Matemaatilised ja trigonomeetrilised funktsioonid
|
|
- Γεώργιος Αλεξάνδρου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Matemaatilised ja trigonomeetrilised funktsioonid Alustame nüüd Exceli põhiliste töövahenditega - funktsioonidega. Võtame esimesena sihikule Matemaatilised ja trigonomeetrilised funktsioonid. Kuigi kogu Excel on suur matemaatika, siis siin grupis vaatame kuidas ümardada, summeerida, leida absoluutväärtusi, võtta ruutjuurt jne. Kõiki funktsioone ei jõua läbi vaadata, kuid vaatame neist enimkasutatavaid. Peatüki lõpust leiad sellesse gruppi kuuluvate funktsioonide nimekirja. Excel 2010 on siia gruppi lisanud ka kolm uut funktsiooni: AGGREGATE CEILING.PRECISE FLOOR.PRECISE Arvu ümardamine Excel annab hulgi erinevaid ümardamise funktsioone, millega töötada. Kuigi põhimõte on neil üks - ümardamine - siis igaüks võib sõltuvalt arvust käituda erinevalt. ROUND(), ROUNDUP(), ROUNDDOWN() Kõige sagedamini kasutatav ümardamisfunktsioon on ROUND(). See funktsioon nõuab kahte argumenti - arvu ennast ja komakohtade arvu. Arvud 1-4 ümardatakse allapoole ja 5-9 ülespoole =ROUND(arv; kohtade_arv) Näiteks soovime ümardada arvu 3,987 kaks kohta pärast koma, saame tulemuseks 3,99 =ROUND(3,987;2) Kui lisate kohtade arvuna 0, siis ümardatakse lähima täisarvuni. Lisades kohtade arvu miinusena, siis ümardatakse lähima 10, 100, 1000 jne. Näiteks 123,987 kohtade arvuga -1, saame tulemuseks 120 =ROUND(123,987;-1) Sarnaselt ROUND() funktsioonile töötavad ka ROUNDUP() ja ROUNDDOWN(). Nende kahe erinevus on see ROUNDUP() ümaradab alati ülespoole ja ROUNDDOWN() alati allapoole. =ROUNDUP(3,987;2) //tulemuseks 3,99 =ROUNDDOWN(3,987;2) //tulemuseks 3,98 1
2 MROUND(), CEILING(), FLOOR() MROUND() funktsioon ümardab arvu etteantud täpsusega. Funktsiooni süntaks sarnaneb eelmisele =MROUND(arv; kordne) Näiteks võtame arvu 123 ja ümardame lähima kordseni 5 - tulemuseks 125 =MROUND(123;5) Kasuta antud funktsiooni näiteks rahasummade ümardamiseks viiesendise täpsesuga. =MROUND(123,942;0,05) //tulemuseks 123,95 CEILING() ja FLOOR() töötavad nagu MROUND(), kusjuures CEILING() ümardab ülespoole ja FLOOR() allapoole. =CEILING(123,942;0,05) //tulemuseks 123,95 =FLOOR(123,942;0,05) //tulemuseks 123,90 Oluline on tähele panna, et kordse lisamisel on arv sama märgiline. Kui üks on positiivne ja teine negatiivne, siis saame #NUM! veateate. Excel 2010 võimaldab meil selleks kasutada CEILING.PRECISE() ja FLOOR.PRECISE() funktsioone. =CEILING.PRECISE(123,942;-0,05) //tulemuseks 123,95 =FLOOR.PRECISE(123,942;-0,05) //tulemuseks 123,90 INT(), TRUNC() INT() on funktsioon, mis tegelikult ei ümarda. See eemaldab arvu murdosa ning kuvab ainult selle täisosa. =INT(12,999) //tulemuseks 12 Sarnaselt INT() funktsioonile töötab TRUNC() funktsioon, kuid see võimaldab määrata ka komakohtade arvu, mida kasutaja soovib alles jätta. =TRUNC(12,999;1) //tulemuseks 12,9 Kasuta seda näiteks pii väärtuse lihtsustamiseks. =TRUNC(PI();2) //tulemuseks 3,14 2
3 EVEN(), ODD() EVEN() on funktsioon, mis ümardab positiivse aru ülespoole ja negatiivse allapoole lähima paaris täisarvuni. =EVEN(12,654) //tulemuseks 14 ODD() seevastu ümardab lähima paaritu täisarvuni. =ODD(12,654) //tulemuseks 13 Arvutamine arvu massiividega Suurte andmetega on Excelis hulk funktsioone, mis lihtsustab nendega arvutamist, teha kokkuvõtteid ja pidada statistikat. Neist osa me juba vaatasime aga kordame üle SUM() SUM() on funktsioon, mis summeerib kõik etteantud arvud või nende massiivid. Selle süntaks on väga lihtne: =SUM(arvud_või_lahtrivahemik) Näiteks vahemikus A1 kuni C10 olevate arvude kokkuliitmiseks kasutame funktsiooni =SUM(A1:C10) Kui andmed asuvad vahemikus A1:A10 ja C1:C10, siis SUM() funktsioon lubab kokku liita ka mitut vahemikku =SUM(A1:A10;C1:C10) Vahemiku võib sisestada nö "käsitsi" või hiirega lohistades. Mitme vahemiku määramiseks hoia all Ctrl-klahvi. PRODUCT() PRODUCT() on funktsioon, mis võimaldab massiivi arve omavahel korrutada. Selle süntaks sarnaneb SUM() funktsioonile. =PRODUCT(arvud_või_lahtrivahemik) Näliteks vahemikus B1:B10 olevate arvude korrutamiseks kirjutan järgmise funktsiooni. 3
4 =PRODUCT(B1:B10) SUMIF() Järgmiseks tahan tutvustada summeerimise funktsiooni, kus arvud liidetakse siis kokku, kui need vastavad mõnele tingimusele. Jagaksin asjade selgitamise kaheks. Esimesel juhul kasutaksin süntaksit: =SUMIF(vahemik;kriteerium) See tähendab, et kui antud vahemikus vastavad arvud sinu poolt seatud tingimusele, siis need liidetakse. Vaatame järgmist pilti: Liidame kokku arvud, mis on võrdsed 400'ga - siis kirjutame järgmise funktsiooni =SUMIF(B2:B12;400) Kui proovida hoopis kokku liita kõik arvud, mis on üle 1000, sel juhul tuleks ">1000" lisada jutumärkidesse. =SUMIF(B2:B12;">1000") 4
5 SUMIF() funktsiooni on võimalik edasi arendada, kasutades järgmist süntaksit: =SUMIF(otsitav_vahemik;kriteerium;tulemus) See tähendab, et esimesest vahemikust otsitakse vastavalt tingimusele mõnda kirjet, ja kui leitakse, siis antakse tulemuse vahemikust selle väärtus. Keeruline? Vaatame sama näidet. Meil on tabelis müügimehed ja nende tehtud tehingud. Et teada saada, kui palju müüs Jüri kokku, siis kasutame järgmist funktsiooni. =SUMIF(A2:A12;"Jüri";B2:B12) NB! Tekstid lisatakse jutumärkide vahele! Aritmeetika Nüüd näitan hunniku matemaatikast tuntud aritmeetikatehteid, mis on Excelis kiirelt funktsioonidega teostatavad 5
6 FACT() Leiab arvust faktoriaali. Näiteks 3! = 1*2*3 = 6 =FACT(3) POWER() POWER() funktsioon tõstab soovitud arvu astmesse. Näiteks 4^3=64 =POWER(4;3) Jah, nagu näites kirjas saab selle esitada ^ - märgiga, mille saab Ctrl+Ä abil SQRT() SQRT() tagastab antud ruutjuure. Näiteks ruutjuur 9, saame vastuseks 3 =SQRT(9) QUOTIENT() QUOTIENT() eraldab jagatisest täisarvulise osa. Näiteks 100/6 = 16,6667, kuid kui kasutada seda funktsiooni siis saame tulemuseks 16. =QUOTIENT(100;6) MOD() MOD() funktsioon töötab eelmisele funktsioonile vastupidiselt. Nimelt tagastab jagatisest jäärgi. Näiteks 100/6 jääk on 4. =MOD(100;6) Kasuta seda funktsiooni näiteks sellisel juhul, kui meil on teada, et tooteid ühte karpi mahub 6 ja meil on 100 toodet. Siis kasutades seda funktsiooni, saame teada, et 4 toodet jääb üle. MOD() funktsiooni saab kasutada ka paaris ja paaritu arvu leidmisel. St. et kui jagada arv 2'ga ja jääk on null, siis on tegemist paarisarvuga ja kui jääl on 1, siis paarituarvuga. =IF(MOD(100;2)=0;"paaris";"paaritu") PI() PI() funktsioon genereerib meile pii väärtuse 3, =PI() RAND() ja RANDBETWEEN() 6
7 Need funktsioonid otseselt meile midagi ei arvuta, kuid on kasulikud suvaliste arvude väljamõtlemisel. RAND() funktsioon genereerib meile murdarvu, mis jääb 0 ja ühe vahele. Näiteks: 0, =RAND() Seevastu RANDBETWEEN() genereerib suvalise täisarvu, teie poolt antud vahemikule. Näiteks, et saada arve , pane kirja järgmine funktsioon. =RANDBETWEEN(10;500) Genereeritud arvud ei ole staatilised - vaid muutuvad tegutsedes. Võite ise testida kui klikite nuppu F9 (värskenda). Et saada genereeritud arvud staatiliseks tuleb need kopeerida ja kleepida nende väärtused. ROMAN() Kui juhtub, et millegipärast on vaja meie araabianunber teisendada roomanumbriks, siis võta kasutusele just see funktsioon. Näiteks soovin teada kuidas on aasta 2011 roomanumbrites, siis antud funktsioon väljastab mulle XXMI =ROMAN(2011) AGGREGATE() Lisan selle uue Excel 2010 funktsiooni AGGREGATE() eraldi pealkirja alla. Kui trükite funktsiooni nime Excelisse, siis esialgu võib tekkinud vihje olla arusaamatu. Seega proovn selle teha paari näitega selgeks. Võtame näiteks tabeli töötajate palkadega ning lõpus on summad kokku liidetud =SUM() funktsiooniga. Nüüd soovin ära peita Jüride palgad, et teised kenasti välja printida. Kuigi peidsin Jüride read kenasti ära, jäi lõppsumma ikka samaks, mis annab väljaprinditud lehel valet infot. 7
8 Siinkohal tulebki appi AGGREGATE() funktsioon. Funktsiooni esimese parameetrina tuleb kirja panna millist funktsiooni kavatsen kasutada - hetkel SUM(), mis tähistatakse nr 9'ga. Seejärel küsitakse, mida soovin soovin ignoreerida - hetkel soovin ignoreerida peidetud ridu. 8
9 Viimasena märgista arvude massiiv, mida soovid kokku liita. Nüüd kui ridu peita ja tuua peidust välja muudetakse ka kogusummat - nr 5 =AGGREGATE(9;5;B2:B12) Sama lugu on näiteks veateadetega. Kui sul on sattunud arvutusse viga, siis AGGREGATE() saab ignoreerida ka seda. Sellisel juhul valin suvandiks nr 7 =AGGREGATE(9;7;B2:B12) Trigonomeetria Nagu kõik juba teavad, siis trigonomeetria tegeleb kolmnurga külgede ja nurkade vaheliste seoste arvutamisega. Excelis on olemas kõikvõimalikud siinus, koosinus, tangensi jt funktsioonid. Vaatame mõnda praktilist näidet. Näide 1 9
10 Oletame, et meil on täisnurkne kolmnurk, mille alumine külg on 5cm ja nurk = 32. Leida oleks vaja kolmnurga kõrgus b. Kuna meil on teada valem, siis sellest saame tuletada järgmise valemi. Excelisse lisamisel viime nurga radiaanidesse. =5*TAN(RADIANS(32) Pärast Enter vajutust, peaks vastus olema 3,12cm Matemaatilised ja trigonomeetrilised funktsioonid Funktsioon ABS ACOS ACOSH ASIN ASINH ATAN ATAN2 ATANH CEILING COMBIN COS COSH DEGREES EVEN EXP FACT Kirjeldus Annab vastuseks arvu absoluutväärtuse. Annab vastuseks arvu arkuskoosinuse. Annab vastuseks arvu arkushüperboolse koosinuse. Annab vastuseks arvu arkussiinuse. Annab vastuseks arvu arkushüperboolse siinuse. Annab vastuseks arvu arkustangensi. Annab vastuseks arkustangensi x- ja y-koordinaatide alusel. Annab vastuseks arvu arkushüperboolse tangensi. Ümardab arvu lähima täisarvuni või ümardusaluse lähima kordseni. Annab vastuseks antud arvu objektide kombinatsioonide arvu. Annab vastuseks arvu koosinuse. Arvutab arvu hüperboolse koosinuse. Teisendab radiaanid kraadideks. Ümardab arvu ülespoole lähima paaristäisarvuni. Annab vastuseks e antud astmes. Annab vastuseks arvu faktoriaali. 10
11 FACTDOUBLE FLOOR GCD INT LCM LN LOG LOG10 MDETERM MINVERSE MMULT MOD MROUND MULTINOMIAL ODD PI POWER PRODUCT QUOTIENT RADIANS Annab vastuseks arvu topeltfaktoriaali. Ümardab arvu allapoole, nulli suunas. Annab vastuseks suurima ühisjagaja. Ümardab arvu allapoole lähima täisarvuni. Annab vastuseks vähima ühiskordse. Annab vastuseks arvu naturaallogaritmi. Annab vastuseks arvu logaritmi määratud alusel. Annab vastuseks arvu kümnendlogaritmi. Annab vastuseks massiivi maatriksi determinandi. Annab vastuseks massiivi pöördmaatriksi. Annab vastuseks kahe massiivi maatrikskorrutise. Annab vastuseks jagatise jäägi. Annab vastuseks ümardusaluse lähima kordseni ümardatud arvu. Annab vastuseks arvuhulga multinoomi. Ümardab arvu ülespoole lähima paaritu täisarvuni. Annab vastuseks pii (π) väärtuse. Annab vastuseks astendatud arvu. Korrutab antud argumente. Annab vastuseks jagatise täisarvulise osa. Teisendab kraadid radiaanideks. RAND Annab vastuseks juhusliku arvu vahemikus 0 kuni 1. RANDBETWEEN ROMAN ROUND ROUNDDOWN ROUNDUP SERIESSUM SIGN SIN SINH SQRT SQRTPI SUBTOTAL SUM SUMIF Annab vastuseks juhusliku arvu teie määratud arvude vahemikus. Teisendab araabia numbri tekstina esitatud rooma numbriks. Ümardab arvu määratud kümnendkohtade arvuni. Ümardab arvu allapoole, nulli suunas. Ümardab arvu ülespoole, nullist eemale. Annab vastuseks valemil põhineva astmerea summa. Annab vastuseks arvu märgi. Annab vastuseks antud nurga siinuse. Annab vastuseks arvu hüperboolse siinuse. Annab vastuseks arvu ruutjuure. Annab vastuseks ruutjuure korrutisest (arv * π). Annab vastuseks loendi või andmebaasi vahekokkuvõtte. Liidab argumendid. Liidab antud kriteeriumidega määratud lahtrid. 11
12 SUMIFS SUMPRODUCT SUMSQ SUMX2MY2 SUMX2PY2 SUMXMY2 TAN TANH TRUNC AGGREGATE (uus) CEILING.PRECISE (uus) FLOOR.PRECISE (uus) Lisab lahtrid mitmele kriteeriumile vastavasse vahemikku. Annab vastuseks vastavate massiivikompomentide korrutiste summa. Annab vastuseks argumentide ruutude summa. Annab vastuseks kahe massiivi vastavate väärtuste ruutude vahede summa. Annab vastuseks kahe massiivi vastavate väärtuste ruutude summade summa. Annab vastuseks kahe massiivi vastavate väärtuste vahede ruutude summa. Annab vastuseks arvu tangensi. Annab vastuseks arvu hüperboolse tangensi. Kärbib arvu murdosa. Annab vastuseks loendis või andmebaasis kokkuvõtte. Ümardab arvu lähima täisarvuni või ümardusaluse lähima kordseni. Arv ümardatakse ülespoole sõltumata arvu märgist. Ümardab arvu allapoole lähima täisarvuni või ümardusaluse lähima kordseni. Arv ümardatakse allapoole sõltumata arvu märgist. 12
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58
Lokaalsed ekstreemumid
Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,
Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale
Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori
Ruumilise jõusüsteemi taandamine lihtsaimale kujule
Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on
Kompleksarvu algebraline kuju
Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa
Excel Statistilised funktsioonid
Excel2016 - Statistilised funktsioonid Statistilised funktsioonid aitavad meil kiiresti leida kõige väiksemat arvu, keskmist, koguarvu, tühjaks jäänud lahtreid jne jne. Alla on lisatud sellesse gruppi
,millest avaldub 21) 23)
II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.
Funktsiooni diferentsiaal
Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral
HAPE-ALUS TASAKAAL. Teema nr 2
PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused
2.2.1 Geomeetriline interpretatsioon
2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides
Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1
laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad
sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =
KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke
Geomeetrilised vektorid
Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse
Aritmeetilised ja loogilised operaatorid. Vektor- ja maatriksoperaatorid
Marek Kolk, Tartu Ülikool Viimati muudetud : 6.. Aritmeetilised ja loogilised operaatorid. Vektor- ja maatriksoperaatorid Aritmeetilised operaatorid Need leiab paletilt "Calculator" ja ei vaja eraldi kommenteerimist.
1 Funktsioon, piirväärtus, pidevus
Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks
9. AM ja FM detektorid
1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid
PLASTSED DEFORMATSIOONID
PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning
Ehitusmehaanika harjutus
Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative
ΠΕΡΙΕΧΟΜΕΝΑ Microsoft Office Excel 2003 Θεωρία - Συναρτήσεις - VBA - Εφαρµογές
ΠΕΡΙΕΧΟΜΕΝΑ Microsoft Office Excel 2003 Θεωρία - Συναρτήσεις - VBA - Εφαρµογές ΜΕΡΟΣ Ι: ΘΕΩΡΙΑ 1. Εισαγωγή Υπολογιστικά Φύλλα 17 Τι είναι το Microsoft office Excel 2003 18 Ξεκινώντας το Microsoft office
ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA
PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem
Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008
Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub
Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika
Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika
KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
4 Τύποι Τελεστές και Συναρτήσεις Τύποι 67 Τελεστές 71 Συναρτήσεις 73 Εφαρµογή µε Συναρτήσεις 79
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Microsoft Office Excel 2007 Θεωρία - Συναρτήσεις - VBA - Εφαρµογές ΜΕΡΟΣ Ι: ΘΕΩΡΙΑ 1 Εισαγωγή στο Excel 2007 Υπολογιστικά Φύλλα 17 Τι είναι το Microsoft Excel 2007 18 Νέα και ιαφορές
Matemaatika VI kursus Tõenäosus, statistika KLASS 11 TUNDIDE ARV 35
Matemaatika VI kursus Tõenäosus, statistika Permutatsioonid, kombinatsioonid ja variatsioonid. Sündmus. Sündmuste liigid. Klassikaline tõenäosus. Geomeetriline tõenäosus. Sündmuste liigid: sõltuvad ja
Sissejuhatus mehhatroonikasse MHK0120
Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti
DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.
Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka
KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
4.1 Funktsiooni lähendamine. Taylori polünoom.
Peatükk 4 Tuletise rakendusi 4.1 Funktsiooni lähendamine. Talori polünoom. Mitmetes matemaatika rakendustes on vaja leida keerulistele funktsioonidele lihtsaid lähendeid. Enamasti konstrueeritakse taolised
Andmeanalüüs molekulaarbioloogias
Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.
Mathematica kasutamine
mathematica_lyhi_help.nb 1 Mathematica kasutamine 1. Sissejuhatus Programmi Mathematica avanemisel pole programmi tuum - Kernel - vaikimisi käivitatud. Kernel on programmi see osa, mis tegelikult teostab
Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών
Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών Σκοπός Να αναπτύξουν ένα πρόγραμμα όπου θα επαναλάβουν τα βήματα ανάπτυξης μιας παραθυρικής εφαρμογής.
SORTEERIMINE JA FILTREERIMINE
Praktikum 3 Tänase praktikumi teema on andmetabelite filtreerimine ja kokkuvõtvate tabelite loomine, juttu tulebka mõningatest pisut nutikamatest funktsioonidest keskmiste ja vaatluste arvu arvutamisel.
ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)
ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας
6.6 Ühtlaselt koormatud plaatide lihtsamad
6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].
1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud...
Marek Kolk, Tartu Ülikool, 2012 1 Kompleksarvud Tegemist on failiga, kuhu ma olen kogunud enda arvates huvitavat ja esiletõstmist vajavat materjali ning on mõeldud lugeja teadmiste täiendamiseks. Seega
Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV
U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS
Funktsioonide õpetamisest põhikooli matemaatikakursuses
Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,
Kontekstivabad keeled
Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,
7.7 Hii-ruut test 7.7. HII-RUUT TEST 85
7.7. HII-RUUT TEST 85 7.7 Hii-ruut test Üks universaalsemaid ja sagedamini kasutust leidev test on hii-ruut (χ 2 -test, inglise keeles ka chi-square test). Oletame, et sooritataval katsel on k erinevat
Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid
Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}
20. SIRGE VÕRRANDID. Joonis 20.1
κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii
Eesti koolinoorte XLIX täppisteaduste olümpiaad
Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. Juhised lahenduste hindamiseks Lp. hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7.
HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G
HSM TT 1578 EST 682-00.1/G 6720 611 95 EE (0.08) RBLV Sisukord Sisukord Ohutustehnika alased nõuanded 3 Sümbolite selgitused 3 1. Seadme andmed 1. 1. Tarnekomplekt 1. 2. Tehnilised andmed 1. 3. Tarvikud
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH
1. Paisksalvestuse meetod (hash)
1. Paisksalvestuse meetod (hash) Kas on otsimiseks võimalik leida paremat ajalist keerukust kui O(log n)? Parem saaks olla konstantne keerukus O(1), mis tähendaks seda, et on kohe teada, kust õige kirje
Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused
Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna
Eesti LIV matemaatikaolümpiaad
Eesti LIV matemaatikaolümpiaad 31. märts 007 Lõppvoor 9. klass Lahendused 1. Vastus: 43. Ilmselt ei saa see arv sisaldada numbrit 0. Iga vähemalt kahekohaline nõutud omadusega arv sisaldab paarisnumbrit
Kitsas matemaatika-3 tundi nädalas
Kitsas matemaatika-3 tundi nädalas Õpitulemused I kursus-arvuhulgad. Avaldised. Võrrand, võrratus. 1) eristab ratsionaal-, irratsionaal- ja reaalarve; 2) eristab võrdust, samasust, võrrandit ja võrratust;
Eesti koolinoorte XLI täppisteaduste olümpiaad
Eesti koolinoorte XLI täppisteaduste olümpiaad MATEMAATIKA III VOOR 6. märts 994. a. Lahendused ja vastused IX klass.. Vastus: a) neljapäev; b) teisipäev, kolmapäev, reede või laupäev. a) Et poiste luiskamise
Sisukord. 2 Programmeerimiskeel C
Veiko Sinivee 2 Programmeerimiskeel C Sisukord Sissejuhatus...1 Programmeerimiskeel C...1 C - keele programmi ehitusest...4 Abiprogramm MAKE...13 Enamkasutatavad funktsioonid...16 Funktsioonid printf()
TTÜ informaatikainstituut. Tutvumine Pythoniga
TTÜ informaatikainstituut Tutvumine Pythoniga Python on lihtne kuid võimas programmeerimiskeel, mis leiab üha laiemat kasutamist väga erineva iseloomuga rakenduste loomiseks. Tegemist on vabavaralise tarkvaraga.
Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD
Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD 1 Nõudmised krüptoräsidele (Hash-funktsionidele) Krüptoräsiks nimetatakse ühesuunaline funktsioon
TTÜ informaatikainstituut. Tutvumine Pythoniga
TTÜ informaatikainstituut Tutvumine Pythoniga Python on lihtne kuid võimas programmeerimiskeel, mis leiab üha laiemat kasutamist väga erineva iseloomuga rakenduste loomiseks. Tegemist on vabavaralise tarkvaraga.
Ehitusmehaanika. EST meetod
Ehitusmehaanika. EST meetod Staatikaga määramatu kahe avaga raam /44 4 m q = 8 kn/m 00000000000000000000000 2 EI 4 EI 6 r r F EI p EI = 0 kn p EI p 2 m 00 6 m 00 6 m Andres Lahe Mehaanikainstituut Tallinna
3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE
3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3.1. Loendamise põhireeglid Kombinatoorika on diskreetse matemaatika osa, mis uurib probleeme, kus on tegemist kas diskreetse hulga mingis mõttes eristatavate osahulkadega
Algebraliste võrrandite lahenduvus radikaalides. Raido Paas Juhendaja: Mart Abel
Algebraliste võrrandite lahenduvus radikaalides Magistritöö Raido Paas Juhendaja: Mart Abel Tartu 2013 Sisukord Sissejuhatus Ajalooline sissejuhatus iii v 1 Rühmateooria elemente 1 1.1 Substitutsioonide
1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD
1. Reaalarvud 1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD Arvu mõiste hakkas kujunema aastatuhandeid tagasi, täiustudes ja üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki
Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui
Ülesnded j lhendused utomtjuhtimisest Ülesnne. Süsteem oosneb hest jdmisi ühendtud erioodilisest lülist, mille jonstndid on 0,08 j 0,5 ning õimendustegurid stlt 0 j 50. Leid süsteemi summrne ülendefuntsioon.
Kehade soojendamisel või jahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks.
KOOLIFÜÜSIKA: SOOJUS 3 (kaugõppele) 6. FAASISIIRDED Kehade sooendamisel või ahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks. Sooendamisel vaaminev
Data Analysis με το Microsoft Excel 2019 syllabus v1.0
Data Analysis με το Microsoft Excel 2019 syllabus v1.0 σελίδα2 DATA ANALYSIS με το Microsoft Excel 2019 1. Βασικές γνώσεις στο Excel 1. Βασικές Λειτουργίες 2. Κελιά 3. Φύλλα εργασίας 4. Ονόματα περιοχών
Trigonomeetria gümnaasiumis
Trignmeetria gümnaasiumis Hannes Jukk, Tartu Ülikl Trignmeetria võib meile tähendada kahte pisut erinevat matemaatikavaldknda. Ajalliselt n see tähendanud esmalt klmnurkade mõõtmise ja lahendamisega senduvat
Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27
Suhteline salajasus Peeter Laud peeter l@ut.ee Tartu Ülikool TTÜ, 11.12.2003 p.1/27 Probleemi olemus salajased sisendid avalikud väljundid Program muud väljundid muud sisendid mittesalajased väljundid
28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.
8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,
1 Reaalarvud ja kompleksarvud Reaalarvud Kompleksarvud Kompleksarvu algebraline kuju... 5
1. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, 2013-14. 1 Reaalarvud ja kompleksarvud Sisukord 1 Reaalarvud ja kompleksarvud 1 1.1 Reaalarvud................................... 2 1.2 Kompleksarvud.................................
Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln Ül.
Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln.6 I kursus NÄIDISTÖÖ nr.: Astmed.. Arvutada avaldise täpne väärtus. 8 * (,8)
KCalci käsiraamat. Bernd Johannes Wuebben Pamela Roberts Anne-Marie Mahfouf Tõlge eesti keelde: Marek Laane
Bernd Johannes Wuebben Pamela Roberts Anne-Marie Mahfouf Tõlge eesti keelde: Marek Laane 2 Sisukord 1 Sissejuhatus 5 2 Kasutamine 6 2.1 Kasutamisest üldiselt.................................... 6 2.2 Lihtne
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed
Vektorid. A=( A x, A y, A z ) Vektor analüütilises geomeetrias
ektorid Matemaatikas tähistab vektor vektorruumi elementi. ektorruum ja vektor on defineeritud väga laialt, kuid praktikas võime vektorit ette kujutada kui kindla arvu liikmetega järjestatud arvuhulka.
Mathcadi tööleht ja vormistamisvahendid
Marek Kolk, Tartu Ülikool Viimati muudetud : 6.1.15 Mathcadi tööleht ja vormistamisvahendid Mathcad töötab üldjoontes sarnaselt teistele Windowsi programmidele. Sellegipoolest on palju pisikesi nüansse,
Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise
Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja
Tuletis ja diferentsiaal
Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.
MATEMAATILISEST LOOGIKAST (Lausearvutus)
TARTU ÜLIKOOL Teaduskool MATEMAATILISEST LOOGIKAST (Lausearvutus) Õppematerjal TÜ Teaduskooli õpilastele Koostanud E. Mitt TARTU 2003 1. LAUSE MÕISTE Matemaatilise loogika ühe osa - lausearvutuse - põhiliseks
Ατταλείας 9 Ν. μύρνη 17123 Τηλ. (210) 93 70 032 Fax 93 47 234 697.2014 286 ΙΝΤΕRΝΕΤ web site: http://www.ergotech.gr e-mail: nkyra@tee.
ÍÉÊÏËÁÏÓ Ð. ÊÕÑÁÍÁÊÏÓ ÔïðïãñÜöïò Ìç áíéêüò Å.Ì.Ð. Åñãïë. Äçìïóßùí ñãùí Ìç.Ëïãéóìéêïý ÅËÊÅÐÁ Ατταλείας 9 Ν. μύρνη 17123 Τηλ. (210) 93 70 032 Fax 93 47 234 697.2014 286 ΙΝΤΕRΝΕΤ web site: http://www.ergotech.gr
2. HULGATEOORIA ELEMENTE
2. HULGATEOORIA ELEMENTE 2.1. Hulgad, nende esitusviisid. Alamhulgad Hulga mõiste on matemaatika algmõiste ja seda ei saa def ineerida. Me võime vaid selgitada, kuidas seda abstraktset mõistet endale kujundada.
MateMaatika õhtuõpik
Matemaatika õhtuõpik 1 2 Matemaatika õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline
Ecophon Line LED. Süsteemi info. Mõõdud, mm 1200x x x600 T24 Paksus (t) M329, M330, M331. Paigaldusjoonis M397 M397
Ecophon Line LED Ecophon Line on täisintegreeritud süvistatud valgusti. Kokkusobiv erinevate Focus-laesüsteemidega. Valgusti, mida sobib kasutada erinevates ruumides: avatud planeeringuga kontorites; vahekäigus
MATEMAATIKA AJALUGU MTMM MTMM
Õppejõud: vanemteadur Mart Abel Õppejõud: vanemteadur Mart Abel Loenguid: 14 Õppejõud: vanemteadur Mart Abel Loenguid: 14 Seminare: 2 Õppejõud: vanemteadur Mart Abel Loenguid: 14 Seminare: 2 Hindamine:
ALGEBRA I. Kevad Lektor: Valdis Laan
ALGEBRA I Kevad 2013 Lektor: Valdis Laan Sisukord 1 Maatriksid 5 1.1 Sissejuhatus....................................... 5 1.2 Maatriksi mõiste.................................... 6 1.3 Reaalarvudest ja
IKT vahendite kasutamisest gümnaasiumi matemaatikakursuste õpetamisel
IKT vahendite kasutamisest gümnaasiumi matemaatikakursuste õpetamisel Allar Veelmaa, Loo Keskkool Gümnaasiumi riiklik õppekava 1 (edaspidi GRÕK) järgi võib õpilane valida kitsa ja laia matemaatikakursuse
6 Mitme muutuja funktsioonid
6 Mitme muutu funktsioonid Reaalarvude järjestatud paaride (x, ) hulga tasandi punktide hulga vahel on üksühene vastavus, st igale paarile vastab üks kindel punkt tasandil igale tasandi punktile vastavad
Sisukord. 4 Tõenäosuse piirteoreemid 36
Sisukord Sündmused ja tõenäosused 5. Sündmused................................... 5.2 Tõenäosus.................................... 8.2. Tõenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni
Υπολογιστικά Συστήματα
Υπολογιστικά Συστήματα Ενότητα 1: Εισαγωγικά Μαθήματος & Κυριότερες Συναρτήσεις του Microsoft Excel 2010 Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
1 MTMM Kõrgem matemaatika, eksamiteemad 2014
1 MTMM.00.188 Kõrgem matemaatika, eksamiteemad 2014 Eksamitöö annab kokku 80 punkti ja ülesanded jagunevad järgmisse kuude gruppi: P1 ( 10p ) - ülesanded I kontrolltöö põhiteemade peale; P2 ( 10p ) - ülesanded
Veaarvutus ja määramatus
TARTU ÜLIKOOL Tartu Ülikooli Teaduskool Veaarvutus ja määramatus Urmo Visk Tartu 2005 Sisukord 1 Tähistused 2 2 Sissejuhatus 3 3 Viga 4 3.1 Mõõteriistade vead................................... 4 3.2 Tehted
Analüütilise geomeetria praktikum II. L. Tuulmets
Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga
ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION)
. 1 (INTERPOLATION) A a 1x1 [ ] Sin[ A] [ Sin[ a]], Cos[ A] [ Cos[ a]], Tan[ A] [ Tan[ a]], Cot[ A] [ Cot[ a]]. a x + yi x, y R Sin[ a] Cosh[ y] Sin[ x] + Cos[ x] Sinh[ y] i Cos[ a] Cos[ x] Cosh[ y] Sin[
Eesti LV matemaatikaolümpiaad
Eesti LV matemaatikaolümpiaad 2. veebruar 2008 Piirkonnavoor Kommentaarid Kokkuvõtteks Selleaastast komplekti võib paremini õnnestunuks lugeda kui paari viimase aasta omi. Lõppvooru pääsemise piirid protsentides
Wilcoxoni astakmärgitest (Wilcoxon Signed-Rank Test)
Peatükk 2 Wilcoxoni astakmärgitest (Wilcoxon Signed-Rank Test) 2.1 Motivatsioon ja teststatistik Wilcoxoni astakmärgitesti kasutatakse kahe s~oltuva valimi v~ordlemiseks. Oletame näiteks, et soovime v~orrelda,
Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist
KOOLIFÜÜSIKA: MEHAANIKA (kaugõppele). KINEMAATIKA. Ühtlane liikumine Punktmass Punktmassiks me nimetame keha, mille mõõtmeid me antud liikumise juures ei pruugi arestada. Sel juhul loemegi keha tema asukoha
4 T~oenäosuse piirteoreemid Tsentraalne piirteoreem Suurte arvude seadus (Law of Large Numbers)... 32
Sisukord 1 Sündmused ja t~oenäosused 4 1.1 Sündmused................................... 4 1.2 T~oenäosus.................................... 7 1.2.1 T~oenäosuse arvutamise konkreetsed meetodid (üldise
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS Nooem aste (9. ja 10. klass) Tallinn, Tatu, Kuessaae, Nava, Pänu, Kohtla-Jäve 11. novembe 2006 Ülesannete lahendused 1. a) M (E) = 40,08 / 0,876 = 10,2 letades,
Sisukord. 3 T~oenäosuse piirteoreemid Suurte arvude seadus (Law of Large Numbers)... 32
Sisukord Sündmused ja t~oenäosused 4. Sündmused................................... 4.2 T~oenäosus.................................... 7.2. T~oenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni
Algoritmid ja andmestruktuurid Ülesannete kogu
TARTU ÜLIKOOL ARVUTITEADUSE INSTITUUT Algoritmid ja andmestruktuurid Ülesannete kogu Versioon 1.0 5. juuli 2016. a. 17:06 Koostajad: Ahti Peder Jüri Kiho Härmel Nestra Tartu 2016 Käesoleva õppevahendi
Ainevaldkond Matemaatika
Ainevaldkond Matemaatika 1 Matemaatikapädevus Matemaatika õpetamise eesmärk gümnaasiumis on matemaatikapädevuse kujundamine, see tähendab suutlikkust tunda matemaatiliste mõistete ja seoste süsteemsust;