Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR.
|
|
- Κηφεύς Δουρέντης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Τα IIR φίλτρα είναι επαναληπτικά ή αναδροµικά, µε την έννοια ότι δείγµατα της εξόδου χρησιµοποιούνται από το σύστηµα για τον υπολογισµό τν νέν τιµών της εξόδου σε επόµενες χρονικές στιγµές. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR. Τα IIR φίλτρα είναι ασταθή, αν οι πόλοι της συνάρτησης µεταφοράς βρίσκονται εκτός του µοναδιαίου κύκλου. Τα IIR δεν έχουν γραµµική απόκριση φάσης στη ζώνη διέλευσης, όπς τα µη επαναληπτικά FIR φίλτρα µε συµµετρική ή αντισυµµετρική κρουστική απόκριση. Τα IIR φίλτρα µπορούν εύκολα να σχεδιασθούν αρχίζοντας από ένα αναλογικό φίλτρο και κατόπιν χρησιµοποιώντας κατάλληλη απεικόνιση του επιπέδου- στο επίπεδο-z. Αρχικά προσδιορίζεται η και στη συνέχεια στο z, έτσι ώστε τα επιθυµητά χαρακτηριστικά του αναλογικού φίλτρου να διατηρούνται κατά τον καλύτερο δυνατό τρόπο
2 W Ζώνη αποκοπής Ζώνη διέλευσης Ιδανικό βαθυπερατό φίλτρο µεεύρος-ζώνης W Ζώνη αποκοπής Η γραφική παράσταση της απόκρισης ισχύος σε συνάρτηση µε τη κυκλική συχνότητα. log Ζώνη αποκοπής Μεταβατική ζώνη Ζώνη διέλευσης Μεταβατική ζώνη Πραγµατικό βαθυπερατό φίλτρο Ζώνη αποκοπής db db Η γραφική παράσταση της απόκρισης ισχύος σε db σε συνάρτηση µε τη κυκλική συχνότητα. -
3 Χαρακτηριστικά χαµηλοπερατού αναλογικού φίλτρου j +ε Zώνη µετάβασης Ζώνη διέλευσης Ζώνη αποκοπής A Κανονικοποιηµένη απόκριση ισχύος ενός αναλογικού φίλτρου βασικής ζώνης. ε παράµετρος ταλαντώσεν ζώνης διέλευσης bnd rile rmeter συχνότητααποκοπήςζώνηςδιέλευσης bnd uto requeny Α παράµετρος εξασθένησης ζώνης αποκοπής tobnd ttenution rmeter συχνότητααποκοπήςζώνηςαποκοπής tobnd uto requeny -3
4 δ + δ Ω + δ δ δ δ + δ Ζώνη διέλευσης Ω P Ζώνη µετάβασης Ω S Ζώνη αποκοπής π Ω j +ε A Ζώνη διέλευσης Zώνη µετάβασης Ζώνη αποκοπής Απόλυτη απόκριση ισχύος ενός ψηφιακού φίλτρου βασικής ζώνης. Κανονικοποιηµένη απόκριση ισχύος ενός αναλογικού φίλτρου βασικής ζώνης. Deibel R P A S Ω P Ω S π Σχετική απόκριση ισχύος ενός ψηφιακού φίλτρου βασικής ζώνης. Ω Η απόκριση συχνότητας του αναλογικού φίλτρου ικανοποιεί τις j A j + ε,, -4
5 Σχέσεις µεταξύ τν παραµέτρν του αναλογικού φίλτρου στην + ε j στην A j ΟιπαράµετροιεκαιΑσχετίζονταιµετις R και A αντίστοιχαστηνκλίµακα db µετις R R log ε + ε A A log A A Οιταλαντώσειςδ καιδ σχετίζονταιµετιςεκαιααντίστοιχαµετις δ + δ + δ + δ δ ε A ε δ + δ A δ -5
6 Ιδιότητεςτου Η α j Από τη συνάρτηση µεταφοράς ενός αναλογικού συστήµατος προσδιορίζεται η απόκριση συχνότητας του συστήµατος αν περιέχεται ο φανταστικός άξονας στο πεδίο σύγκλισης ς j j j j j j j j έχουµε για το τετράγνο του µέτρου της απόκρισης συχνότητας j j ήισοδύναµα Σεραφείµ Καραµπογιάς -6
7 j z Παράδειγµα πόλν και µηδενικών της σ Παρατηρούµε ότι οι πόλοι και τα µηδενικά είναι τοποθετηµένα συµµετρικά ς προς το φανταστικό άξονα. Για πραγµατικά φίλτρα οι πόλοι και τα µηδενικά είναι συζυγή, δηλαδή, παρουσιάζουν συµµετρία ς προς τον πραγµατικό άξονα. Αν θέλουµε το αναλογικό φίλτρο να είναι αιτιατό και ευσταθές θα πρέπει οι πόλοι να βρίσκονταιστοαριστερόηµιεπίπεδο. Έτσιδίνουµεόλουςτουςπόλους της - πουβρίσκονταιστοαριστερόηµιεπίπεδοστην Αντίθεταταµηδενικάτης µπορούνναβρίσκονταιοπουδήποτεστοµιγαδικόεπίπεδο. Επιλέγουµεταµηδενικάτης - πουβρίσκονταιστοφανταστικόάξοναςµηδενικά της, καιέτσιτοφίλτροείναιφίλτροελάχιστηςφάσης. -7
8 j Χαµηλοπερατό Φίλτρο Butterworth, N Η απόκριση ισχύος του φίλτρου είναι,5 N N N j + N Για τη συνάρτηση µεταφοράς του συστήµατος ισχύουν j j j j N N + + j N N Οιρίζεςτουπολυνύµουτουπαρονοµαστή ήοιπόλοιτης - είναι k N j e j π N k+ N+, k,,, N -8
9 k Οι θέσεις τν πόλν στο µιγαδικό επίπεδο j σ j N N k σ ιαγράµµαταπόλνφίλτρν Btterworth η και η τάξης j j N 3 N 4 σ σ ιαγράµµαταπόλνφίλτρν Btterworth 3 η και 4 η τάξης -9
10 Έναευσταθέςκαιαιτιατόφίλτρο µπορείναοριστείανεπιλέξουµετουςπόλουςπου βρίσκονται στο αριστερό ηµιεπίπεδο του µιγαδικού ηµιεπιπέδου, δηλαδή, N k πόλοι στο αριστερό ηµιεπίπεδο Η συνάρτηση µεταφοράς τν πρτότυπν φίλτρν Butterworth βασικής ζώνης πρώτης και δεύτερης τάξης είναι αντίστοιχα j Σεραφείµ Καραµπογιάς σ + j σ + j j
11 Παράδειγµα Να υπολογιστεί η τάξη ενός χαµηλοπερατού φίλτρου Butterworth το οποίο παρουσιάζει εξασθένιση db στο Kz και 4 db στο 5 Kz Λύση: Για την παράµετρο ταλάντσης ε στη ζώνη διέλευσης έχουµε log db ε,589 + ε Για την παράµετρο εξασθένησης Α στη ζώνη αποκοπής έχουµε log A 4 4dB A R log +ε j A log A Γιατιςσυχνότητες και έχουµε rd Kz π π e rd 5Kz π π e R P A S +ε A -
12 j +ε A από τις οποίες έχουµε Γιατηναπόκρισηισχύοςστησυχνότητα έχουµε N j N + + ε Γιατηναπόκρισηισχύοςστησυχνότητα έχουµε j N + A N ε A - N A - ε N log log A ε 3,8 η τιµή στρογγυλεύεται στον αµέσς µεγαλύτερο ακέραιο. Έτσι η τάξη είναι Ν 4. Η τιµή γιατην τάξη του φίλτρου εκφράζεταιµετηβοήθειατουλόγουµετάβασης k. και του παράγοντα διακριτότητας k N A ε log log ς k k -
13 Παράδειγµα Ναπροσδιοριστείησυνάρτησηµεταφοράς,, τουαναλογικούφίλτρουπουέχει j 6 Λύση: + 64 Παρατηρούµε j N 3και ,5 3,5 j,5 Οι πόλοι της, σ έτσι η συνάρτηση µεταφοράς είναι ,5 j,433 +,5 +,5 + +,5,5 +,5 +,5 Στο ΜATLAB υπάρχει η συνάρτηση [z,,k] butt N η οποία σχεδιάζει ένα πρτότυπο δηλαδή αναλογικόφίλτρο Butterworth τάξης Nκαιεπιστρέφειταµηδενικάστοδιάνυσµα zτουςπόλους στο και την τιµή κέρδους στο k. Η συνάρτηση u_butt που ακολουθεί σχεδιάζει ένα µη κανονικοποιηµένο αναλογικό φίλτρο Butterworth σε άµεση µορφή. Σεραφείµ Καραµπογιάς,5 j,433-3
14 untion [b,] u_buttn,omeg; % b Συντελεστές του πολυνύµου του αριθµητή της % Συντελεστές του πολυνύµου του παρονοµαστή της % N Τάξη του φίλτρου Butterworth % Omeg Συχνότητα αποκοπής σε rdin/e [z,,k] buttn; *Omeg; k k*omeg^n; B relolyz; b k; b k*b; reloly; [b,] u_butt3,.5 b ,5 +,5 +,5-4
15 Από τα χαρακτηριστικά του αναλογικού χαµηλοπερατού φίλτρου, R, και A θα προσδιοριστούν η τάξη N και η συχνότητα αποκοπής της ζώνης διέλευσης φίλτρου Butterworth για, log j R log N + R για, log j A log N + A Λύνοντας τις δύο παραπάν εξισώσεις έχουµε N R N log R [ log A / ] N A -5
16 Παράδειγµα Να σχεδιαστεί ένα χαµηλοπερατό φίλτρο Butterworth µε χαρακτηριστικά Σεραφείµ Καραµπογιάς Λύση:,π, R 7dB,,3π και A 6dB N log [ log,6 / ],π,3π,7,79 3,π,3π,4985, 5 6, 7 6, 6 επιλέγουµε,5, έτσικαταλήγουµεστοφίλτροτουπροηγούµενουπαραδείγµατος j +,5,5 +,5 +,5 Η συνάρτηση d_butt που ακολουθεί σχεδιάζει ένα µη κανονικοποιηµένο αναλογικό φίλτρο Butterworth σε άµεση µορφή από τα χαρακτηριστικά του. -6
17 untion [b,] d_buttw,w,r,a % b Οι συντελεστές του αριθµητή της % Οι συντελεστές του παρονοµαστή της % w Συχνότητα άκρης της ζώνης διέλευσης σε rd/e; w > % w Συχνότηταακρήςτηςζώνηςαποκοπήςσε rd/e; w > w > % R Ταλαντώσειςτηςζώνηςδιέλευσηςσε +db; R > % A Εξασθένισητηςζώνηςαποκοπήςσε +db; A > i w < error'η συχνότητα άκρης της ζώνης διέλευσης πρέπει να είναι > ' end i w < w error'η άκρη της ζώνης αποκοπής πρέπει να είναι > της συχνότητας άκρης της ζώνης διέλευσης ' end i R < A < error'pb ταλάντση και/ή SB εξασθένηση πρέπει να είναι > ' end N eillog^r/-/^a/-/*logw/w; rint'\n*** Butterworth Filter Order %. \n',n OmegC w/^r/-^/*n; [b,]u_buttn,omegc; -7
18 Η συνάρτηση req_m που ακολουθεί προσδιορίζει τα χαρακτηριστικά ενός φίλτρου Butterworth. untion [db,mg,h,w] req_mb,,wmx; % db Το µέτρο σε db στο διάστηµα [ ές wmx] % mg Το µέτρο στο διάστηµα [ ές wmx] % h Η απόκριση φάσης σε rdin στο διάστηµα [ ές wmx] % w διάνυσµα από 5 δείγµατα συχνότητας στο διάστηµα [ ές wmx] % b Οι συντελεστές του αριθµητή της % Οι συντελεστές του παροµανοµαστή της % wmx Μέγιστη συχνότητα σε rd/e του διαστήµατος ενδιαφέροντος % w [::5]*wmx/5; reqb,,w; mg b; db *logmg+e/mxmg; h ngle; -8
19 Παράδειγµα Να σχεδιαστεί ένα χαµηλοπερατό φίλτρο Butterworth µε χαρακτηριστικά,π, R 7dB,,3π και A 6 db w.*i; w.3*i; R 7; A 6; Rile ^ -R/; Attn ^ -A/; % Σχεδιάση αναλογικού φίλτρου [b,] d_buttw,w,r,a; % Υπολογισµός της απόκρισης συχνότητας: [db,mg,h,w] req_mb,,.5*i; % Υπολογισµός της κρουστικής απόκρισης: [h,x,t] imuleb,; % Plot -9
20 Χαµηλοπερατό Φίλτρο Chebyhev j + ε TN όπουνείναιητάξητουφίλτρου, εείναιοπαράγονταςταλάντσηςστηζώνηδιέλευσηςκαι Τ Ν x τοπολυώνυµο ChebyhevΝ-τάξηςτοοποίοδίνεταιαπότη T o oh N o x, N oh x N x, x < x< όπου Το πολυώνυµο T N x µεταξύ < x < ταλαντώνεται µεταξύ του και έτσι το φίλτρο παρουσιάζει ταλαντώσεις ίσου πλάτους στη ζώνη διέλευσης. Επίσης για < x < ελαττώνεται µονότονα στο µηδέν. x Σεραφείµ Καραµπογιάς j +ε Nπεριττός j +ε N άρτιος A r A r -
21 Γιαναπροσδιορίσουµεένααιτιατόκαιευσταθέςφίλτρο πρέπειναβρούµετουςπόλους του καιναεπιλέξουµετουςπόλουςπουβρίσκονταιστοαριστερόηµιεπίπεδογια το. Οιπόλοιτου είναιοιρίζεςτου + ε T N Αν k σ k + jk, k,,, N είναι οι πόλοι στο αριστερό ηµιεπίπεδο του παρα-πάν πολυνύµου τότε όπου σ o π k+ π [ + ] k N in π k+ π [ + ] k b N j N N N N α / α b α + / α k,,, N α + ε + και ε -
22 Οι πόλοι του φίλτρου βρίσκονται σε έλλειψη µε κύριο άξονα και bδευτερεύοντα άξονα Im π 3 b Ηθέσητνπόλνγιαέναφίλτρο Chebyhevτρίτηςτάξης Ie Η συνάρτηση µεταφοράς του συστήµατος είναι K όπου Κ είναι ο παράγοντας κανονικοποίησης που επιλέγεται έτσι ώστε j, k, N + ε k N περιττɺ ος Στο ΜATLAB υπάρχει η συνάρτηση ɺ αρτιος [ z,, k ] heb N, R η οποία σχεδιάζει ένα κανονικοποιηµένο αναλογικό φίλτρο Chebyhev τάξης N µε ταλάντση ζώνης διέλευσης R και επιστρέφει τα µηδενικά στο διάνυσµα z τους πόλους στο και την τιµή κέρδους στο k. Η συνάρτηση u_hbl που ακολουθεί σχεδιάζει ένα µη κανονικοποιηµένο αναλογικό φίλτρο Chebyhev σε άµεση µορφή. -
23 untion [b,] u_hbn,r,omeg; % b Συντελεστές του πολυνύµου του αριθµητή % Συντελεστές του πολυνύµου του παρονοµαστή % N Τάξητουφίλτρου % R Ταλάντσηστηζώνηδιέλευσηςσε db; R > % Omeg Συχνότητα αποκοπής σε rdin/e % [z,,k] hebn,r; reloly; Nn N+; *Omeg; reloly; Nu N+; k k*nu/nn; b k; B relolyz; b k*b; -3
24 Παράδειγµα Σεραφείµ Καραµπογιάς Να σχεδιαστεί ένα χαµηλοπερατό FIR φίλτρο διακριτού χρόνου µε χαρακτηριστικά Λύση, π, 3π R db A 6 db R A 6 ε,588 A 6, 396, π καιητάξητουφίλτρουείναι g A / ε r,49 α,3π,π N log log ε + + ε g+ r + 4,7 g r N 4 b Nα / α, 3646 Nα + / α, 644 N N -4
25 Υπάρχουν 4 πόλοι Σεραφείµ Καραµπογιάς εποµένς π π π [ ] [ + 8 ± b in + ],877, 679 π [ ] [ π π 3 + ± b in + ],7, 559 π,3 ± j o 8 π, ± j o 8 8,895,3,3895,389 K k k +,754 +,3895 +,434 +,3 Ο αριθµητής είναι τέτοιος ώστε j + ε,895-5
26 untion [b,] d_hbw,w,r,a; % b Οι συντελεστές του αριθµητή της % Οι συντελεστές του παροµανοµαστή της % w Συχνότητα άκρης της ζώνης διέλευσης σε rd/e; w > % w Συχνότηταακρήςτηςζώνηςαποκοπήςσε rd/e; w > w > % R Ταλαντώσειςτηςζώνηςδιέλευσηςσε +db; R > % A Εξασθένισητηςζώνηςαποκοπήςσε +db; A > i w < error'η συχνότητα άκρης της ζώνης διέλευσης πρέπει να είναι > ' end i w < w error'η άκρη της ζώνης αποκοπής πρέπει να είναι > της συχνότητας άκρης της ζώνης διέλευσης ' end i R < A < error'pb ταλάντση και/ή SB εξασθένηση πρέπει να είναι > ' end e qrt^r/-; A ^A/; OmegC w; OmegR w/w; g qrta*a-/e; N eillogg+qrtg*g-/logomegr+qrtomegr*omegr-; [b,]u_hbn,r,omegc; -6
27 Μετατροπή φίλτρου βασικής ζώνης σε φίλτρο διέλευσης ζώνης συχνοτήτν Γιατηµετατροπήενόςαναλογικούφίλτρουβασικήςζώνηςµεσυχνότητα στοόριοτης ζώνηςδιέλευσης, σεφίλτροζώνηςδιέλευσηςµεσυχνότητες l και u στοκατώτεροκα ανώτερο όριο της ζώνης διέλευσης αντίστοιχα, εκτελούµε το µετασχηµατισµό BP + u l u l Παρατηρούµε ότι η τάξη του φίλτρου διέλευσης ζώνης συχνοτήτν που προκύπτει είναι διπλάσια της τάξης του αρχικού φίλτρου βασικής ζώνης. Εφαρµογή Να µετατραπεί το πρώτης τάξης φίλτρο Butterworth βασικής ζώνης µε συνάρτηση µεταφοράς / +, όπου π rd/e, σεένααναλογικόφίλτροδιέλευσης ζώνης συχνοτήτνµεσυχνότητεςσταόριατηςζώνηςδιέλευσης l π rd / e και u 3π rd / e. -7
28 Μετατροπή φίλτρου βασικής ζώνης σε φίλτρο διέλευσης υψηλών συχνοτήτν Γιατηµετατροπήενόςαναλογικούφίλτρουβασικήςζώνηςµεσυχνότητα στοόριοτης ζώνηςδιέλευσης, σεφίλτροδιέλευσηςυψηλώνσυχνοτήτνµεσυχνότητα l στοόριοτης ζώνης διέλευσης αντίστοιχα, εκτελούµε το µετασχηµατισµό P l Μετατροπή φίλτρου βασικής ζώνης σε φίλτρο διαφορετικής βασικής ζώνης Γιαναµετατρέψουµεένααναλογικόφίλτροβασικήςζώνηςµεσυχνότητααποκοπής,σε ένα άλλο φίλτρο βασικής ζώνης µε συχνότητα αποκοπής, εκτελούµε το µετασχηµατισµό P -8
29 in t t out t t 4 6 S in S out 4 4 log
30 in t t out t t 4 6 S in S out 4 4 log
31 in t t out t t 4 6 S in S out 4 4 log
32 m in t t m out t t 4 8 M in M out log Kz Kz -3
33 m in t t m out t t 4 8 M in M out log Kz Kz -33
34 m in t t m out t t 4 8 M in M out log Kz Kz -34
Αναλογικά φίλτρα. Τα IIR φίλτρα μπορούν εύκολα να σχεδιασθούν αρχίζοντας από ένα αναλογικό φίλτρο και
Τα IIR φίλτρα είναι επαναληπτικά ή αναδρομικά, με την έννοια ότι δείγματα της εξόδου χρησιμοποιούνται από το σύστημα για τον υπολογισμό των νέων τιμών της εξόδου σε επόμενες χρονικές στιγμές. Για να επιτύχουμε
Διαβάστε περισσότεραΑναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR.
Τα IIR φίλτρα είναι εαναλητικά ή αναδροµικά, µε την έννοια ότι δείγµατα της εξόδου χρησιµοοιούνται αό το σύστηµα για τον υολογισµό τν νέν τιµών της εξόδου σε εόµενες χρονικές στιγµές. Για να ειτύχουµε
Διαβάστε περισσότεραΜετασχηµατισµός αναλογικών φίλτρων σε ψηφιακά
Μετασχηµατισµός αναλογικών φίλτρν σε ψηφιακά Η κλασική µέθοδος για το σχεδιασµό ψηφιακών φίλτρν βασίζεται στο µετασχηµατισµό ενός αναλογικού φίλτρου σε ψηφιακό το οποίο να πληροί ορισµένες προδιαγραφές
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 13: Ψηφιακά Φίλτρα IIR Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ψηφιακά Φίλτρα IIR Εισαγωγή στα Φίλτρα Άπειρης Κρουστικής Απόκρισης (IIR) Σχεδίαση IIR Φίλτρων Γενική
Διαβάστε περισσότεραΜετασχηματισμός αναλογικών φίλτρων σε ψηφιακά
Η κλασική μέθοδος για το σχεδιασμό ψηφιακών φίλτρων βασίζεται στο μετασχηματισμό ενός αναλογικού φίλτρου σε ψηφιακό το οποίο να πληροί ορισμένες προδιαγραφές N M b X Y d h x y N M d X Y n h x n y M N d
Διαβάστε περισσότερα3-Απρ-2009 ΗΜΥ Φίλτρα απόκρισης άπειρου παλμού (IIR)
3-Απρ-009 ΗΜΥ 49. Φίλτρα απόκρισης άπειρου παλμού IIR 3-Απρ-009 5. IIR φίλτρα Βασικά χαρακτηριστικά Βασικό IIR φίλτρο χαρακτηρίζεται ς: όπου h: κρουστική απόκριση φίλτρου θερητικά άπειρη, b & a : συντελεστές
Διαβάστε περισσότεραΑντίστροφος Μετασχηματισμός Ζ. Υλοποίηση συστημάτων Διακριτού Χρόνου. Σχεδίαση φίλτρων
Αντίστροφος Μετασχηματισμός Ζ Υλοποίηση συστημάτων Διακριτού Χρόνου Σχεδίαση φίλτρων Αντίστροφος Μετασχηματισμός Ζ Αντίστροφος ΜΖ (inverse-zt) Προσεγγίσεις εύρεσης του αντίστροφου ΜΖ Τυπικά ο i-zt γίνεται
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Κ. Ψυχαλίνος Πάτρα 005 . METAΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Ορισμοί Μετάβαση από το πεδίο του χρόνου στο πεδίο συχνότητας.
Διαβάστε περισσότεραΣχεδιασµός IIR φίλτρων
Σχεδιασµός IIR φίλτρων. Ένα αναλογικό ζωνοδιαβατό φίλτρο έχει συνάρτηση H(). Σχεδιάστε ( + )( + ) ένα IIR φίλτρο µε την µέθοδο της αµετάβλητης κρουστικής απόκρισης µε συχνότητα δειγµατοληψίας 0 H. Η απάντηση
Διαβάστε περισσότεραΔιάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 10 Κεφ. 7.0-7.2 Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες Σχεδιασμός Φίλτρου Καθορίζονται
Διαβάστε περισσότεραΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ 2004., η οποία όµως µπορεί να γραφεί µε την παρακάτω µορφή: 1 e
ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ 4 AΣΚΗΣΗ () [ ] (.5)
Διαβάστε περισσότεραΑ. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 6 ΔΙΑΦΑΝΕΙΑ 1
Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 6 ΔΙΑΦΑΝΕΙΑ 1 ΑΝΑΛΟΓΙΚΑ ΦΙΛΤΡΑ ΚΑΝΟΝΙΚΟΠΟΙΗΜΕΝΗ ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 6 ΔΙΑΦΑΝΕΙΑ 2 ΦΙΛΤΡΑ BUTTERWORTH: Τα βαθυπερατά φίλτρα έχουν
Διαβάστε περισσότεραΘέματα Εξετάσεων Ιουνίου 2003 στο μάθημα Σήματα και Συστήματα και Λύσεις
Θέματα Εξετάσεν Ιουνίου 00 στο μάθημα Σήματα και Συστήματα και Λύσεις ΘΕΜΑ. μονάδες Έστ το αιτιατό σύστημα d y t y t x t d t όπου x t η είσοδος και y t η έξοδος του συστήματος. α Να υπολογιστεί η συνάρτηση
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 6: Απόκριση Συχνότητας Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier Διακριτού Χρόνου Η έννοια της Απόκρισης Συχνότητας Ιδιότητες της Απόκρισης
Διαβάστε περισσότεραΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5 Α. Σχεδίαση Ψηφιακών Φίλτρων Β. Φίλτρα FIR Σχετικές εντολές του Matlab: fir, sinc, freqz, boxcar, triang, hanning, hamming, blackman, impz, zplane, kaiser. Α. ΣΧΕΔΙΑΣΗ
Διαβάστε περισσότεραΣήματα και Συστήματα ΙΙ
Σήματα και Συστήματα ΙΙ Ενότητα 6: Απόκριση Συχνότητας-Φίλτρα Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας,
Διαβάστε περισσότεραΣχεδιασµός IIR φίλτρων - Λύσεις των Ασκήσεων
Σχεδιασµός IIR φίλτρων - Λύσεις των Ασκήσεων. Ένα βαθυπερατό αναλογικό φίλτρο περιγράφεται από την σχέση Η(). Να βρεθεί ( ιγραµ. Μετασχ.) το αντίστοιχο ψηφιακό µε συχνότητα αποκοπής (-3dB) f 600H όταν
Διαβάστε περισσότερα1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step.
1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step. Α) Β) Ε) F) G) H) Ι) 2) Αν το διακριτό σήμα x(n) είναι όπως στην
Διαβάστε περισσότεραHMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά
Διαβάστε περισσότεραHMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 19: Φίλτρα (IV) Σχεδιασμός φίλτρων FIR Είδαμε ότι για φίλτρα IIR συνήθως σχεδιάζουμε ένα φίλτρο ΣΧ και μετασχηματίζουμε Για φίλτρα FIR θα δούμε
Διαβάστε περισσότεραx(t) = 4 cos(2π600t π/3) + 2 sin(2π900t + π/4) + sin(2π1200t) (1) w(t) = y(t)z(t) = 2δ(t + 1) (2) (2 sin(2π900t + π/4) t= 1 + sin(2π1200t) )
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ιάρκεια : 3 ώρες Ρήτρα τελικού : 4.0/10.0
Διαβάστε περισσότεραHMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 17: Φίλτρα (II)
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 17: Φίλτρα (II) Φίλτρα Bu*erworth, Chebyshev και ελλειπτικά φίλτρα Είναι οι πιο δημοφιλείς τεχνικές σχεδιασμού φίλτρων συνεχούς χρόνου (Appendix
Διαβάστε περισσότεραΑπόκριση Γραμμικών Συστημάτων σε Εκθετικές Εισόδους
Απόκριση Γραμμικών Συστημάτων σε Εκθετικές Εισόδους x h y όπου Η απόκρισης συχνότητας είναι μιγαδική συνάρτηση της διακριτής συχνότητας Ω και γενικά έχει τη μορφή h Η συνάρτηση ΗΩ είναι ο Διακριτός Μετασχηματισμός
Διαβάστε περισσότεραΟλοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων
Ψηφιακή Επεξεργασία Σηµάτων 20 Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων Α. Εγκατάσταση Αφού κατεβάσετε το συµπιεσµένο αρχείο µε το πρόγραµµα επίδειξης, αποσυµπιέστε το σε ένα κατάλογο µέσα
Διαβάστε περισσότεραKεφάλαιο 7 Σχεδιασμός IIR Φίλτρων
Kεφάλαιο 7 Σχεδιασμός IIR Φίλτρων Φίλτρα «άπειρης» κρουστικής απόκρισης IIR - Infinite impule repone filter Recurive filter / 77 / 78 Περιεχόμενα Εισαγωγικά χαρακτηριστικά των IIR φίλτρων, σχεδιασμός στο
Διαβάστε περισσότεραΣχεδιασµός IIR Φίλτρων Φίλτρα «άπειρης» κρουστικής απόκρισης IIR - Infinite impulse response filters
Σχεδιασµός IIR Φίλτρων Φίλτρα «άπειρης» κρουστικής απόκρισης IIR - Infinite impule repone filter Νοέµβριος 005 ΨΕΣ Περιεχόµενα Εισαγωγικά χαρακτηριστικά των IIR φίλτρων, σχεδιασµός στο πεδίο- Συναρτήσεις
Διαβάστε περισσότεραΣχεδιασμός Φίλτρων. Κυριακίδης Ιωάννης 2011
Σχεδιασμός Φίλτρων Κυριακίδης Ιωάννης 2011 Εισαγωγή Τα φίλτρα IIR (Infinite Impulse Response) είναι φίλτρα των οποίων η κρουστική απόκριση δεν είναι πεπερασμένη. Συνήθως χρησιμοποιούνται οι παρακάτω τρείς
Διαβάστε περισσότεραΜετασχηµατισµός αναλογικών φίλτρων σε ψηφιακά
Μετασχηµατισµός αναλογικών φίλτρν σε ψηφιακά Η κλασική µέθοδος για το σχεδιασµό ψηφιακών φίλτρν βασίζεται στο µετασχηµατισµό ενός αναλογικού φίλτρου σε ψηφιακό το οοίο να ληροί ορισµένες ροδιαγραφές N
Διαβάστε περισσότεραΔιάρκεια εξέτασης 2 ώρες
ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΕΙ ΠΕΙΡΑΙΑ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ B ΠΕΡΙΟΔΟΥ ΕΑΡΙΝΟΥ 007-08 Η/Ν ΦΙΛΤΡΑ Εξεταστής: Καθηγητής Ηρ. Γ. Δηµόπουλος Διάρκεια εξέτασης ώρες 0.09.008 ΖΗΤΗΜΑ (5 µονάδες Tο εικονιζόµενο κανονικοποιηµένο
Διαβάστε περισσότεραΠαρατηρήσεις για το µετασχηµατισµό Laplace
Παρατηρήσεις για το µετασχηµατισµό plce Η συνάρτηση µεταφοράς, H, ενός ΓΧΑ συστήµατος είναι µία ρητή συνάρτηση, δηλαδή, µπορείναεκφραστείςλόγοςδύοπολυνύµντηςµεταβλητής. D N H Για να είναι ένα σύστηµα αιτιατό
Διαβάστε περισσότεραFilter Design - Part I. Νοέµβριος 2005 ΨΕΣ 1
Filter Deign - Part I Νοέµβριος 005 ΨΕΣ >> t 0:00; >> x co(*pi*t*3/0); >> x 0.5*co(*pi*t*55/0); >> xxx; >> x_f fft(x); Νοέµβριος 005 ΨΕΣ Νοέµβριος 005 ΨΕΣ 3 Deign of a Low-Pa filter >> [B,A]butter(4, 0.)
Διαβάστε περισσότεραΣυστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές x h γραµµική εξίσωση διαφορών µε σταθερούς συντελεστές της µορφής x µπορεί να θεωρηθεί ως ένας αλγόριθµος υπολογισµού
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟ ΜΑΘΗΜΑ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ (ΚΙΙΙ)
1 ΘΕΜΑΤΑ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟ ΜΑΘΗΜΑ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ (ΚΙΙΙ) 213-214. 1. ΘΕΜΑ 1: Στο Σχ.1, έχουμε ένα κανονικοποιημένο βαθυπερατό φίλτρο τύπου (Τ) τρίτης τάξης Butterworth. Οι αντιστάσεις (R S ) και (R
Διαβάστε περισσότεραΣχήµα 1: Χρήση ψηφιακών φίλτρων για επεξεργασία σηµάτων συνεχούς χρόνου
ΜΑΘΗΜΑ 6: ΣΧΕ ΙΑΣΗ ΦΙΛΤΡΩΝ 6. Εισαγωγή Τα φίλτρα είναι µια ειδική κατηγορία ΓΧΑ συστηµάτων τα οποία τροποποιούν συγκεκριµένες συχνότητες του σήµατος εισόδου σε σχέση µε κάποιες άλλες. Η σχεδίαση ψηφιακών
Διαβάστε περισσότεραΆσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:
1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση
Διαβάστε περισσότεραΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουµε εύκολα τον αντίστροφο Μετασχηµατισµό Fourir µιας συνάρτησης χρίς να καταφεύγουµε στην εξίσση ανάλυσης. Υπολογίζουµε εύκολα την απόκριση συχνότητας
Διαβάστε περισσότεραΣυστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές x h γραµµική εξίσωση διαφορών µε σταθερούς συντελεστές της µορφής x µπορεί να θεωρηθεί ως ένας αλγόριθµος υπολογισµού
Διαβάστε περισσότερα20-Μαρ-2009 ΗΜΥ Φίλτρα απόκρισης πεπερασμένου παλμού (FIR)
ΗΜΥ 429 14. Φίλτρα απόκρισης πεπερασμένου παλμού (FIR) 1 Γενικά βήματα για σχεδιασμό φίλτρων (1) Προσδιορισμός χαρακτηριστικών του φίλτρου: Χαρακτηριστικά σήματος (π.χ. μέγιστη συχνότητα) Χαρακτηριστικά
Διαβάστε περισσότεραΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός Laplace. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Μετασχηµατισµός Laplace Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αιτιατότητα Μη-Αιτιατότητα. Ευστάθεια. Περιοχή Σύγκλισης Μετασχηµατισµού Laplace
Διαβάστε περισσότεραΟ Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ
Ο Μετασχηματισμός Ζ Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο μετασχηματισμός Z (Ζ-Τransform: ZT) χρήσιμο μαθηματικό εργαλείο για την ανάλυση των διακριτών σημάτων και συστημάτων αποτελεί ό,τι ο μετασχηματισμός
Διαβάστε περισσότεραΌταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε
Διαβάστε περισσότεραΤ.Ε.Ι. Λαμίας Τμήμα Ηλεκτρονικής
Τ.Ε.Ι. Λαμίας Τμήμα Ηλεκτρονικής Σχεδίαση Φίλτρων IIR ( Infinite Impulse Response Filters ) Μπαρμπάκος Δημήτριος Τζούτζης Έλτον-Αντώνιος Τα φίλτρα άπειρης κρουστικής απόκρισης ( Infinite Duration Impulse
Διαβάστε περισσότερα1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...
Διαβάστε περισσότεραΑΣΚΗΣΗ 6 Σχεδίαση FIR και IIR φίλτρων στο Matlab
Σ. Φωτόπουλος Ασκήσεις ΨΕΣ 1 ΑΣΚΗΣΗ 6 Σχεδίαση FIR και IIR φίλτρων στο Matlab Στην άσκηση αυτή γίνεται σχεδιασµός FIR και ΙΙR ψηφιακών φίλτρων. (Σε επόµενη άσκηση θα γίνει και η υλοποίηση µε τον επεξεργαστή
Διαβάστε περισσότεραΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ
ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ Τα φίλτρα είναι ηλεκτρικά δικτυώματα που αφήνουν να περνούν απαραμόρφωτα ηλεκτρικά σήματα μέσα σε συγκεκριμένες ζώνες συχνοτήτων και ταυτόχρονα μηδενίζουν κάθε άλλο ηλεκτρικό
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότερα4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι
Διαβάστε περισσότεραΣυστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές x h γραµµική εξίσωση διαφορών µε σταθερούς συντελεστές της µορφής x µπορεί να θεωρηθεί ως ένας αλγόριθµος υπολογισµού
Διαβάστε περισσότεραΣχήμα Χαμηλοδιαβατά φίλτρα:
ΦΙΛΤΡΑ 6.. ΦΙΛΤΡΑ Το φίλτρο είναι ένα σύστημα του οποίου η απόκριση συχνότητας παίρνει σημαντικές τιμές μόνο για συγκεκριμένες ζώνες του άξονα συχνοτήτων. Στο Σχήμα 6.6 δείχνουμε την απόκριση συχνότητας
Διαβάστε περισσότεραΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ
Ε. Μ. Πολυτεχνείο Εργαστήριο Ηλεκτρονικής ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ Γ. ΠΑΠΑΝΑΝΟΣ ΠΑΡΑΡΤΗΜΑ : Συναρτήσεις Δικτύων Βασικοί ορισμοί Ας θεωρήσουμε ένα γραμμικό, χρονικά
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 12: Ψηφιακά Φίλτρα FIR Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ψηφιακά Φίλτρα FIR Εισαγωγή στα Ψηφιακά Φίλτρα Έλεγχος απολαβής (κέρδους) φίλτρου Φίλτρα ελάχιστης,
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Laplace Στοιχειωδών Συναρτήσεων Πίνακας Ιδιοτήτων
Διαβάστε περισσότερα10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα
-Μαρτ-9 ΗΜΥ 49. Παραθύρωση Ψηφιακά φίλτρα . Παραθύρωση / Ψηφιακά Φίλτρα -Μαρτ-9 Είδη παραθύρων Bartlett τριγωνικό: n, n Blacman: πn 4πn.4.5cos +.8cos, n < . Παραθύρωση / Ψηφιακά Φίλτρα -Μαρτ-9 3 Hamming:
Διαβάστε περισσότεραΑ. Αιτιολογήστε αν είναι γραμμικά ή όχι και χρονικά αμετάβλητα ή όχι.
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΕΞ. ΠΕΡΙΟΔΟΣ Β ΧΕΙΜ. 00 - ΩΡΕΣ ΘΕΜΑ Για τα παρακάτω συστήματα εισόδου εξόδου α. y ( 3x( x( n ) β. y ( x( n ) / γ. y ( x( x( n ) δ. y( x( n ) Α. Αιτιολογήστε αν είναι γραμμικά
Διαβάστε περισσότεραΣυνεπώς, η συνάρτηση µεταφοράς δεν µπορεί να οριστεί για z=0 ενώ µηδενίζεται όταν z=1. Εύκολα προκύπτει το διάγραµµα πόλων-µηδενικών ως εξής:
ΦΕΒΡΟΥΑΡΙΟΣ Άσκηση : Δίνεται το LTI σύστηµα y[ n ] T{ x[ n ] } που ορίζεται από την αναδροµική σχέση: y[n ]y[n - ] +x[n ]- x[ n -] +x[ n - ] ( ). Να βρεθεί η συνάρτηση µεταφοράς του συστήµατος H(z ). 𝑦
Διαβάστε περισσότεραΤι είναι σήμα; Παραδείγματα: Σήμα ομιλίας. Σήμα εικόνας. Σεισμικά σήματα. Ιατρικά σήματα
Τι είναι σήμα; Σεραφείμ Καραμπογιάς Ως σήμα ορίζεται ένα φυσικό μέγεθος το οποίο μεταβάλλεται σε σχέση με το χρόνο ή το χώρο ή με οποιαδήποτε άλλη ανεξάρτητη μεταβλητή ή μεταβλητές. Παραδείγματα: Σήμα
Διαβάστε περισσότεραstopband Passband stopband H L H ( e h L (n) = 1 π = 1 h L (n) = sin ω cn
Πανεπιστημιο Κυπρου Τμημα Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων ΗΜΥ 22: Σηματα και Συστηματα για Μηχανικους Υπολογιστων Κεφάλαιο 7: Σχεδιασμός Φίλτρων!"#!"#! "#$% Σημειώσεις διαλέξεων στο: http://www.eg.ucy.ac.cy/chadcha/
Διαβάστε περισσότερα(s) V Ιn. ΘΕΜΑ 1 1. Υπολογίστε την συνάρτηση µεταφοράς τάσης του. του κυκλώµατος και χαρακτηρίστε το.
Θέµατα εξετάσεων Η/Ν Φίλτρων Σας προσφέρω τα περισσότερα θέµατα που έχουν τεθεί σε εξετάσεις τα τελευταία χρόνια ελπίζοντας ότι θα ασχοληθείτε µαζί τους κατά την προετοιµασία σας. Τα θέµατα δείχνουν το
Διαβάστε περισσότεραΤι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές.
Τι είναι σήµα; Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές. Παραδείγµατα: Σήµα οµιλίας Πίεση P() Σήµα εικόνας y I
Διαβάστε περισσότεραΑνάλυση ΓΧΑ Συστημάτων
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 9 με Μετασχηματισμούς Κεφ. 5 (εκτός 5.7.4 και 5.3 μόνο από διάλεξη) Ένα ΓΧΑ σύστημα καθορίζεται πλήρως από Κρουστική απόκριση (impulse response)
Διαβάστε περισσότεραΕΥΑΙΣΘΗΣΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΤΕΙ ΠΕΙΡΑΙΑ -ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΦΙΛΤΡΩΝ ΧΕΙΜΕΡΙΝΟ 2017-18 ΕΥΑΙΣΘΗΣΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ 1. ΕΥΑΙΣΘΗΣΙΑ Ενα κύκλωµα, το οποίο κάνει µια συγκεκριµένη λειτουργία εκφραζόµενη
Διαβάστε περισσότεραΥπολογίζουμε εύκολα τον αντίστροφο Μετασχηματισμό Fourier μιας συνάρτησης χωρίς να καταφεύγουμε στην εξίσωση ανάλυσης.
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Υπολογίζουμε εύκολα τον αντίστροφο Μετασχηματισμό Fourir μιας συνάρτησης χωρίς να καταφεύγουμε στην εξίσωση ανάλυσης. Υπολογίζουμε εύκολα την απόκριση
Διαβάστε περισσότεραΠαρουσίαση του μαθήματος
Παρουσίαση του μαθήματος Εργαστήριο 1 Ενότητες Μαθήματος 1. Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Τι είναι ψηφιακή εικόνα. Τι σημαίνει Επεξεργασία εικόνας. Ανάλυση εικόνας σε συχνότητα ( Μετασχηματισμός Fourier σε εικόνα)
Διαβάστε περισσότεραΜετασχηµατισµός Ζ (z-tranform)
Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς
Διαβάστε περισσότεραΣχεδίαση Ενεργών-RC Φίλτρων (Μέρος Ι) (Σύνθεση της συνάρτησης µεταφοράς)
Κεφάλαιο 6 Σχεδίαση Ενεργών-RC Φίλτρων (Μέρος Ι) (Σύνθεση της συνάρτησης µεταφοράς) 6. Εισαγωγή Η σύνθεση ενός φίλτρου ξεκινάει από τις προδιαγραφές, οι οποίες περιγράφουν την συµπεριφορά πλάτους του φίλτρου
Διαβάστε περισσότεραΕυστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια 6 Nicol Tptouli Ευστάθεια και θέση πόλων Σ.Α.Ε ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος
Διαβάστε περισσότεραHMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 13: Ανάλυση ΓΧΑ συστημάτων (Ι) Περιγραφές ΓΧΑ συστημάτων Έχουμε δει τις παρακάτω πλήρεις περιγραφές ΓΧΑ συστημάτων: 1. Κρυστική απόκριση (impulse
Διαβάστε περισσότεραΙατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5γ. Σημειώσεις μαθήματος: E mail:
Ιατρικά Ηλεκτρονικά Δρ. Π. Ασβεστάς Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/courses/tio127/ E mail: pasv@teiath.gr 2 1 Πολλές
Διαβάστε περισσότερα24-Μαρ-2009 ΗΜΥ Φίλτρα απόκρισης πεπερασμένου παλμού (FIR)
4-Μαρ-009 ΗΜΥ 49 5. Φίλτρα απόκρισης πεπερασμένου παλμού FIR 5. FIR Φίλτρα Ειδικά θέματα σχεδιασμού FIR: Half-bad FIR 4-Μαρ-009 Σχεδόν οι μισοί συντελεστές 0 μείωση υπολογιστικού κόστους κατά. Ιδιαίτερα
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 14 ΚΑΤΩ ΙΑΒΑΤΑ ΦΙΛΤΡΑ BESSEL-THOMSON
ΚΕΦΑΛΑΙΟ 4 ΚΑΤΩ ΙΑΒΑΤΑ ΦΙΛΤΡΑ BESSELTHOMSON 4. ΚΑΘΥΣΤΕΡΗΣΗ ΦΑΣΗΣ ΚΑΙ ΚΑΘΥΣΤΕΡΗΣΗ ΣΗΜΑΤΟΣ Η χρονική καθυστέρηση συµβαίνει κατά την µετάδοση σε διάφορα φυσικά µέσα και αποτελεί ένα βασικό στοιχείο στην επεξεργασία
Διαβάστε περισσότεραΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 006 Θέµα ο. Για την διαφορική εξίσωση + ' =, > 0 α) Να δειχτεί ότι όλες οι λύσεις τέµνουν κάθετα την ευθεία =. β) Να βρεθεί η γενική λύση. γ) Να βρεθεί και να σχεδιαστεί
Διαβάστε περισσότερα6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει
Διαβάστε περισσότεραΠαραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί
Παράρτημα ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μετασχηματισμός Lplce Παράρτημα 3 ο : Αντίστροφος μετασχηματισμός Lplce Παράρτημα 4 ο : Μετασχηματισμοί δομικών διαγραμμάτων Παράρτημα 5 ο : Τυποποιημένα σήματα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-15: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ - Ενδεικτικές Λύσεις ιάρκεια : 3 ώρες Ρήτρα τελικού :
Διαβάστε περισσότεραΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
Όταν θα έχουµε τελειώσει το κεφάλαιο αυτό θα µπορούµε να: υπολογίσουµε το µετασχηµατισµό aplace στοιχειωδών σηµάτων. αναφέρουµε τις ιδιότητες του µετασχηµατισµού aplace. Σεραφείµ Καραµπογιάς 6. ΚΕΦΑΛΑΙΟ
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού
Διαβάστε περισσότεραHMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας
HMY 49: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου στο χώρο της συχνότητας Μιγαδικά εκθετικά σήματα και
Διαβάστε περισσότεραΤι είναι σήµα; Σεραφείµ Καραµπογιάς
Τι είναι σήµα; Σεραφείµ Καραµπογιάς Ωςσήµαορίζεταιέναφυσικόµέγεθοςτοοποίοµεταβάλλεταισεσχέσηµετοχρόνοή το χώρο ή µε οποιαδήποτε άλλη ανεξάρτητη µεταβλητή ή µεταβλητές Παραδείγµατα: Σήµα οµιλίας Σήµα εικόνας
Διαβάστε περισσότεραΠροηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών
Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών Το εκπαιδευτικό υλικό που ακολουθεί αναπτύχθηκε στα πλαίσια του έργου «Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών», του Μέτρου «Εισαγωγή
Διαβάστε περισσότεραΟ μετασχηματισμός z αντιστοιχεί στην ακολουθία συνάρτηση: Xz ()
Ο Ρ Ι Σ Μ Ο Σ Ο μετασχηματισμός αντιστοιχεί στην ακολουθία συνάρτηση: X x x τη X O Μετασχηματισμός,, της ακολουθίας είναι μιγαδική συνάρτηση, της μιγαδικής μεταβλητής x r j Ω Ο μονόπλευρος μετασχηματισμός
Διαβάστε περισσότεραΕισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier Αθανάσιος
Διαβάστε περισσότεραΣχεδιασµός ΙIR Φίλτρων
Σ.Φωτόπουλος ΨΕΣ- KEF 7o ΙΙR Φίλτρα -09- Σχεδιασµός ΙIR Φίλτρων 7. Εισαγωγικά Τα IIR φίλτρα (ΙΙR nfnte mpule repone) χαρακτηρίζονται απο την κρουστική απόκριση των η οποία είναι απείρου µήκους. Για ευκολία
Διαβάστε περισσότεραΖητείται να εξεταστεί η ευστάθειά του κατά BIBO. Η κρουστική απόκριση του συστήματος είναι L : =
. Δίνεται το ΓΧΑ σύστημα με συνάρτηση μεταφοράς ++2 Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Λύση : Α) +3 +2 ++2 2 + + 2+2 Η κρουστική απόκριση του συστήματος είναι L : 2 + 2 H είναι φραγμένη καθώς.
Διαβάστε περισσότεραΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ
ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) 1 Πόλος στην αρχή των αξόνων: 2 Πόλος στον αρνητικό πραγματικό ημιάξονα: 3 Πόλος στον θετικό πραγματικό ημιάξονα: 4 Συζυγείς πόλοι πάνω
Διαβάστε περισσότεραΨηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2
Ψηφιακά Φίλτρα Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 Αναλογικά και ψηφιακά φίλτρα Στην επεξεργασία σήματος, η λειτουργία ενός φίλτρου είναι να απομακρύνει τα ανεπιθύμητα μέρη ενός σήματος, όπως ένα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 206 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 25/0/206 Ηµεροµηνία
Διαβάστε περισσότεραΦΙΛΤΡΑ. Κατηγορίες Φίλτρων
ΦΙΛΤΡΑ Τα φίλτρα είναι στοιχείο ή διάταξη που μπορεί να επιτρέπει τη διέλευση ή να ανακόπτει ή να διαχρίζει σε μέρη ένα φάσμα συχνοτήτν, δηλ. μια συγκεκριμένη ομάδα συχνοτήτν. Μια από τις πιο συνηθισμένες
Διαβάστε περισσότεραΑνάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Συστηµάτν Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode 6 Ncolas Tsaatsouls Εισαγγή ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος
Διαβάστε περισσότεραΖητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3)
Παράδειγµα 1: Έστω ένα σύστηµα που περιγράφεται από τη διαφορική εξίσωση () +2 () 29 () +42()=() (1) µε µηδενικές αρχικές συνθήκες. (δηλαδή ()(0) = () (0)=()(0)=0) (2) Ζητείται να µελετηθεί το εν λόγω
Διαβάστε περισσότεραΕυστάθεια συστημάτων
1. Ευστάθεια συστημάτων Ευστάθεια συστημάτων Κατά την ανάλυση και σχεδίαση ενός συστήματος αυτομάτου ελέγχου, η ευστάθεια αποτελεί έναν πολύ σημαντικό παράγοντα και, γενικά, είναι επιθυμητό να έχουμε ευσταθή
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό.
ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY Αν μια συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο, τότε είναι και συνεχής στο σημείο αυτό Αν μια συνάρτηση f είναι συνεχής σ ένα
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Σηµάτων. ηµήτριος Βαρσάµης Καθηγητής Εφαρµογών
Ψηφιακή Επεξεργασία Σηµάτων ηµήτριος Βαρσάµης Καθηγητής Εφαρµογών Πεδίο Συχνοτήτων Απόκριση συχνότητας LTI συστήµατος µε συνάρτηση µεταφοράς Hz). Σε ένα LTI σύστηµα µε συνάρτησηµεταφοράς Hz), εφόσον ο
Διαβάστε περισσότεραΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Διακριτού Χρόνου Σειρές Fourier Περιοδική Επέκταση Σήµατος Πεπερασµένης Χρονικής Διάρκειας.
Διαβάστε περισσότεραΚεφάλαιο 5 Μετασχηματισμός z και Συνάρτηση μεταφοράς
Κεφάλαιο Μετασχηματισμός και Συνάρτηση μεταφοράς Σύνοψη Στο κεφάλαιο αυτό δίνεται ο ορισμός του μετασχηματισμού και παρουσιάζονται οι ιδιότητες του μετασχηματισμού Δίνεται ο ορισμός της συνάρτησης μεταφοράς
Διαβάστε περισσότεραHMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 14: Ανάλυση ΓΧΑ συστημάτων (ΙI) Απόκριση συχνοτήτων σε ρητή μορφή Χ (e jω ) Είδαμε ότι (όταν υπάρχει) η απόκριση συχνοτήτων H(e jω ) μπορεί να
Διαβάστε περισσότεραΣύνθεση και Σχεδίαση Παθητικών Φίλτρων LC
Κεφάλαιο 08 Σύνθεση και Σχεδίαση Παθητικών Φίλτρων LC 8. Προκαταρκτικά Στο κεφάλαιο 6 παρουσιάστηκε µια µέθοδος σχεδίασης ενεργών φίλτρων, κατά την οποία από τις προδιαγραφές υπολογίζεται αρχικά, µε µια
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 205-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Εβδοµη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 23/4/206
Διαβάστε περισσότεραΣχεδίαση Ηλεκτρονικών Κυκλωμάτων RF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ηλεκτρονικών Κυκλωμάτων F Ενότητα: Φίλτρα και Επαναληπτικές Ασκήσεις Στυλιανός Μυτιληναίος Τμήμα Ηλεκτρονικής, Σχολή
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ
Διαβάστε περισσότερα(είσοδος) (έξοδος) καθώς το τείνει στο.
Υπενθυμίζουμε ότι αν ένα σύστημα είναι ευσταθές, τότε η απόκριση είναι άθροισμα μίας μεταβατικής και μίας μόνιμης. Δηλαδή, αν το σύστημα είναι ευσταθές όπου και Είθισται, σε ένα σύστημα αυτομάτου ελέγχου
Διαβάστε περισσότερα