Multicast idee. ffl Hariliku punktist punkti edastuse (unicast) puhul saadetakse pakett ühele kindlale adressaadile.
|
|
- Ἰσμήνη Δουρέντης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Multicast idee ffl Hariliku punktist punkti edastuse (unicast) puhul saadetakse pakett ühele kindlale adressaadile. ffl Leviedastuse (broadcast) korral saadetakse pakett mingis piirkonnas kõigile hostidele, mis seda kuulevad. ffl Oleks vaja vahepealset varianti saata paketti mingile hulgale hostidele, kuid teisi mitte tülitada. ffl Selleks on välja mõeldud multiedastus (multicast) viis saata pakett nii, et selle saaksid kätte täpselt need hostid, mis sellest huvitatud on. ffl Multiedastust saab defineerida mitmes erinevas protokollikihis näiteks 2. kihis Etherneti tasemel, 3. kihis IP tasemel. 1
2 Etherneti multicast ffl Toimub ühe Ethernet-võrgu piires, levib seega üle järgurite ja sildade, kuid mitte üle ruuterite. ffl Targematele ethernetikaartidele saab tarkvaraliselt ette anda nimekirja Etherneti aadressidest, mille adapter omadeks tunnistab (s.t. korjab sellise sihtaadressiga paketid üles ja annab edasi ülemisele kihile). ffl Selliste aadresside nimekirja pikkus on piiratud. Kui nimekirja pikkus ületatakse või kui sellise nimekirja tuge pole, kasutatakse multiedastuse emuleerimiseks promiscuous-moodi, kus korjatakse kaablist üles kõik paketid, mida kuuldakse. ffl Osa aadresse on IEEE poolt eraldatud kindlaks otstarbeks. Vabalt kasutatavad multiaadressid on vahemikus C kuni C
3 IP multicast (1) ffl Multiedastuse jaoks on eraldatud aadressivahemik (klass D). 4 esimest bitti aadressis on ühed, ülejäänud 28 bitti moodustavad multicasti grupi numbri (vrdl. multicasti gruppi ja raadiokanalit). ffl Aadressipiirkond on reserveeritud kohaliku leviga gruppide jaoks (s.t. neile aadressidele saadetud pakette ei edastata kunagi ühelt liideselt teisele). ffl IP pakettidel on kaasas TTL väli (time-to-live). Multicasti puhul on TTL väärtustel spetsiaalsed tähendused: 0 kohalik masin 1 kohalik võrk <32 sama site, asutus või osakond <64 sama regioon <128 sama kontinent <192 ülemaailmne, piiratud riba <256 piirangud puuduvad 3
4 IP multicast (2) ffl Reserveeritud aadresse: kõik masinad alamvõrgus kõik ruuterid alamvõrgus kõik DVMRP ruuterid kõik OSPF ruuterid kõik RIPv2 ruuterid... ffl IP multicasti edastamine üle Etherneti: ARP i analoog puudub, IP aadressi madalamad 23 bitti kopeeritakse otse MAC aadressi madalamatesse bittidesse. Selle jaoks on reserveeritud MAC aadresside vahemik E-XX-XX-XX ning nende XX ide asemele see IP aadressi osa kirjutataksegi. ffl 5 bitti jääb kajastamata, seega mingi tõenäosusega tekib kollisioon ning kahe multiaadressi paketid pole eristatavad. Sel juhul eristatakse õigeid pakette valedest sihtpunkti IP aadressi järgi. 4
5 Gruppidega liitumine ja IGMP ffl Ühe segmendi piires on infovahetus lihtne: Λ Vastuvõtja hosti mingi programm liitub mingi grupiga ja jääb multicasti aadressile bind itud pordil kuulama. Grupile vastav MAC aadress lisatakse võrgukaardile oma aadressiks. Λ Saatja saadab paketi multiaadressile. Saadetakse vastav Etherneti kaader. Λ Kaadrit näevad need hostid, millele mõni programm on ühinenud ühega vastavatest IP aadressidest. Kui mõni programm kuulab antud paketi sihtpordil, saab ta paketi kätte. ffl Et pakett leviks ka kaugemale, peavad kõigepealt ruuterid teadma, mis grupid nendega ühendatud võrkudes levivad. Ruuterite teavitamiseks kasutatakse IGMP protokolli (Internet Group Management Protocol). 5
6 Multicasti ruutimine (1) ffl Probleem: missuguseid multicasti pakette kuhu saata (ja kuhu mitte saata). ffl Lihtsameelsed lahendused: üleujutamine (saadame igale poole); üks kindel puukujuline selgroog (alamhulk ruuteritest), mille kaudu käib kogu multicast-liiklus. ffl Lähteaadressil baseeruvad puud. Idee on selles, et ruuterid vahetavad omavahel infot, et teada lühimat teed lähtevõrkudesse. ffl Ruutingutabelites ei määra mitte sihtpunkt järgmist sammu, vaid lähtepunkt määrab eelmise sammu. ffl Kui nüüd pakett tuleb sisse liideselt, kustkaudu ruuteri arvates läheb lühim tee paketi lähtepunkti, siis võetakse pakett vastu ja saadetakse teistel liidestel edasi. Kui pakett saabub mõne teise liidese kaudu, visatakse ta minema. 6
7 Multicasti ruutimine (2) ffl Tahame arvestada ka grupikuuluvusi, et hoida kokku võrguressurssi. ffl Viimase sammu ruuteritel on enda taga olevates võrkudes hetkel kasutatavad grupid teada IGMP tulemusena. Seda infot oleks vaja edasi levitada. ffl Täiendus eelnevale protkollile: toome sisse IGMP analoogi puu pügamiseks. ffl Kui üheski ruuteri taga olevas võrgus pole ükski masin antud grupiga liitunud ning samuti pole teada neis võrkudes ühtegi ruuterit, mis oleks selle grupiga liitunud, saata ülespoole (allika poole) teade prune selle grupi kohta. ffl Selle tulemusena ei saadeta enam vastava grupi pakette alla. ffl Kui on vaja kiiresti jälle kasutama hakata, siis saata üles graft teade, mispeale hakatakse kohe jälle saatma. 7
8 8
9 Multicasti ruutingu protokollid ffl DVMRP (Distance Vector Multicast Routing Protocol) realiseerib lähteaadressil baseeruvad pügamisega puud, RIP i sarnane. ffl MOSPF (Multicast Extensions to OSPF) Lisab multicasti toe üldlevinud OSPF ruutinguprotokollile. ffl PIM (Protocol Independent Multicast) allolevast unicasti ruutinguprotokollist sõltumatu protokollistik (uusim): Λ PIM-SM (Sparse Mode PIM) hõredalt laiali paiknevate süsteemide vaheline ruutinguprotokoll Λ PIM-DM (Dense Mode PIM) tihedalt koos paiknevate süsteemide vaheline ruutinguprotokoll 9
10 MBONE Kogu Internet ei ole veel multiedastuseks võimeline. Eksisteerivad saared, mille piires multiedastus töötab. Hulk selliseid saari on kokku ühendunud virtuaalseks multicast-võrguks nimega MBONE. Saarte ühendamiseks kasutatakse eid: saar 2 saar 1 saar 3 saar 4 saar 5 10
Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid
Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}
Kompleksarvu algebraline kuju
Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa
Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale
Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori
HAPE-ALUS TASAKAAL. Teema nr 2
PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on
Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1
laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad
Funktsiooni diferentsiaal
Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58
Geomeetrilised vektorid
Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse
Lokaalsed ekstreemumid
Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,
9. AM ja FM detektorid
1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid
Ruumilise jõusüsteemi taandamine lihtsaimale kujule
Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D
Kontekstivabad keeled
Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,
28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.
8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,
Ehitusmehaanika harjutus
Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].
Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV
U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS
Ülekandmine on enamasti tehtud liiasusega (töökindlus, erineva rahakoti paksusega side)
( Ingmar Nurmiste ja Oliver Gailan 7.01.98)! " # $ % & & ' ( ) * + ', * * - * # *. ' - + % + ' & & % % / & * - - % 0 1 1 - + % + % 2 %, $ 3 4 0 & # ' * & ' & # & 5, # 3 6 % # 3 * + & * + ' 0 % - %, ' *
ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA
PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem
Multimedia Multicast Protocols
Multimedia Multicast Protocols ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΣ ΙΩΑΝΝΗΣ Τι είναι η πολυεκπομπή (Multicast)? Multicast: Αποστολή πακέτων από έναν αποστολέα σε πολλούς παραλήπτες Πολυμεσικές εφαρμογές: Μετάδοση ραδιοφωνικών
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke
Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika
Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH
Sissejuhatus mehhatroonikasse MHK0120
Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti
2.2.1 Geomeetriline interpretatsioon
2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides
Δρομολόγηση Πολυεκπομπής
ΑΤΕΙ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Μηχανικών Πληροφορικής ΤΕ Δρομολόγηση Πολυεκπομπής ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Νικολαΐδης Στυλιανός (ΑΜ: 1610) Επιβλέπων: ΛΑΡΙΣΑ
Eesti koolinoorte XLIX täppisteaduste olümpiaad
Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. Juhised lahenduste hindamiseks Lp. hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7.
1. Paisksalvestuse meetod (hash)
1. Paisksalvestuse meetod (hash) Kas on otsimiseks võimalik leida paremat ajalist keerukust kui O(log n)? Parem saaks olla konstantne keerukus O(1), mis tähendaks seda, et on kohe teada, kust õige kirje
Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a.
Keemia lahtise võistluse ülesannete lahendused oorem rühm (9. ja 0. klass) 6. november 2002. a.. ) 2a + 2 = a 2 2 2) 2a + a 2 2 = 2a 2 ) 2a + I 2 = 2aI 4) 2aI + Cl 2 = 2aCl + I 2 5) 2aCl = 2a + Cl 2 (sulatatud
Prisma. Lõik, mis ühendab kahte mitte kuuluvat tippu on prisma diagonaal d. Tasand, mis. prisma diagonaal d ja diagonaaltasand (roheline).
Prism Prisms nimese ulu, mille s u on vsvl rlleelsee j võrdsee ülgedeg ulnurgd, ning ülejäänud ud on rööüliud, millel on ummgi ulnurgg üine ülg. Prlleelseid ulnuri nimese rism õjdes j nende ulnurde ülgi
Füüsilise taseme komponendid. Sobiv meedium (sideliin) Liides arvuti ja sideliini vahel (võrgukaart) Võrguseadmed (suunavad ja võimendavad signaale)
OSI füüsiline kiht Füüsilise taseme komponendid Sobiv meedium (sideliin) Liides arvuti ja sideliini vahel (võrgukaart) Võrguseadmed (suunavad ja võimendavad signaale) Signaalid Signaal Ajas ja väärtustelt
Eesti koolinoorte 43. keemiaolümpiaad
Eesti koolinoorte 4. keeiaolüpiaad Koolivooru ülesannete lahendused 9. klass. Võrdsetes tingiustes on kõikide gaaside ühe ooli ruuala ühesugune. Loetletud gaaside ühe aarruuala ass on järgine: a 2 + 6
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.
PLASTSED DEFORMATSIOONID
PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb
Ecophon Square 43 LED
Ecophon Square 43 LED Ecophon Square 43 on täisintegreeritud süvistatud valgusti, saadaval Dg, Ds, E ja Ez servaga toodetele. Loodud kokkusobima Akutex FT pinnakattega Ecophoni laeplaatidega. Valgusti,
HULGATEOORIA ELEMENTE
HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad
Ecophon Line LED. Süsteemi info. Mõõdud, mm 1200x x x600 T24 Paksus (t) M329, M330, M331. Paigaldusjoonis M397 M397
Ecophon Line LED Ecophon Line on täisintegreeritud süvistatud valgusti. Kokkusobiv erinevate Focus-laesüsteemidega. Valgusti, mida sobib kasutada erinevates ruumides: avatud planeeringuga kontorites; vahekäigus
T~oestatavalt korrektne transleerimine
T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning
HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G
HSM TT 1578 EST 682-00.1/G 6720 611 95 EE (0.08) RBLV Sisukord Sisukord Ohutustehnika alased nõuanded 3 Sümbolite selgitused 3 1. Seadme andmed 1. 1. Tarnekomplekt 1. 2. Tehnilised andmed 1. 3. Tarvikud
,millest avaldub 21) 23)
II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.
Τεχνολογία Πολυμέσων. Ενότητα # 16: Πολυεκπομπή Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 16: Πολυεκπομπή Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.
ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΤAMEΙO ΑΡΧΑΙΟΛΟΓΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΑΠΑΛΛΟΤΡΙΩΣΕΩΝ Αθήνα, 07 Μαρτίου 2018 Αρ. Πρωτ.: ΔΙΟΙΚ/Β/2463 ΠΡΟΣ: ΟΛΟΥΣ ΤΟΥΣ ΕΝΔΙΑΦΕΡΟΜΕΝΟΥΣ Διεύθυνση : Διοικητικού
1 Funktsioon, piirväärtus, pidevus
Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks
Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui
Ülesnded j lhendused utomtjuhtimisest Ülesnne. Süsteem oosneb hest jdmisi ühendtud erioodilisest lülist, mille jonstndid on 0,08 j 0,5 ning õimendustegurid stlt 0 j 50. Leid süsteemi summrne ülendefuntsioon.
Andmeanalüüs molekulaarbioloogias
Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.
Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused
Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna
KATEGOORIATEOORIA. Kevad 2010
KTEGOORITEOORI Kevad 2010 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me
Smith i diagramm. Peegeldustegur
Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes
KRITON Platon. Siin ja edaspidi tõlkija märkused. Toim. Tõlkinud Jaan Unt
KRITON Platon AKADEEMIA, 1/1994 lk 57 71 Tõlkinud Jaan Unt SOKRATES: Miks sa nii vara siin oled, Kriton? Või polegi enam vara? KRITON: On küll. SOKRATES: Ja kui vara siis? KRITON: Alles ahetab. SOKRATES:
Kehade soojendamisel või jahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks.
KOOLIFÜÜSIKA: SOOJUS 3 (kaugõppele) 6. FAASISIIRDED Kehade sooendamisel või ahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks. Sooendamisel vaaminev
MATEMAATIKA AJALUGU MTMM MTMM
Õppejõud: vanemteadur Mart Abel Õppejõud: vanemteadur Mart Abel Loenguid: 14 Õppejõud: vanemteadur Mart Abel Loenguid: 14 Seminare: 2 Õppejõud: vanemteadur Mart Abel Loenguid: 14 Seminare: 2 Hindamine:
Juhistikusüsteeme tähistatakse vastavate prantsuskeelsete sõnade esitähtedega: TN-süsteem TT-süsteem IT-süsteem
JUHISTIKUD JA JUHISTIKE KAITSE Madalpingevõrkude juhistiku süsteemid Madalpingelisi vahelduvvoolu juhistikusüsteeme eristatakse üksteisest selle järgi, kas juhistik on maandatud või mitte, ja kas juhistikuga
20. SIRGE VÕRRANDID. Joonis 20.1
κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii
TARTU ÜLIKOOL Teaduskool. Võnkumised ja lained. Koostanud Henn Voolaid
TARTU ÜLIKOOL Teaduskool Võnkumised ja lained Koostanud Henn Voolaid Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes
Kauaoodatud Spore [digi] käes testis Ainuraksest kosmosevallutajaks
Muusika! Uued kõrva sisse käivad klapid üllatavad kvaliteediga Uus kaamera Nikon D90: amatöörile parim Soome elab veel! Peaaegu nagu iphone: Nokia E71 on kiire ja mugav On see printer? HP teeb nalja Maailma
Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013
55 C 35 C A A B C D E F G 50 11 12 11 11 10 11 db kw kw db 2015 811/2013 A A B C D E F G 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi
KATEGOORIATEOORIA. Kevad 2016
KTEGOORITEOORI Kevad 2016 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me
1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud...
Marek Kolk, Tartu Ülikool, 2012 1 Kompleksarvud Tegemist on failiga, kuhu ma olen kogunud enda arvates huvitavat ja esiletõstmist vajavat materjali ning on mõeldud lugeja teadmiste täiendamiseks. Seega
4.1 Funktsiooni lähendamine. Taylori polünoom.
Peatükk 4 Tuletise rakendusi 4.1 Funktsiooni lähendamine. Talori polünoom. Mitmetes matemaatika rakendustes on vaja leida keerulistele funktsioonidele lihtsaid lähendeid. Enamasti konstrueeritakse taolised
sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =
KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α
Δίκτυα Επικοινωνιών ΙΙ : Εισαγωγή στην IPv6 τεχνολογία
Δίκτυα Επικοινωνιών ΙΙ : Εισαγωγή στην IPv6 τεχνολογία Δρ. Απόστολος Γκάμας Διδάσκων 407/80 gkamas@uop.gr Δίκτυα Επικοινωνιών ΙΙ Διαφάνεια 1 1 Περιεχόμενα Αναφορά στις βασικές αρχές του IPv6 Περιορισμοί
Kontrollijate kommentaarid a. piirkondliku matemaatikaolümpiaadi
Kontrollijate kommentaarid 2002. a. piirkondliku matemaatikaolümpiaadi tööde kohta Kokkuvõtteks Uuendusena oli tänavusel piirkondlikul olümpiaadil 10.-12. klassides senise 5 asemel 6 ülesannet, millest
ΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ. Στρώμα δικτύου στο Internet. Δίκτυα Υπολογιστών
ΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ Στρώμα δικτύου στο Internet Παράδοση πακέτων IP Για να παραδοθεί ένα πακέτο IP εμπλέκονται δύο διαφορετικές διεργασίες: 1. Προώθηση: Πώς θα μεταφερθεί το πακέτο από τη διεπαφή εισόδου
Elastsusteooria tasandülesanne
Peatükk 5 Eastsusteooria tasandüesanne 143 5.1. Tasandüesande mõiste 144 5.1 Tasandüesande mõiste Seeks, et iseoomustada pingust või deformatsiooni eastse keha punktis kasutatakse peapinge ja peadeformatsiooni
RF võimendite parameetrid
RF võimendite parameetrid Raadiosageduslike võimendite võimendavaks elemendiks kasutatakse põhiliselt bipolaarvõi väljatransistori. Paraku on transistori võimendus sagedusest sõltuv, transistor on mittelineaarne
Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults
TARTU ÜLIKOOL Teaduskool Alalisvooluringid Koostanud Kaljo Schults Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes on
8. KEEVISLIITED. Sele 8.1. Kattekeevisliide. Arvutada kahepoolne otsõmblus terasplaatide (S235J2G3) ühendamiseks. F = 40 kn; δ = 5 mm.
TTÜ EHHATROONIKAINSTITUUT HE00 - ASINATEHNIKA -, 5AP/ECTS 5 - -0-- E, S 8. KEEVISLIITED NÄIDE δ > 4δ δ b k See 8.. Kattekeevisiide Arvutada kahepoone otsõmbus teraspaatide (S5JG) ühendamiseks. 40 kn; δ
Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD
Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD 1 Nõudmised krüptoräsidele (Hash-funktsionidele) Krüptoräsiks nimetatakse ühesuunaline funktsioon
MATEMAATILISEST LOOGIKAST (Lausearvutus)
TARTU ÜLIKOOL Teaduskool MATEMAATILISEST LOOGIKAST (Lausearvutus) Õppematerjal TÜ Teaduskooli õpilastele Koostanud E. Mitt TARTU 2003 1. LAUSE MÕISTE Matemaatilise loogika ühe osa - lausearvutuse - põhiliseks
Kuressaare Vanalinna Kool. Informaatika õppematerjal esimesele ja teisele kooliastmele. Koostas: Eha Kask Pildid joonistas: Anne Metsamaa
Informaatika õppematerjal esimesele ja teisele kooliastmele Koostas: Pildid joonistas: Anne Metsamaa Uuendatud Kuressaares 2010 6 Kas Internet on ohtlik? Aga mis see informaatika veel on? Kohe vaatame!!
ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ. Στρώμα δικτύου στο Internet. Δίκτυα Υπολογιστών
ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ Στρώμα δικτύου στο Internet Παράδοση πακέτων IP Για να παραδοθεί ένα πακέτο IP εμπλέκονται δύο διαφορετικές διεργασίες: 1. Προώθηση: Πώς θα μεταφερθεί το πακέτο από τη διεπαφή εισόδου
1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD
1. Reaalarvud 1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD Arvu mõiste hakkas kujunema aastatuhandeid tagasi, täiustudes ja üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki
Sissejuhatus. Kinemaatika
Sissejuhatus Enamuse füüsika ülesannete lahendamine taandub tegelikult suhteliselt äikese hulga ideede rakendamisele (öeldu kehtib ka teiste aldkondade, näiteks matemaatika kohta). Seega on aja õppida
ΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ. Στρώμα δικτύου στο Internet. Δίκτυα Υπολογιστών
ΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ Στρώμα δικτύου στο Internet Δίκτυα Υπολογιστών Εισαγωγή To IP (Internet Protocol) είναι το πρωτόκολλο του στρώματος δικτύου στο διαδίκτυο Η τρέχουσα έκδοση είναι η 4 (IPv4) Ορίζεται στο
ΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ. Στρώμα δικτύου στο Internet. Δίκτυα Υπολογιστών
ΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ Στρώμα δικτύου στο Internet Δίκτυα Υπολογιστών Εισαγωγή To IP (Internet Protocol) είναι το πρωτόκολλο του στρώματος δικτύου στο διαδίκτυο Η τρέχουσα έκδοση είναι η 4 (IPv4) Ορίζεται στο
KOLMAPÄEV, 15. DETSEMBER 2010
15-12-2010 1 KOLMAPÄEV, 15. DSEMBER 2010 ISTUNGI JUHATAJA: Jerzy BUZEK president 1. Osaistungjärgu avamine (Istung algas kell 08.35) 2. Komisjoni 2011. aasta tööprogrammi tutvustamine (esitatud resolutsiooni
M-Bus näidik / andmeloger
MR004FA / MR004DL M-Bus näidik / andmeloger Kasutusjuhend ja tehniline pass M-Bus displei / M-Bus andmeloger 60 lõppseadme jaoks M-Bus andmekogur* Valikuvahemikud1 minut 1 aasta* Pisteliste kontrollkuupäevade
ALGEBRA I. Kevad Lektor: Valdis Laan
ALGEBRA I Kevad 2013 Lektor: Valdis Laan Sisukord 1 Maatriksid 5 1.1 Sissejuhatus....................................... 5 1.2 Maatriksi mõiste.................................... 6 1.3 Reaalarvudest ja
Milline navi on Androidi
Testis HTC uus Sensation Mida teha Windowsitahvelarvutiga? Dell tegi odava suure puutetundliku kuvari Sony Vaio proovib olla MacBook Nr 75, juuli 2011 Hind 2.79 ; 43.65 kr Kellel on Eestis levi? Suur suvine
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed
Δίκτυα Επικοινωνιών ΙΙ: Δρομολόγηση στο Διαδίκτυο, RIP, OSPF
Δίκτυα Επικοινωνιών ΙΙ: Δρομολόγηση στο Διαδίκτυο, RIP, OSPF Δρ. Απόστολος Γκάμας Διδάσκων 407/80 gkamas@uop.gr Δίκτυα Επικοινωνιών ΙΙ Διαφάνεια 1 1 RIP: Routing Information Protocol Συμπεριλήφθηκε στην
5. TUGEVUSARVUTUSED PAINDELE
TTÜ EHHTROONKNSTTUUT HE00 - SNTEHNK.5P/ETS 5 - -0-- E, S 5. TUGEVUSRVUTUSE PNELE Staatika üesandes (Toereaktsioonide eidmine) vaadatud näidete ause koostada taade sisejõuepüürid (põikjõud ja paindemoment)
Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27
Suhteline salajasus Peeter Laud peeter l@ut.ee Tartu Ülikool TTÜ, 11.12.2003 p.1/27 Probleemi olemus salajased sisendid avalikud väljundid Program muud väljundid muud sisendid mittesalajased väljundid
Kõrv vastu arvutit: testis 2.1 arvutikõlarid
Microsofti telefoni- Windows on tagasi Testime Nikoni uut D7000 kaamerat Kinect teeb mängud täitsa uueks Uputame ja togime Samsungi matkafoni Nr 69, jaanuar 2011 Hind 42.90 kr; 2.74 Kõrv vastu arvutit:
Matemaatilised ja trigonomeetrilised funktsioonid
Matemaatilised ja trigonomeetrilised funktsioonid Alustame nüüd Exceli põhiliste töövahenditega - funktsioonidega. Võtame esimesena sihikule Matemaatilised ja trigonomeetrilised funktsioonid. Kuigi kogu
Multicasting In Broadband Networks
Multicasting In Broadband Networks Σερκετζής Βασίλειος 17 Ιανουαρίου 2008 Πανεπιστήμιο Μακεδονίας ΠΜΣ Πληροφοριακά Συστήματα Τεχνολογίες Τηλεπικοινωνιών & Δικτύων Καθηγητής: Α.Α. Οικονομίδης Master Information
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS Nooem aste (9. ja 10. klass) Tallinn, Tatu, Kuessaae, Nava, Pänu, Kohtla-Jäve 11. novembe 2006 Ülesannete lahendused 1. a) M (E) = 40,08 / 0,876 = 10,2 letades,
Energiabilanss netoenergiavajadus
Energiabilanss netoenergiajadus 1/26 Eelmisel loengul soojuskadude arvutus (võimsus) φ + + + tot = φ φ φ juht v inf φ sv Energia = tunnivõimsuste summa kwh Netoenergiajadus (ruumis), energiakasutus (tehnosüsteemis)
Funktsioonide õpetamisest põhikooli matemaatikakursuses
Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,
Kas Androidi ostmiseks on õige aeg? Eesti esimene võrdlustest!
Uus ipod Nano Nüüd kaamera ja raadioga Pentax K7 Mida arvata järjekordsest kaamerast? Odav ja hea ka Poola värk Poolakate telefoni käib kaks SIM-kaarti Säästuaeg Testis ilma jalata kuvar Kas Androidi ostmiseks
Analüütilise geomeetria praktikum II. L. Tuulmets
Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga
Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist
Loeng 2 Punktide jaotus: kodutööd 15, nädalatestid 5, kontrolltööd 20+20, eksam 40, lisapunktid Kontrolltööd sisaldavad ka testile vastamist P2 - tuleb P1 lahendus T P~Q = { x P(x)~Q(x) = t} = = {x P(x)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΑΝΤΙΠΡΥΤΑΝΗΣ Υπηρεσία Πληροφορικής και Επικοινωνιών Περιφερειακής Διεύθυνσης Ρόδου Πληροφορίες: Θεολόγος Τσιγάρος Τηλ. 2241099166 Φαξ:2241099044 rhodes_ype@aegean.gr Μυτιλήνη : 2/12/2013
Β. Μάγκλαρης.
ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ Δρομολόγηση Επιπέδου IP στο Internet Άμεση Έμμεση Δρομολόγηση Δρομολόγηση εντός Αυτόνομης Περιοχής (IGP) Δρομολόγηση μεταξύ Αυτονόμων Περιοχών (BGP) Αλγόριθμοι Distance Vector (Bellman)
6.6 Ühtlaselt koormatud plaatide lihtsamad
6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline
STM A ++ A + A B C D E F G A B C D E F G. kw kw /2013
Ι 47 d 11 11 10 kw kw kw d 2015 811/2013 Ι 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi 2010/30/ täiendavates määrustes () nr 811/2013,
SISUKORD 1. SISSEJUHATUS FÜÜSIKASSE 2. FÜÜSIKA UURIMISMEETOD
SISUKORD 1. SISSEJUHATUS FÜÜSIKASSE 1.1. MAAILM, LOODUS JA FÜÜSIKA 8 1.1.1. Füüsika põhikoolis ja gümnaasiumis................... 8 1.1.2. Inimene, maailm ja maailmapilt.................... 10 1.1.3. Loodus
2017/2018. õa keemiaolümpiaadi lõppvooru ülesannete lahendused klass
217/218. õa keemiaolümpiaadi lõppvooru ülesannete lahendused 11. 12. klass 1. a) Vee temperatuur ei muutu. (1) b) A gaasiline, B tahke, C vedel Kõik õiged (2), üks õige (1) c) ja d) Joone õige asukoht
DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.
Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka