MA5283 STATISTIKA Bab 2 Peluang
|
|
- Ἀσκληπιάδης Παπαγεωργίου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 MA5283 STATISTIKA Bab 2 Peluang Orang Cerdas Belajar Statistika
2 Silabus Silabus dan Tujuan Ruang sampel dan kejadian, konsep peluang, peluang bersyarat, Teorema Bayes.
3 Tujuan Silabus dan Tujuan 1 Mendefinisikan ruang sampel dan kejadian 2 Menghitung peluang suatu kejadian 3 Menghitung peluang bersyarat suatu kejadian 4 Memanfaatkan Teorema Bayes untuk menghitung peluang suatu kejadian
4 Silabus dan Tujuan -1. Tanti baru saja mengikuti tes mata. Ia masih teringat beberapa huruf yang muncul: A-E-M-R-S. Kini, Tanti mencoba menyusun kata-kata yang mungkin dari huruf-huruf tersebut.
5 -2. Hanin bermaksud menyumbangkan darahnya di suatu tempat donor. Hanin terlebih dahulu harus dicek golongan darahnya. Golongan darah yang mungkin untuk Hanin adalah... Rupanya Hanin tidak sendirian. Ada Hana dan Hanan disana yang memiliki maksud yang sama dengan Hanin. Jika seorang diantara mereka dipilih secara acak menjadi pendonor, berapa peluang orang yang terpilih adalah Hana? Jika, diantara mereka bertiga, Hanan terpilih menjadi pendonor, berapa peluang golongan darah Hanan adalah B?
6 -3. B dan G pergi berburu dengan cara menembak. Pada waktu yang disepakati, B dan G secara bersamaan menembak sasaran tertentu. Peluang tembakan B mengenai sasaran adalah 0.7 sedangkan peluang tembakan G (bebas dari tembakan B) mengenai sasaran adalah 0.4. Berapa peluang sebuah tembakan mengenai sasaran? Berapa peluang sasaran tertembak?
7 -4. Ayahku meninggal waktu usiaku tiga tahun. Lalu Ibu kawin lagi. Dengan ayah tiriku, Ibu mendapat dua orang anak tiri dan melahirkan tiga orang anak. Ketika usiaku lima belas tahun, Ibu pun meninggal. Ayah tiriku kawin lagi dengan seorang janda yang sudah beranak dua. Ia melahirkan dua orang anak pula dengan ayah tiriku
8 Silabus dan Tujuan Aksioma dan Sifat Peluang Ruang sampel, S, adalah himpunan semua hasil mungkin dari suatu percobaan. Kejadian, E, adalah himpunan bagian dari ruang sampel. Peluang suatu kejadian, P(E), adalah rasio dari banyaknya titik kejadian dan ruang sampel, atau P(E) = n(e) n(s), dimana n(e) dan n(s), berturut-turut, adalah banyaknya titik kejadian dan ruang sampel.
9 Aksioma dan Sifat Peluang Aksioma dan Sifat-sifat peluang: 1 0 P(E) 1 2 P({}) = 0 3 P(S) = 1 4 Untuk kejadian A dan B, P(A B) = P(A) + P(B) P(A B) 5 Jika kejadian A dan B saling asing maka P(A B) = 0 6 Kejadian A dan kejadian B dikatakan saling bebas jika P(A B) = P(A) P(B)
10 Aksioma dan Sifat Peluang peluang yang lain merujuk pada frekuensi relatif. Misalkan suatu percobaan dengan ruang sampel S diulang-ulang. Misalkan n(e) banyaknya kejadian E yang terjadi selama n pengulangan. Peluang kejadian E adalah P(E) = lim n n(e) n
11 Silabus dan Tujuan Aksioma dan Sifat Peluang LATIHAN: Kerjakan ilustrasi-ilustrasi diatas.
12 Solusi: -1 Silabus dan Tujuan Aksioma dan Sifat Peluang SERAM( ), MERAS(X ), SEMAR(X ), RAMES( ), MESRA( ), REMAS( ),...
13 Solusi: -3 Silabus dan Tujuan Aksioma dan Sifat Peluang Misalkan B kejadian B menembak sasaran Misalkan G kejadian G menembak sasaran Misalkan T kejadian sebuah tembakan mengenai sasaran Misalkan S kejadian sasaran tertembak P(T ) = P(G B c ) + P(B G c ) = (0.4)(0.3) + (0.7)(0.6) P(S) = 1 P(G c B c ) = 1 (0.6)(0.3)
14 Latihan Silabus dan Tujuan Aksioma dan Sifat Peluang 1. Lima orang siswa meletakkan tasnya masing-masing ketika memasuki perpustakaan. Kemudian, ketika mereka keluar dari perpustakaan mereka mengambil tasnya secara acak tanpa memperhatikan apakah tas yang diambil adalah benar-benar miliknya. Apakah ruang sampel percobaan diatas?
15 Aksioma dan Sifat Peluang Solusi: S = MiTj, i, j = 1, 2, 3, 4, 5, mahasiswa (M) ke-i mengambil tas (T) milik mahasiswa ke-j, n(s)=25), atau Solusi: S = ijklm, i, j, k, l, m = 1, 2, 3, 4, 5
16 Aksioma dan Sifat Peluang 2. Dalam suatu rapat yang terdiri dari 20 orang, setiap orang berjabatan tangan dengan orang lain diakhir rapat. Ada berapa banyak jumlah salaman yang terjadi?
17 Aksioma dan Sifat Peluang Solusi: C 20 2 = 190
18 Aksioma dan Sifat Peluang 3. Sebuah lift bergerak dari lantai dasar berisi 8 orang (tidak termasuk operator lift) dan orang-orang tersebut akan keluar hingga lift mencapai lantai paling tinggi yaitu lantai 6. Dalam berapa cara sang operator dapat mengenali orang-orang yang keluar dari lift jika semuanya nampak mirip bagi sang operator? Bagaimana jika 8 orang tersebut terdiri atas 5 pria dan 3 wanita dan sang operator membedakan pria dan wanita?
19 Aksioma dan Sifat Peluang Solusi: C 13 5 ; C 10 5 C 8 5
20 Aksioma dan Sifat Peluang 4. Setiap pagi Swarna meninggalkan rumahnya untuk berlari pagi. Swarna pergi lewat pintu depan atau belakang dengan peluang sama. Ketika meninggalkan rumah Swarna memakai sepatu olah raga atau bertelanjang kaki jika sepatu tidak tersedia di depan pintu yang dia lewati. Ketika pulang, Swarna akan masuk lewat pintu atau belakang dan meletakkan sepatunya dengan pelung sama. Jika dia memiliki 4 pasang sepatu olah raga, akan dihitung berapa peluang Swarna akan sering berolah raga dengan bertelanjang kaki. Pertanyaan awal, tentukan ruang sampelnya!
21 Aksioma dan Sifat Peluang Solusi: S = (i, e), i = 0,, 4; e = 4,, 0, i=banyak sepatu di pintu depan, e=banyak sepatu di pintu belakang
22 Aksioma dan Sifat Peluang 5. Bapak Kepala Sekolah mengundang guru-guru yang memiliki setidaknya satu anak laki-laki (L) ke acara syukuran. Seorang guru yang bernama Pak Jaim memiliki dua anak. Kita akan menghitung peluang bahwa kedua anak Pak Jaim adalah laki-laki, diberikan bahwa Pak Jaim diundang ke acara syukuran tersebut. Pertanyaan awal adalah apa ruang sampel percobaan diatas?
23 Aksioma dan Sifat Peluang Solusi: S = {LL, LP, PL, PP}
24 Sudoku KOMPAS 10/02/2012 Aksioma dan Sifat Peluang
25 Distribusi Frekuensi versus Peluang Aksioma dan Sifat Peluang Pandang distribusi frekuensi tentang Daerah Asal Peserta Lomba IMO: Daerah Asal Jumlah Peserta Prosentase Sumatera 20 Jawa Barat dan DKI 35 Jawa Timur dan Bali 27 Kalimantan dan Sulawesi 14 Papua 4 Apa yang dapat Anda katakan tentang PELUANG?
26 Silabus dan Tujuan Teorema Bayes -1. Pandang -3 diatas. Jika sebuah tembakan mengenai sasaran, berapa peluang bahwa itu tembakan G? Berapa peluang bahwa, jika sasaran tertembak, kedua tembakan mengenai sasaran? Berapa peluang bahwa, jika sasaran tertembak, tembakan G mengenai sasaran?
27 Teorema Bayes -2. Seorang praktikan, Ega, tahu bahwa sebuah lembar kerja praktikum akan berada di salah satu dari tiga buah kotak surat lab yang ada. Misalkan p i adalah peluang bahwa Ega akan menemukan lembar kerja praktikum setelah mengecek kotak surat lab i dengan cepat jika ternyata surat tersebut berada di kotak surat lab i, i = 1, 2, 3. Misalkan Ega mengecek kotak surat 1 tidak menemukan surat. Berapa peluang hal itu akan terjadi? Jika diketahui Ega mengecek kotak surat 1 tidak menemukan surat, berapa peluang bahwa surat itu ada di kotak surat 1?
28 Silabus dan Tujuan Teorema Bayes Peluang kejadian A, apabila kejadian B telah terjadi, adalah peluang bersyarat P(A B) yaitu: P(A B) = P(A B, P(B) asalkan P(B) > 0. Jelas bahwa jika kejadian A dan B saling bebas maka P(A B) = P(A).
29 Teorema Bayes Peluang total: P(B) = P(B A)P(A) + P(B A c )P(A c )
30 Latihan Silabus dan Tujuan Teorema Bayes 1. Laila memiliki 2 buah koin; satu koin baik (memiliki sisi M dan B) dan satu koin tidak baik (memiliki dua sisi M). Sebuah koin dipilih secara acak, kemudian dilantunkan. Berapa peluang muncul M?
31 Teorema Bayes Solusi: Misalkan K 1 koin baik, K 2 koin tidak baik. P(M) = P(M K 1 ) + P(M K 2 ) = P(M K 1 )P(K 1 ) + P(M K 2 )P(K 2 ) = (1/2)(1/2) + (1)(1/2) = 3/4
32 Latihan Silabus dan Tujuan Teorema Bayes 2. Laila memiliki 2 buah koin; satu koin baik (memiliki sisi M dan B) dan satu koin tidak baik (memiliki dua sisi M). Sebuah koin dipilih secara acak, kemudian dilantunkan. Muncul M. Berapa peluang bahwa koin yang dilantunkan adalah koin baik?
33 Teorema Bayes Solusi: P(K 1 M) = P(K 1 M)/P(M) = P(M K 1 )P(K 1 )/P(M) = (1/4)/(3/4) = 1/3
34 Teorema Bayes Silabus dan Tujuan Teorema Bayes TEOREMA BAYES: Misalkan {B 1, B 2,..., B n } adalah partisi dari ruang sampel dan misalkan A adalah kejadian yang terobservasi. Peluang kejadian B j diberikan A adalah P(B j A) = P(A B j) P(A) P(A B j ) P(B j ) = n i=1 P(A B i) P(B i )
35 Latihan Silabus dan Tujuan Teorema Bayes 1 Kerjakan ilustrasi-ilustrasi diatas 2 Tes darah di suatu laboratorium akan 95% efektif dalam mendeteksi suatu penyakit tertentu jika penyakit itu ada. Namun demikian, tes tersebut juga memberikan hasil positif yang salah pada 1% orang sehat yang dites. Jika 0.5% dari populasi mengidap penyakit tertentu tersebut, tentukan peluang bahwa seseorang menderita penyakit itu jika hasil tes positif?
36 Solusi: -1 Silabus dan Tujuan Teorema Bayes Misalkan B kejadian B menembak sasaran Misalkan G kejadian G menembak sasaran Misalkan T kejadian sebuah tembakan mengenai sasaran Misalkan S kejadian sasaran tertembak P(G T ) = P(G T ) P(T ) P(G B c ) = P(G B c ) + P(B G c ) (0.4)(0.3) = (0.4)(0.3) + (0.7)(0.6)
37 Teorema Bayes P(G S) P(B S) P(G B S) = P(S) = P(G)P(B) 1 P(G c B c ) = (0.4)(0.7) 1 (0.6)(0.3) P(G S) P(G S) = P(S) P(G S) = 1 P(G c B c ) 0.4 = 1 (0.6)(0.3)
38 Solusi: -2 Silabus dan Tujuan Teorema Bayes Misalkan K i, i = 1, 2, 3 adalah kejadian lembar kerja praktikum berada di kotak surat lab i. Misalkan T kejadian mengecek kotak surat lab 1 tidak mendapatkan lembar kerja praktikum. Peluang hal itu akan terjadi adalah P(T ) = P(T K 1 )P(K 1 ) + P(T K 2 )P(K 2 ) + P(T K 3 )P(K 3 ) = (1 p 1 )(1/3) + 1/3 + 1/3
39 Teorema Bayes Jika diketahui Ega mengecek kotak surat lab 1 dan tidak menemukan surat, maka peluang bahwa lembar kerja praktikum itu ada di kotak surat lab 1 adalah P(T K 1 )P(K 1 ) P(K 1 T ) = P(T K 1 )P(K 1 ) + P(T K 2 )P(K 2 ) + P(T K 3 )P(K 3 ) (1 p 1 )(1/3) = (1 p 1 )(1/3) + 1/3 + 1/3
40 -1 Silabus dan Tujuan Peubah Acak Distribusi Binomial Maskapai penerbangan mengetahui bahwa lima persen pemesan tiket tidak akan datang untuk membeli tiketnya. Dengan alasan ini, maskapai tidak ragu untuk menjual 52 tiket penerbangan pada pesawat dengan kapasitas duduk 50 orang. Berapa peluang akan ada kursi yang tersedia untuk setiap pemesan tiket yang datang?
41 Ilustras-2 Silabus dan Tujuan Peubah Acak Distribusi Binomial Pasien di IGD adalah orang-orang yang dianggap dekat dengan kematian. Kesembuhan dari penyakit yang dideritanya bagi mereka adalah seperti mimpi. Untuk bisa bertahan hidup dari hari ke hari sudahlah merupakan mukjizat. Asumsikan bahwa setiap orang memiliki peluang sama untuk dapat bertahan hidup sampai hari esok sebesar α. Jika jumlah pasien IGD pada suatu hari adalah 5 orang, berapa peluang besok hanya akan ada 2 orang saja yang masih hidup?
42 Peubah Acak Silabus dan Tujuan Peubah Acak Distribusi Binomial Peubah acak tidaklah acak dan bukanlah peubah Peubah acak adalah fungsi yang memetakan anggota S ke bilangan real R
43 P.A. Diskrit Silabus dan Tujuan Peubah Acak Distribusi Binomial Peubah acak X dikatakan diskrit jika terdapat barisan terhitung dari bilangan {a i, i = 1, 2,... } sedemikian hingga P ( {X = a i } ) = i i P(X = a i ) = 1 Catatan: Sebuah peubah acak diskrit tidak selalu berasal ruang sampel diskrit.
44 Peubah Acak Distribusi Binomial F X disebut fungsi distribusi (diskrit) dari X jika terdapat barisan terhitung {a i, i = 1, 2,... } dari bilangan real dan barisan {p i, i = 1, 2,... } dari bilangan positif yang bersesuaian sedemikian hingga p i = 1 dan i F X (x) = a i x p i
45 Peubah Acak Distribusi Binomial Jika diberikan himpunan terhitung {a i, i = 1, 2,... } dan bilangan positif {p i, i = 1, 2,... } sdh i p i = 1, fungsi peluang p X (x) adalah p X (x) = p i = P(X = a i ), dengan x = a i
46 Peubah Acak Distribusi Binomial Fungsi distribusi (kumulatif): Sifat-sifat: (a) F fungsi tidak turun (b) lim x F (x) = 1 (c) lim x F (x) = 0 (d) F fungsi kontinu kanan F (x) = P(X x)
47 Peubah Acak Distribusi Binomial Catatan: P(a < X b) = F (b) F (a) P(X b) P(X < b) P(X < b) = P ( { 1 }) lim X b n n = lim P( X b 1 ) n n = lim F ( b 1 ) n n
48 Latihan Silabus dan Tujuan Peubah Acak Distribusi Binomial 1. Tentukan fungsi peluang dari fungsi distribusi berikut: 0, x < 3.1 3/5, 3.1 x < 0 F (x) = 7/10, 0 x < 1 1, 1 x
49 Peubah Acak Distribusi Binomial 2. Tentukan fungsi peluang dari fungsi distribusi berikut: 0, x < x 5, 0 x < 1 F (x) = 3 5, 1 x < , 2 x < 3 1, x 3
50 Peubah Acak Distribusi Binomial 3. Diketahui fungsi peluang sebagai berikut: p, x = , x = , x = 20p f (x) = p, x = 3 4p, x = 4 0, x yang lain Hitung P( 1.9 X 3), F (2), F (F (3.1))
51 Distribusi Binomial Peubah Acak Distribusi Binomial Misalkan S = {sukses, gagal} adalah ruang sampel yang menotasikan sukses atau gagal dari suatu percobaan. kan X (sukses) = 1 dan X (gagal) = 0 dan p X (1) = P(X = 1) = p p X (0) = P(X = 0) = 1 p dimana 0 p 1 adalah peluang diperoleh sukses. X dikatakan peubah acak Bernoulli dengan parameter p.
52 Peubah Acak Distribusi Binomial Jika dilakukan n percobaan independen dan jika X menyatakan banyaknya sukses yang diperoleh maka X dikatakan sebagai peubah acak Binomial dengan parameter (n, p), dimana p X (k) = B(k; n, p) = C n k pk (1 p) n k
53 Latihan Silabus dan Tujuan Peubah Acak Distribusi Binomial 1. Misalkan X B(5, 0.2). Hitung: (a) P(0 < X 1) (b) P(X 1)
54 Peubah Acak Distribusi Binomial Solusi: P(0 < X 1) = P(X = 1) = 0.41 P(X 1) = 1 P(X = 0) = = 0.672
55 Peubah Acak Distribusi Binomial 2. Maskapai penerbangan mengetahui bahwa lima persen pemesan tiket tidak akan datang untuk membeli tiketnya. Dengan alasan ini, maskapai tidak ragu untuk menjual 52 tiket penerbangan pada pesawat dengan kapasitas duduk 50 orang. Berapa peluang akan ada kursi yang tersedia untuk setiap pemesan tiket yang datang?
56 Peubah Acak Distribusi Binomial Solusi: Misalkan X peubah acak yang menyatakan banyaknya orang yang tidak datang dengan peluang sukses (tidak datang) X B(52, 0.05). P(X 2) = 1 [P(X = 0) + P(X = 1)] = 1 (0.05) 0 (0.95) 52 52(0.05) 1 (0.95) 51 = 0.74
57 1 Misalkan X peubah acak Binomial yang menyatakan banyak orang yang datang ke toko dan membeli barang. Diketahui nilai parameter sukses adalah 0.6. Jika 10 orang masuk toko, berapa peluang terjadinya maksimal sebuah sukses?
58 Solusi: P(X 1) = P(X = 0) + P(X = 1) = 1(0.6) 0 (0.4) (0.6) 1 (0.4) 9 = = 0.002
59 1 Laila memiliki sebuah koin yang memiliki sisi MUKA dan BELAKANG dan sebuah koin lain yang ternyata memiliki dua sisi MUKA. Laila memilih sebuah koin secara acak dan melantunkannya. Muncul MUKA. Misalkan Laila melantunkan koin untuk keduakalinya dan muncul MUKA. Berapa peluang bahwa koin yang dilantunkan adalah koin bersisi MUKA dan BELAKANG?
60 Solusi: Misalkan K 1 adalah koin yang memiliki sisi MUKA dan BELAKANG, K 2 koin yang memiliki dua sisi MUKA. P(K 1 MM) = P(K 1 MM) P(MM) P(MM K 1 )P(K 1 ) = P(MM K 1 )P(K 1 ) + P(MM K 2 )P(K 2 ) (1/4)(1/2) = (1/4)(1/2) + (1)(1/2) = 1/5
A. Distribusi Gabungan
HANDOUT PERKULIAHAN Mata Kuliah Pokok Bahasan : Statistika Matematika : Distibusi Dua peubah Acak URAIAN POKOK PERKULIAHAN A. Distribusi Gabungan Definisi 1: Peubah Acak Berdimensi Dua Jika S merupakan
Sebaran Peluang Gabungan
Sebaran Peluang Gabungan Peubah acak dan sebaran peluangnya terbatas pada ruang sampel berdimensi satu. Dengan kata lain, hasil percobaan berasal dari peubah acak yan tunggal. Tetapi, pada banyak keadaan,
MA4181 PENGANTAR PROSES STOKASTIK Bab 2 Peluang dan Eks
MA4181 PENGANTAR PROSES STOKASTIK Bab 2 Peluang dan SMART AND STOCHASTIC MA4181 PENGANTAR PROSES STOKASTIK Bab 2 Peluang dan SMART AND STOCHASTIC Ilustrasi Fungsi Peluang Bersama Peluang Bersama - Diskrit
Kalkulus Multivariabel I
Limit dan Statistika FMIPA Universitas Islam Indonesia Operasi Aljabar pada Pembahasan pada limit untuk fungsi dua peubah adalah memberikan pengertian mengenai lim f (x, y) = L (x,y) (a,b) Masalahnya adalah
Pengantar Proses Stokastik
Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang
Pengantar Proses Stokastik
Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang
Konvergen dalam Peluang dan Distribusi
limiting distribution Andi Kresna Jaya andikresna@yahoo.com Jurusan Matematika July 5, 2014 Outline 1 Review 2 Motivasi 3 Konvergen dalam peluang 4 Konvergen dalam distribusi Back Outline 1 Review 2 Motivasi
S T A T I S T I K A OLEH : WIJAYA
S T A T I S T I K A OLEH : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan
S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON
S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.
Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia
Kalkulus 1 Sistem Bilangan Real Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa
S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON
S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.
Pengantar Proses Stokastik
Bab 3: Diskrit Statistika FMIPA Universitas Islam Indonesia Ilustrasi 1 Perilaku bunuh diri kini kian menjadi-jadi. Hesti (nama sebenarnya) adalah sebuah contoh. Dia pernah melakukan percobaan bunuh diri,
Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND LOGO
Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND Kompetensi menguraikan ciri-ciri suatu kurva normal menentukan luas daerah dibawah kurva normal menerapkan sebaran normal dalam
Kalkulus Multivariabel I
Fungsi Dua Peubah atau Lebih dan Statistika FMIPA Universitas Islam Indonesia 2015 dengan Dua Peubah Real dengan Dua Peubah Real Pada fungsi satu peubah f : D R R D adalah daerah asal (domain) suatu fungsi
Pengantar Proses Stokastik
Bab 3: Diskrit Statistika FMIPA Universitas Islam Indonesia Ilustrasi 1 Matriks Peluang Transisi Matriks Stokastik Chapman-Komogorov Equations Peluang Transisi Tak Bersyarat Perilaku bunuh diri kini kian
Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar
untuk Fakultas Pertanian Uhaisnaini.com Contents 1 Sistem Koordinat dan Fungsi Sistem Koordinat dan Fungsi Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam
Matematika
Sistem Bilangan Real D3 Analis Kimia FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa D3 Analis Kimia angkatan
PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari
PERSAMAAN KUADRAT 0. EBT-SMP-00-8 Pada pola bilangan segi tiga Pascal, jumlah bilangan pada garis ke- a. 8 b. 6 c. d. 6 0. EBT-SMP-0-6 (a + b) = a + pa b + qa b + ra b + sab + b Nilai p q = 0 6 70 0. MA-77-
Kalkulus Elementer. Nanda Arista Rizki, M.Si. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman 2018
Kalkulus Elementer Nanda Arista Rizki, M.Si. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman 2018 Nanda Arista Rizki, M.Si. Kalkulus Elementer 1/83 Referensi: 1 Dale Varberg, Edwin
LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR
TNR 1 space 1.15 LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR LAPORAN RESMI MODUL III TNR 1 Space.0 STATISTIK
Bilangan Euler(e) Rukmono Budi Utomo Pengampu: Prof. Taufiq Hidayat. March 5, 2016
Bilangan Euler(e) Rukmono Budi Utomo 30115301 Pengampu: Prof. Taufiq Hidayat March 5, 2016 Asal Usul Bilangan Euler e 1 1. Bilangan Euler 2 3 4 Asal Usul Bilangan Euler e Bilangan Euler atau e = 2, 7182818284...
TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987).
II. TINJAUAN PUSTAKA 2.1 Sistem Bilangan Riil Definisi Bilangan Riil Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur panjang, bersama-sama dengan negatifnya dan nol dinamakan bilangan
PENGEMBANGAN INSTRUMEN
PENGEMBANGAN INSTRUMEN OLEH : IRFAN (A1CI 08 007) PEND. MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS HALUOLEO KENDARI 2012 A. Definisi Konseptual Keterampilan sosial merupakan kemampuan
Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat
Kalkulus 1 Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam sistem koordinat, yaitu:
Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.
BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua
TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan
TKS 6112 Keandalan Struktur TEORI PELUANG* * www.zacoeb.lecture.ub.ac.id Pendahuluan Sebuah bangunan dirancang melalui serangkaian perhitungan yang cermat terhadap beban-beban rencana dan bangunan tersebut
Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.
BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua
Pumping Lemma. Semester Ganjil 2013 Jum at, Dosen pengasuh: Kurnia Saputra ST, M.Sc
Semester Ganjil 2013 Jum at, 08.11.2013 Dosen pengasuh: Kurnia Saputra ST, M.Sc Email: kurnia.saputra@gmail.com Jurusan Informatika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Syiah Kuala
Transformasi Koordinat 2 Dimensi
Transformasi Koordinat 2 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat 2 Dimensi Digunakan untuk mempresentasikan
LOGIKA MATEMATIKA. MODUL 1 Himpunan. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2012 年 04 月 08 日 ( 日 )
LOGIKA MATEMATIKA MODUL 1 Himpunan Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2012 年 04 月 08 日 ( 日 ) Himpunan I. Definisi dan Notasi Himpunan adalah kumpulan sesuatu yang didefinisikan
(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan:
MODUL 3 [Kertas 1]: MATEMATIK TAMBAHAN JPNK 015 Muka Surat: 1 Jawab SEMUA soalan. 1 Rajah 1 menunjukkan hubungan antara set A dan set B. 6 1 Set A Rajah 1 4 5 Set B (a) Nyatakan julat hubungan itu (b)
Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI
Bab 5 FUNGSI TRIGONOMETRI Peta Konsep 5.1 Sudut Positif dan Sudut Negatif 5. 6 Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI 5. Graf Fungsi Sinus, Kosinus dan Tangen 5.4 Identiti Asas 5.5
Hendra Gunawan. 16 April 2014
MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 16 April 014 Kuliah yang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13. Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan Persegi
artinya vektor nilai rata-rata dari kelompok ternak pertama sama dengan kelompok ternak kedua artinya kedua vektor nilai-rata berbeda
LAMPIRAN 48 Lampiran 1. Perhitungan Manual Statistik T 2 -Hotelling pada Garut Jantan dan Ekor Tipis Jantan Hipotesis: H 0 : U 1 = U 2 H 1 : U 1 U 2 Rumus T 2 -Hotelling: artinya vektor nilai rata-rata
Ukur Kejuruteraan DDPQ 1162 Ukur Tekimetri. Sakdiah Basiron
Ukur Kejuruteraan DDPQ 1162 Ukur Tekimetri Sakdiah Basiron TEKIMETRI PENGENALAN TAKIMETRI ADALAH SATU KAEDAH PENGUKURAN JARAK SECARA TIDAK LANGSUNG BAGI MENGHASILKAN JARAK UFUK DAN JARAK TEGAK KEGUNAAN
Persamaan Diferensial Parsial
Persamaan Diferensial Parsial Turunan Parsial f (, ) Jika berubah ubah sedangkan tetap, adalah fungsi dari dan turunanna terhadap adalah f (, ) f (, ) f (, ) lim 0 disebut turunan parsialpertama dari f
2 m. Air. 5 m. Rajah S1
FAKULI KEJURUERAAN AL 1. Jika pintu A adalah segi empat tepat dan berukuran 2 m lebar (normal terhadap kertas), tentukan nilai daya hidrostatik yang bertindak pada pusat tekanan jika pintu ini tenggelam
ANALISIS LITAR ELEKTRIK OBJEKTIF AM
ANALSS LTA ELEKTK ANALSS LTA ELEKTK OBJEKTF AM Unit Memahami konsep-konsep asas Litar Sesiri, Litar Selari, Litar Gabungan dan Hukum Kirchoff. OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menerangkan
TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun
TH383 Realiti Maa Transformasi 3D menggunakan multiplikasi matriks untuk hasilkan kompaun transformasi menggunakan kompaun transformasi - hasilkan sebarang transformasi dan ungkapkan sebagai satu transformasi
INVESTIGASI EMPIRIS KEKUATAN UJI KPSS. Oleh MUHAMMAD FAJAR
INVESTIGASI EMPIRIS KEKUATAN UJI KPSS Oleh MUHAMMAD FAJAR 2016 ABSTRAK Judul Penelitian : Investigasi Empirik Kekuatan Uji KPSS Kata Kunci : Uji KPSS, Data Generating Process, Persentase Keputusan Salah
( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 )
(1) Tentukan nilai bagi P, Q, dan R MODEL PT MATEMATIK A PUSAT TUISYEN IHSAN JAYA 1 P 0 Q 1 R 2 (4) Lengkapkan operasi di bawah dengan mengisi petak petak kosong berikut dengan nombor yang sesuai. ( 1
ANALISIS KORELASI DEBIT BANJIR RENCANA UNTUK BERBAGAI KONDISI KETERSEDIAAN DATA DI DAERAH KHUSUS IBUKOTA JAKARTA ABSTRAK
ANALISIS KORELASI DEBIT BANJIR RENCANA UNTUK BERBAGAI KONDISI KETERSEDIAAN DATA DI DAERAH KHUSUS IBUKOTA JAKARTA Agung M Alamsyah NRP : 9521037 NIRM : 41077011950298 Pembimbing : Dr. Ir. Agung Bagiawan
KALKULUS LANJUT. Integral Lipat. Resmawan. 7 November Universitas Negeri Gorontalo. Resmawan (Math UNG) Integral Lipat 7 November / 57
KALKULUS LANJUT Integral Lipat Resmawan Universitas Negeri Gorontalo 7 November 218 Resmawan (Math UNG) Integral Lipat 7 November 218 1 / 57 13.3. Integral Lipat Dua pada Daerah Bukan Persegipanjang 3.5
Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu.
BAB 3 : ISI RUMAH SEBAGAI PENGGUNA SPM2004/A/S3 (a) Rajah tersebut menunjukkan keluk permintaan yang mencerun ke bawah dari kiri ke kanan. Ia menunjukkan hubungan negatif antara harga dengan kuantiti diminta.
Jawab semua soalan. P -1 Q 0 1 R 2
Tunjukkan langkah langkah penting dalam kerja mengira anda. Ini boleh membantu anda untuk mendapatkan markah. Anda dibenarkan menggunakan kalkulator saintifik. 1. (a) Tentukan nilai P, Q dan R Jawab semua
KONSEP ASAS & PENGUJIAN HIPOTESIS
KONSEP ASAS & PENGUJIAN HIPOTESIS HIPOTESIS Hipotesis = Tekaan atau jangkaan terhadap penyelesaian atau jawapan kepada masalah kajian Contoh: Mengapakah suhu bilik kuliah panas? Tekaan atau Hipotesis???
Bab 1 Mekanik Struktur
Bab 1 Mekanik Struktur P E N S Y A R A H : D R. Y E E M E I H E O N G M O H D. N O R H A F I D Z B I N M O H D. J I M A S ( D B 1 4 0 0 1 1 ) R E X Y N I R O AK P E T E R ( D B 1 4 0 2 5 9 ) J O H A N
Diagnostic Statistical Manual of Mental Disorder (DSM IV,1994)
Autistic Spectrum Disorder 1. Autistic Disorder (Autism) 2. Non-Autistic : -Pervasive Developmental Disorder -Asperger syndrome -Ratt s Syndrome -Fragile x Syndrome -Childhood Disintegrative Disorder Diagnostic
Transformasi Koordinat 3 Dimensi
Transformasi Koordinat 3 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat Tiga Dimensi (3D) Digunakan untuk mendeskripsikan
Ciri-ciri Taburan Normal
1 Taburan Normal Ciri-ciri Taburan Normal Ia adalah taburan selanjar Ia adalah taburan simetri Ia adalah asimtot kepada paksi Ia adalah uni-modal Ia adalah keluarga kepada keluk Keluasan di bawah keluk
Model Mangsa Pemangsa dengan Pengaruh Musim
Model Mangsa Pemangsa dengan Pengaruh Musim Yudi Arpa #1, Muhammad Subhan #, Riry Sriningsih # #Jurusan Matematika, Universitas Negeri Padang Jl. Prof. Dr. Hamka Air Tawar Padang, 25131, Telp. (0751) 444648,
Nama Mahasiswa: Retno Palupi Dosen Pembimbing: Prof. Dr. Ir. I Gusti Putu Raka, DEA Ir. Heppy Kristijanto, MS
Nama Mahasiswa: Retno Palupi 3110100130 Dosen Pembimbing: Prof. Dr. Ir. I Gusti Putu Raka, DEA Ir. Heppy Kristijanto, MS Pendahuluan Metodologi Preliminary Desain Perencanaan Struktur Sekunder Perencanaan
BAB 4 PERENCANAAN TANGGA
BAB 4 PERENCANAAN TANGGA 4. Uraian Umum Tangga merupakan bagian dari struktur bangunan bertingkat yang penting sebagai penunjang antara struktur bangunan lantai dasar dengan struktur bangunan tingkat atasnya.
UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA
UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA KEPUTUSAN MESYUARAT KALI KE 63 JAWATANKUASA FARMASI DAN TERAPEUTIK HOSPITAL USM PADA 24 SEPTEMBER 2007 (BAHAGIAN 1) DAN 30 OKTOBER 2007 (BAHAGIAN 2) A. Ubat
Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk
SOALAN 1 Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk menyambungkan dua takal yang terpasang kepada dua aci selari. Garispusat takal pemacu, pada motor adalah
BAB 4 PERENCANAAN TANGGA
BAB 4 PERENCANAAN TANGGA 4.1. Uraian Umum Tangga merupakan bagian dari struktur bangunan bertingkat yang penting sebagai penunjang antara struktur bangunan lantai dasar dengan struktur bangunan tingkat
SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat:
SOALAN 1 Cakera dengan garis pusat d berputar pada halaju sudut ω di dalam bekas mengandungi minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai kelikatan µ. Anggap bahawa susuk halaju
PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2005
3472/2 Matematik Tambahan Kertas 2 September 2005 2½ jam MAKTAB RENDAH SAINS MARA 3472/2 PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2005 MATEMATIK TAMBAHAN Kertas 2 Dua jam tiga puluh minit 3 4 7 2
-9, P, -1, Q, 7, 11, R
Tunjukkan langkah-langkah penting dalam kerja mengira anda. Ini boleh membantu anda untuk mendapatkan markah. Anda dibenarkan menggunakan kalkulator saintifik. Jawab semua soalan 1 (a) Rajah 1(a) menunjukkan
KURIKULUM STANDARD SEKOLAH RENDAH DUNIA MUZIK
KEMENTERIAN PELAJARAN MALAYSIA KURIKULUM STANDARD SEKOLAH RENDAH DUNIA MUZIK TAHUN TIGA DOKUMEN STANDARD KURIKULUM STANDARD SEKOLAH RENDAH (KSSR) MODUL TERAS TEMA DUNIA MUZIK TAHUN TIGA BAHAGIAN PEMBANGUNAN
Tegangan Permukaan. Kerja
Tegangan Permukaan Kerja Cecair lebih cenderung menyesuaikan bentuknya ke arah yang luas permukaan yang minimum. Titisan cecair berbentuk sfera kerana nisbah luas permukaan terhadap isipadu adalah kecil.
BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh
BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1 Sudut Positif dan Sudut Negatif Contoh Lukiskan setiap sudut berikut dengan menggunakan rajah serta tentukan sukuan mana sudut itu berada. (a)
BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh
BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1 Sudut Positif dan Sudut Negatif Contoh Lukiskan setiap sudut berikut dengan menggunakan rajah serta tentukan sukuan mana sudut itu berada. (a)
EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet
UNIVERSITI SAINS MALAYSIA PUSAT PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet 1. Satu litar magnet mempunyai keengganan S = 4 x
MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini)
MODUL 3 [Kertas 2]: MATEMATIK TAMBAHAN JPNK 2015 Muka Surat: 1 1. Selesaikan persamaan serentak yang berikut: MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) 2x y = 1,
STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER
STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER Winda Tri Wahyuningtyas Gati Annisa Hayu Plate Girder Plate girder adalah balok besar yang dibuat dari susunan yang disatukan
MENGENALI FOTON DAN PENGQUANTUMAN TENAGA
MENGENALI FOTON DAN PENGQUANTUMAN TENAGA Oleh Mohd Hafizudin Kamal Sebelum wujudnya teori gelombang membujur oleh Huygens pada tahun 1678, cahaya dianggap sebagai satu aliran zarah-zarah atau disebut juga
Keterusan dan Keabadian Jisim
Pelajaran 8 Keterusan dan Keabadian Jisim OBJEKTIF Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Mentakrifkan konsep kadar aliran jisim Mentakrifkan konsep kadar aliran Menerangkan konsep
BAB 3 PERENCANAAN TANGGA
BAB 3 PERENCANAAN TANGGA 3.1. Uraian Umum Semakin sedikit tersedianya luas lahan yang digunakan untuk membangun suatu bangunan menjadikan perencana lebih inovatif dalam perencanaan, maka pembangunan tidak
STQS1124 STATISTIK II PERBANDINGAN KUALITI SOLAT DALAM KALANGAN PELAJAR KOLEJ IBRAHIM YAAKOB(KIY) DAN KOLEJ TUN HUSSEIN ONN(KTHO).
STQS114 STATISTIK II PERBANDINGAN KUALITI SOLAT DALAM KALANGAN PELAJAR KOLEJ IBRAHIM YAAKOB(KIY) DAN KOLEJ TUN HUSSEIN ONN(KTHO). DISEDIAKAN OLEH: AINUR JALALIA BINTI ABDUL RAHIM NUR DINAH BINTI ABDUL
SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia
SEE 3533 PRINSIP PERHUBUNGAN Bab III Universiti Teknologi Malaysia 1 Pengenalan Selain daripada teknik pemodulatan amplitud, terdapat juga teknik lain yang menggunakan isyarat memodulat untuk mengubah
LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR
1. a) Nyatakan dengan jelas Prinsip Archimedes tentang keapungan. b) Nyatakan tiga (3) syarat keseimbangan STABIL jasad terapung. c) Sebuah silinder bergaris pusat 15 cm dan tinggi 50 cm diperbuat daripada
Kemahiran Hidup Bersepadu Kemahiran Teknikal 76
LOGO SEKOLAH Nama Sekolah UJIAN BERTULIS 2 Jam Kemahiran Hidup Bersepadu Kemahiran Teknikal 76 NAMA :..... ANGKA GILIRAN : TERHAD 2 BAHAGIAN A [60 markah] Jawab semua soalan pada bahagian ini di ruang
ADLN Perpustakaan Universitas Airlangga. Misalkan terdapat N buah besaran A µ dalam sistem koordinat {x µ } dan N
Lampiran 1 Tensor dan Operasinya Skalar,Vektor dan Tensor Misalkan terdapat N buah besaran A µ dalam sistem koordinat {x µ } dan N buah besaran A µ dalam sistem koordinat lain {x µ } dengan µ = 1, 2, 3...,
Latihan PT3 Matematik Nama:.. Masa: 2 jam. 1 a) i) Buktikan bahawa 53 adalah nombor perdana. [1 markah]
Latihan PT3 Matematik Nama:.. Masa: 2 jam a) i) Buktikan bahawa 53 adalah nombor perdana. [ markah] ii) Berikut adalah tiga kad nombor. 30 20 24 Lakukan operasi darab dan bahagi antara nombor-nombor tersebut
Balas. Nursyamsu Hidayat, Ph.D.
Balas Nursyamsu Hidayat, Ph.D. Struktur Balas Lapisan balas terletak diatas tanah dasar Fungsi Balas Mendistribusikan beban dari bantalan ke tanah dasar Menahan bantalan (rel) dari pergeseran transversal/lateral
SOALMANDIRITINGKATSMA/MA/Sederajat ASAHTERAMPILMATEMATIKA(ASTRAMATIKA)XX I
SOALMANDIRITINGKATSMA/MA/Sederajat ASAHTERAMPILMATEMATIKA(ASTRAMATIKA)XX I 1-cos(x-a) 1.Hasildari lim =. x a (x-a)sin3(x-a) 2.Jumlahnsukupertamaderetaritmetikaadalah Sn =5 n 2-7n. Jikaasukupertamadanbbedaderettersebut,maka13a+3b=.
CAPAIAN PROGRAM PENDIDIKAN KEAKSARAAN DAN KESETARAAN TAHUN 2017
Kementerian Pendidikan dan Kebudayaan Direktorat Jenderal Pendidikan Anak Usia Dini dan Pendidikan Masyarakat Direktorat Pembinaan Pendidikan Keaksaraan dan Kesetaraan 217 CAPAIAN PROGRAM PENDIDIKAN KEAKSARAAN
Pembinaan Homeomorfisma dari Sfera ke Elipsoid
Matematika, 003, Jilid 19, bil., hlm. 11 138 c Jabatan Matematik, UTM. Pembinaan Homeomorfisma dari Sfera ke Elipsoid Liau Lin Yun & Tahir Ahmad Jabatan Matematik, Fakulti Sains Universiti Teknologi Malasia
BAB III PERENCANAAN DAN GAMBAR
digilib.uns.ac.id 7 BAB III PERENCANAAN DAN GAMBAR 3.1. Skema dan Prinsip Kerja Alat Gambar 3.1. Meja kerja portabel. Prinsip kerja dari meja kerja portabel ini adalah meja kerja yang mempunyai massa yang
Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua
Matematika, 1999, Jilid 15, bil. 1, hlm. 37 43 c Jabatan Matematik, UTM. Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan Matematik, Fakulti
TOPIK 1 : KUANTITI DAN UNIT ASAS
1.1 KUANTITI DAN UNIT ASAS Fizik adalah berdasarkan kuantiti-kuantiti yang disebut kuantiti fizik. Secara am suatu kuantiti fizik ialah kuantiti yang boleh diukur. Untuk mengukur kuantiti fizik, suatu
SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH
72/1 NAMA :. TINGKATAN : MATEMATIK TAMBAHAN Kertas 1 September 201 2 Jam SMK SERI MUARA, 6100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JANGAN BUKA KERTAS
ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1
MAKTAB RENDAH Add SAINS your company MARA BENTONG slogan Bab 1 ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 LOGO Kandungan 1 Jenis Litar Elektrik 2 Meter Pelbagai 3 Unit Kawalan Utama 4 Kuasa Elektrik 1 1.1 Jenis
RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN
Jurnal Teknologi, 38(C) Jun 003: 5 8 Universiti Teknologi Malaysia RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN 5 RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN YEOH WENG KANG & JAMALUDIN MD. ALI Abstrak. Rumus untuk
BAB III METODOLOGI PERENCANAAN. Bagan alir (flow chart) adalah urutan proses penyelesaian masalah.
BAB III METODOLOGI PERENCANAAN 3.1 Bagan Alir Perencanaan Ulang Bagan alir (flow chart) adalah urutan proses penyelesaian masalah. MULAI Data struktur atas perencanaan awal, As Plan Drawing Penentuan beban
EMT361 Keboleharapan & Analisis Kegagalan. Dr Zuraidah Mohd Zain Julai, 2005
EMT361 Keboleharapan & Analisis Kegagalan Dr Zuraidah Mohd Zain zuraidah@kukum.edu.my Julai, 2005 Overview untuk minggu 1-3 Minggu 1 Overview terma, takrifan kadar kegagalan, MTBF, bathtub curve; taburan
Teorem Titik Tetap Pemetaan 2 Mengecut Pada Ruang 2 Metrik
Matematika, 1999, Jilid 15, bil. 2, hlm. 135 141 c Jabatan Matematik, UTM. Teorem Titik Tetap Pemetaan 2 Mengecut Pada Ruang 2 Metrik Mashadi Jurusan Matematika Universitas Riau Kampus Bina Widya Panam
L A M P I R A N. Universitas Sumatera Utara
L A M P I R A N LAMPIRAN I PENILAIAN POSTUR KERJA AKTUAL Postur Kerja Memindahkan Biscuit ke Mesin Timbang Manual Tabel A Tabel B Bagian Tubuh Skor Bagian Tubuh Skor Lengan Atas 1 Batang Tubuh 2 Lengan
HMT 504 Morfologi dan Sintaksis Lanjutan
UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2002/2003 Februari/Mac 2003 HMT 504 Morfologi dan Sintaksis Lanjutan Masa : 3 jam Sila pastikan bahawa kertas peperiksaan ini mengandungi
KEKUATAN KELULI KARBON SEDERHANA
Makmal Mekanik Pepejal KEKUATAN KELULI KARBON SEDERHANA 1.0 PENGENALAN Dalam rekabentuk sesuatu anggota struktur yang akan mengalami tegasan, pertimbangan utama ialah supaya anggota tersebut selamat dari
SESI: MAC 2018 DSM 1021: SAINS 1. Kelas: DCV 2
SESI: MAC 2018 DSM 1021: SAINS 1 TOPIK 4.0: KERJA, TENAGA DAN KUASA Kelas: DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH COURSE LEARNING OUTCOMES (CLO): Di akhir LA ini, pelajar akan boleh: 1. Menerangkan
EPPD1023: Makroekonomi Kuliah 1: Pengenalan Kepada Makroekonomi
EPPD1023: Makroekonomi Kuliah 1: Pengenalan Kepada Makroekonomi - Pengenalan - Skop Kajian Makroekonomi - Contoh Analisis Makroekonomi - Objektif Kajian Makroekonomi - Pembolehubah Makroekonomi - Dasar
SESI: MAC 2018 DSM 1021: SAINS 1 DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH
SESI: MAC 2018 DSM 1021: SAINS 1 DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH TOPIK 1.0: KUANTITI FIZIK DAN PENGUKURAN COURSE LEARNING OUTCOMES (CLO): Di akhir LA ini, pelajar akan boleh: CLO3: Menjalankan
ACCEPTANCE SAMPLING BAB 5
ACCEPTANCE SAMPLING BAB 5 PENGENALAN Merupakan salah satu daripada SQC (statistical quality control) dimana sampel diambil secara rawak daripada lot dan keputusan samada untuk menerima atau menolak lot
Daftar notasi. jarak s 2, mm 2. lebar dari muka tekan komponen struktur, mm.
LAMPIRAN 467 Daftar notasi E c = modulus elastisitas beton, MPa. Es = modulus elastisitas baja tulangan non-prategang, MPa. f c = kuat tekan beton yang disyaratkan pada umur 28 hari, MPa. h = tinggi total
DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Rumusan Masalah Tujuan Batasan Masalah dan Ruang Lingkup...
DAFTAR ISI Halaman HALAMAN JUDUL... i LEMBAR PENGESAHAN... ii KATA PENGANTAR... iii ABSTRAK... v DAFTAR ISI... vi DAFTAR NOTASI... ix DAFTAR TABEL... x DAFTAR GAMBAR... xii DAFTAR LAMPIRAN... xiv BAB I
LAPORAN KAJIAN: JUMLAH PENGAMBILAN AIR DALAM KEHIDUPAN SEHARIAN MENGIKUT JANTINA KOD KURSUS: STQS 1124 NAMA KURSUS: STATISTIK II
LAPORAN KAJIAN: JUMLAH PENGAMBILAN AIR DALAM KEHIDUPAN SEHARIAN MENGIKUT JANTINA KOD KURSUS: STQS 114 NAMA KURSUS: STATISTIK II DISEDIAKAN OLEH: (KUMPULAN 3D) 1. SORAYYA ALJAHSYI BINTI SALLEH A154391.
BAB V DESAIN TULANGAN STRUKTUR
BAB V DESAIN TULANGAN STRUKTUR 5.1 Output Penulangan Kolom Dari Program Etabs ( gedung A ) Setelah syarat syarat dalam pemodelan struktur sudah memenuhi syarat yang di tentukan dalam peraturan SNI, maka
PERENCANAAN JALAN ALTERNATIF & PERKERASAN LENTUR TANJUNG SERDANG KOTABARU,KALIMANTAN SELATAN KM KM 7+000
PERENCANAAN JALAN ALTERNATIF & PERKERASAN LENTUR TANJUNG SERDANG KOTABARU,KALIMANTAN SELATAN KM 4+000 KM 7+000 LATAR BELAKANG TUJUAN DAN BATASAN MASALAH METODOLOGI PERENCANAAN HASIL Semakin meningkatnya