физика Експериментална вежба: Апсорпција γ зрачења Када сноп γ зрачења пролази кроз материју, његов интензитет

Διαβάστε περισσότερα

Једна од централних идеја рачунарства Метода која решавање проблема своди на решавање проблема мање димензије

Једна од централних идеја рачунарства Метода која решавање проблема своди на решавање проблема мање димензије Рекурзија Једна од централних идеја рачунарства Метода која решавање проблема своди на решавање проблема мање димензије Рекурзивна функција (неформално) је функција која у својој дефиницији има позив те

Διαβάστε περισσότερα