KAMATNE STOPE: IZRAŽAVANJE, PRINCIPI, KRETANJE
|
|
- Ήράκλειτος Δεσποτόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 POGLAVLJE VI Finansijska tržišta ta i institucije KAMATNE STOPE: IZRAŽAVANJE, PRINCIPI, KRETANJE
2 Ciljevi predavanja Objasniti Teoriju raspoloživih fondova (Loanable Funds Theory) određivanja kamatnih stopa Identifikovati glavne faktore koji utiču na nivo kamatnih stopa Objasniti kako možemo predviđati kamatne stope
3 Značaj aj kretanja kamatnih stopa Promene kamatnih stopa utiču na realnu privredu Investiciona potrošnja Potrošnja zavisna od kamatnih stopa hipotekarni krediti Promene kamatnih stopa utiču na vrednost svih hartija od vrednosti Cene hartija od vrednosti kreću se suprotno od kretanja kamatnih stopa Kretanje kamatnih stopa utiče na penzione fondove i penzije Kretanje kamatnih stopa utiče na vrednost finansijskih institucija Menadžeri finansijskih institucija pomno prate kretanje kamatnih stopa Kamatni rizik je glavni rizik koji utiče na finansijske institucije
4 Teorija raspoloživih fondova Teorija o tome kako se formira opšti nivo kamatnih stopa Objašnjava kako ekonomski i drugi faktori utiču na promene kamatnih stopa Kamatne stope su određene na bazi ponude i tražnje za raspoloživim fondovima
5 Teorija raspoloživih fondova, nastavak Tražnja = uzimaoci zajma, emitenti HOV, deficitarni sektor Ponuda = davaoci zajma, finansijski investitori, kupci HOV, suficitarni sektor Pretpostavlja da je privreda podeljena na sektore Nagib krivih tražnje/ponude vezan je za elastičnost ili osetljivost kamatnih stopa
6 Privredni sektori Sektor domaćinstva Obično neto snabdevač raspoloživih fondova Poslovni sektor U periodima privrednog rasta, obično neto potražilac raspoloživih fondova Državni sektor obično neto potražilac raspoloživih fondova Sektor inostranstvo Neto snabdevač raspoloživih fondova u zemljama koje su, poput naše zemlje, uvoznici kapitala
7 Tražnja za raspoloživim fondovima Kamatna stopa Količina raspoloživih fondova Tražena količina je obrnuto srazmerna kretanju kamatne stope. Druge varijable mimo kamatnih stopa izazivaju pomeranje u krivi tražnje
8 Teorija raspoloživih fondova Tražnja domaćinstava za raspoloživim fondovima Postoji obrnuto srazmerna veza između kamatnih stopa i tražnje za raspoloživim fondovima
9 Teorija raspoloživih fondova Poslovna tražnja za raspoloživim fondovima Preduzeća biraju sve projekte sa +NSV(NPVs) Ako se kamatne stope smanje, više projekata će imati pozitivnu NPV o Preduzeća će trebati veći iznos finansiranja o Preduzeća će tražiti više raspoloživih fondova Postoji obrnuto srazmerna veza između kamatnih stopa i tražnje za raspoloživim fondovima
10 Teorija raspoloživih fondova Državna tražnja za raspoloživim fondovima Državni troškovi i poreska politika su nezavisni od kamatnih stopa Tražnja države za raspoloživim fondovima je kamatno neelastična Kamatna Stopa D Količina raspoloživih fondova
11 Teorija raspoloživih fondova Tražnja stranaca za raspoloživim fondovima Strana tražnja za domaćim fondovima zavisi od razlike između inostranih i domaćih kamatnih stopa. Strana tražnja za domaćim raspoloživim fondovima će biti obrnuto srazmerna kretanju domaćih kamatnih stopa
12 Teorija raspoloživih fondova Agregatna tražnja za raspoloživim fondovima Agregatna tražnja je suma traženih količina od strane svih sektora privrede Agregatna tražnja raspoloživih fondova je inverzno zavisna od kamatnih stopa
13 Ponuda raspoloživih fondova Domaćinstva su glavni snabdevači raspoloživih fondova Preduzeća i država mogu uglavnom privremeno Sektor inostranstvo kod zemalja uvoznica kapitala Centralna banka monetarnom politikom utiče na ponudu raspoloživih fondova Ponuđena količina direktno srazmerna nivou kamatnih stopa Druge varijabile mimo kamatnih stopa utiču na pomeranje krive ponude
14 Ponuda raspoloživih fondova Kamatna stopa S Količina raspoloživih fondova
15 Teorija raspoloživih fondova Ravnotežna kamatna stopa Agregatna tražnja T A = T s + T p +T d + T i Agregatna ponuda P A = P s + P p + P d + P i U ravnoteži, T A = P A
16 Grafički prikaz Kamatna Stopa Ponuda raspol. fondova Tražnja za raspol. fondovima Količina raspoloživih fondova
17 Teorija raspoloživih fondova Grafički prikaz U neravnoteži, tržišne sile će izazvati prilagođavanje kamatnih stopa do postizanja ravnoteže o Primer: kamatna stopa iznad ravnoteže o Višak raspoloživih fondova o Kamatna stopa pada o Ponuđena količina će biti smanjena, tražena količina će biti povećana do postizanja ravnoteže
18 Promene kamatnih stopa + direktno zavisne od nivoa ekonomske aktivnosti ili stope rasta ekonomske aktivnosti + direktno zavisne od očekivane inflacije Fisher-ov efekat o Nominalne kamatne stope = Zbir realnih kamatnih stopa plus očekivane stope inflacije k n = k r + π e Inverzno zavisne od promene ponude novca
19 Kretanje realnih kamatnih stopa, inf., i kamatnih stopa na tržištu tu drž.ob. u SAD 20 Annualized Real Interest Rate 15 Annualized Inflation 10 Annualized T-Bill Rate Godina
20 Ekonomske sile koje utiču u na kamatne stope Kretanje privrednog rasta Inflacija Ponuda novca Državni budžetski deficit Inostrani finansijski tokovi
21 Predviđanje kretanja kamatnih stopa Pokušaji da se predvide promene u tražnji/ponudi Predvideti akitivnosti ekonomskog sektora i uticaj na tražnju/ponudu raspoloživih fondova Predvideti efekte prirasta na kamatne stope Predviđanje kamatnih stopa je složeno
22 Zaključak ak: Ključni faktori od uticaja na kamatne stope Ekonomski rast Uvećanje rasta; rast tražnje za raspoloživim fondovima; rast kamatne stope Očekivana inflacija cene HOV padaju; kamatne stope rastu Državni budžeti Deficit rast uzimanja zajmova; cene HOV padaju, kamatne stope rastu, crowding-out efekat Suficit opada uzimanje zajmova; cena HOV raste; kamatne stope padaju Rast inostrane ponude raspoloživih fondova cene HOV rastu; kamatne stope padaju.
Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković
Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs
Ravnotežni model koji je u osnovi savremene finansijske teorije Izveden primenom principa diversifikacije pod pojednostavljenim pretpostavkama
CAPM Model vrednovanja kapitala (CAPM) Ravnotežni model koji je u osnovi savremene finansijske teorije Izveden primenom principa diversifikacije pod pojednostavljenim pretpostavkama Markowitz, Sharpe,
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
TROŠAK KAPITALA Predmet: Upravljanje finansijskim odlukama i rizicima Profesor: Dr sci Sead Mušinbegovid Fakultet za menadžment i poslovnu ekonomiju
TROŠAK KAPITALA Predmet: Upravljanje finansijskim odlukama i rizicima Profesor: Dr sci Sead Mušinbegovid Fakultet za menadžment i poslovnu ekonomiju Sadržaj predavnaja: Trošak kapitala I. Trošak duga II.
TRŽIŠTE NOVCA I DEVIZNO TRŽIŠTE
POGLAVLJE VIII Finansijska tržišta ta i institucije TRŽIŠTE NOVCA I DEVIZNO TRŽIŠTE Ciljevi predavanja Definisanje tržišta novca Definisanje učesnika na tržištu novca Objasnićemo karakteristike finansijskih
INFLACIJA I DEFICIT JAVNE POTROŠNJE
INFLACIJA I DEFICIT JAVNE POTROŠNJE Prof. dr Jovo Jednak Prof. dr Jovo Jednak 1 Šta je inflacija, nivo cena i vrednost novca 1. Šta je inflacija? Neuravnoteženost izmeñu tražnje i ponude dobara može uzrokovati
Rečnik pojmova acikličnost apresijacija (deviznog kursa) agregatna tražnja arbitraža prostorna arbi- agregatna proizvodna funkcija traža
Rečnik pojmova U ovom rečniku dajemo kratke definicije ključnih pojmova navedenih na kraju svakog poglavlja. Brojevi u zagradi oznaka su odgovarajućeg poglavlja. acikličnost (14): neka ekonomska varijabla
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
KRATAK SADRŽAJ. Deo 1 Uvod u poslovne finansije 1 Poglavlje 1 Pregled poslovnih finansija 2
KRATAK SADRŽAJ Deo 1 Uvod u poslovne finansije 1 Poglavlje 1 Pregled poslovnih finansija 2 Deo 2 Ključni koncepti u poslovnim finansijama 18 Poglavlje 2 Analiza finansijskih izveštaja 19 Poglavlje 3 Finansijsko
Mašinsko učenje. Regresija.
Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
ZADACI 18. Blanchard. 3. Pretpostavite slijedeće IS-LM jednadžbe: M P. E pri čemu je E
1 ZDCI 18 Blanchard 1. Nominalni devizni tečaj, realni devizni tečaj, strana i domaća inflacija Koristeći definiciju realnog deviznog tečaja (i matematički dodatak u knjizi) možete, pokazati da vrijedi
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Rešenja parnih zadataka
Rešenja parnih zadataka Poglavlje 2 2. BDP pada, jer se njen rad ne plaća. 4. BDP raste za a11,000, tj za 10% od vrednosti prodaje, što predstavlja kompenzaciju trgovca nekretninama.on pruža uslugu i time
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Elementi finansijskog sistema
Elementi finansijskog sistema Finansijsko tržište Finansijski instrumenti Finansijske institucije Finansijski instrumenti 1. Hartije od vrednosti a) osnovne hartije od vrednosti dužničke Vlasničke b)
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Ekonometrija 4. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković
Ekonometrja 4 Ekonometrja, Osnovne studje Predavač: Aleksandra Nojkovć Struktura predavanja Nelnearne zavsnost Prmene u ekonomskoj analz Prmer nelnearne zavsnost Isptujemo zavsnost zmeđu potrošnje dohotka.
Korporativne finansije
Ekonomski fakultet u Podgorici Magistarske studije Smjer Finansije i bankarstvo II generacija Korporativne finansije Prof. Saša Popović Blok 2: Vrijednost, cijena i rizik Osnovna pitanja Zašto se akcije
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
TEST 1: OSNOVI EKONOMIJE
TEST 1: OSNOVI EKONOMIJE 1. Ekonomija je nauka koja istražuje ekonomske zakone u oblasti: A) proizvodnje, raspodele, razmene i potrošnje B) politike i ekonomije C) markoekonomije i monetarne politike (novca)
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
53. Ponuda: definicija i vrste ponude; Skala, kriva i funkcija ponude; Tržišna ponuda; Translacija krive ponude.
EKONOMIJA skripta za II kolokvijum sa svim graficima by Jokan 2016 (osnova by Stepke 2013 - www.puskice.org) 53. Ponuda: definicija i vrste ponude; Skala, kriva i funkcija ponude; Tržišna ponuda; Translacija
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
VREMENSKO VREDNOVANJE NOVCA
VREMENSKO VREDNOVANJE NOVCA KRATKOROČNI FINANSIJSKI MENADŽMENT OBUHVATA PROBLEMATIKU PITANJA: Dali je bolje sada imati novac i ostvariti poznati prinos ili ga imati u budućnosti sa očekivanim prinosom?
Sadržaj. Noviji makroekonomski trendovi. Ekonomska politika i reforme
Prezentacija QM51 Sadržaj Noviji makroekonomski trendovi Ekonomska politika i reforme Osvrt 1: Merenje kvaliteta privrednog rasta, Mirjana Gligorić i Biljana Jovanović Gavrilović Osvrt 2: Od čega zavisi
Monetarna ekonomija. Nastanak i pojam novca
Monetarna ekonomija Kako me mrzi da učim i iz svojih i sa tuđih svesaka i kopiranih strana skapirao sam da mi je lakše da sve lepo iskucam i onda čitam kao čovek. Ukoliko ovo pomoge još nekome tim bolje.
KAPITALA I LEVERAGE. Prof. dr Predrag Stančić redovan profesor Ekonomski fakultet Kragujevac
TEORIJE STRUKTURE KAPITALA I LEVERAGE Prof. dr Predrag Stančić redovan profesor Ekonomski fakultet Kragujevac pstancic@kg.ac.rs Rizik i levridž (leverage) Rizik poslovne aktivnosti odslikava varijabilnost
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
GODIŠNJI IZVJEŠTAJ GLAVNOG EKONOMISTE GODINA
GODIŠNJI IZVJEŠTAJ GLAVNOG EKONOMISTE 2010. GODINA Podgorica, 2011. godine IZDAVAČ: WEB ADRESA: SAVJET CENTRALNE BANKE: PRIPREMA: GRAFIČKI UREDNIK: ŠTAMPA: TIRAŽ: Centralna banka Crne Gore Bulevar Svetog
MAKROEKONOMIJA. 13. siječnja 2007.
MAKROEKONOMIJA 13. siječnja 2007. 1 UVOD I OSNOVNI POJMOVI 1 1 UVOD I OSNOVNI POJMOVI Bruto domaći proizvod (BDP) - Mjera ukupnog proizvoda u računima nacionalnog dohotka tijekom danog razdoblja 1. BDP
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
ZADACI ZA VEZBE1 MENADZERSKO RACUNOVODSTVO BEOGRADSKA POSLOVNA SKOLA VISOKA SKOLA STRUKOVNIH STUDIJA
ZADACI ZA VEZBE1 MENADZERSKO RACUNOVODSTVO BEOGRADSKA POSLOVNA SKOLA VISOKA SKOLA STRUKOVNIH STUDIJA ZADATAK BR. 1 Na osnovu podataka preduzeca Valsacor u 2010.godinisastaviti bilans stanja i bilans uspeha
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
OSNOVE KAMATNIH STOPA
OSNOVE KAMATNIH STOPA U delu gradiva pod nazivom osnove kamatnih stopa proučavaćemo: Pjam i suštinu kamatnih stopa Ponašanje kamatnih stopa Rizičnu i ročnu strukturu kamatnih stopa Razumevanje kamatnih
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
SEKTOR ZA ISTRAŽIVANJA I STATISTIKU IZVJEŠTAJ O KRETANJU CIJENA II KVARTAL GODINE
SEKTOR ZA ISTRAŽIVANJA I STATISTIKU IZVJEŠTAJ O KRETANJU CIJENA II KVARTAL 2006. GODINE Godina II, broj 5 IZDAVAČ: WEB ADRESA: PRIPREMA: GRAFIČKI UREDNIK: Centralna banka Crne Gore Bulevar Svetog Petra
FISKALNU STRATEGIJU ZA GODINU SA PROJEKCIJAMA ZA I GODINU
Na osnovu člana 31. stav 1, tačka 1), podtačka (13) Zakona o budžetskom sistemu ( Službeni glasnik RS, br. 54/09, 73/10, 101/10, 101/11 i 93/12), Vlada usvaja FISKALNU STRATEGIJU ZA 2013. GODINU SA PROJEKCIJAMA
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Trigonometrijske nejednačine
Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja
CENA KAPITALA PREDUZEĆA
CENA KAPITALA PREDUZEĆA Prof. dr Predrag Stančić redovan profesor Ekonomski fakultet Kragujevac pstancic@kg.ac.rs CENE POJEDINAČNIH IZVORA FINANSIRANJA Dva suprotna toka gotovine tok primanja, nastao po
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
Analiza makroekonomskih faktora RS i FBiH
ANALIZA Analiza makroekonomskih faktora RS i FBiH Rezime Iako zvanični podaci još nisu objavljeni, postojeće procjene sugerišu da je došlo do pada vrijednosti BDP-a RS u prošloj godini. Raspoložive procjene
PITANJA IZ MAKROEKONOMIJE:
PITANJA IZ MAKROEKONOMIJE: 1. GDP a) Na koje sve načine možemo doći do BDP-a (GDP-a). Ukratko iz opišite? Do GDP-a možemo doći na 3 načina: - mjerenje GDP-a preko potrošnje: mjerimo ukupnu potrošnju dobara
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
POTPUNA KONKURENCIJA I MAKSIMIRANJE PROFITA
POTPUNA KONKURENCIJA I MAKSIMIRANJE PROFITA PREDAVANJE 9 Prof. dr Jovo Jednak Prof.dr Jovo Jednak 1 Ekonomski, računovodstveni i normalni ili nulti ekonomski profit i maksimiranje profita Profit ekonomski,
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Teorija i analiza ekonomske politike
Pojam ekonomske politike Teorija i analiza ekonomske politike EKONOMSKA POLITIKA predstavlja skup mjera i instrumenata države kojima se usmjeravaju privredni subjekti radi ostvarenja privrednih ciljeva.
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Osnovi ekonometrije - Glava 7
Osnovi ekonometrije - Glava 7 Osnovne studije Predavač: Aleksandra Nojković Struktura predavanja Klasični višestruki linearni regresioni model-posebne teme: Testiranje linearnih ograničenja na parametre
Finansijske institucije tržišta kapitala Jedna od značajnih faza u razvoju tržišta kapitala jeste jačanje uloge finansijskih institucija. Banke prikup
Osnovne karakteristike tržišta kapitala Faktori razvoja tržišta kapitala: - povoljne performanse plasmana na duži rok, - rast finansijskog potencijala nedepozitnih finansijskih institucija - deregulacija
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
1. Navedite tri glavne funkcije finansijskog menadžmenta i objasnite ih
1. Navedite tri glavne funkcije finansijskog menadžmenta i objasnite ih 2. Tržišna cena akcije preduzeća predstavlja osnovni reper procene vrednosti preduzeća jer uzima u obzir nekoliko faktora koje maksimizacija
PITANJA IZ MIKROEKONOMIJE, školska 2014/2015
PITANJA IZ MIKROEKONOMIJE, školska 2014/2015 1. Šta se označava izrazima oskudno dobro (rijetko dobro, scarce good), slobodno dobro i ekonomsko dobro? 2. U čemu se ogledaju prednosti slobodne tržišne alokacije
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
Izbor statističkih testova Ana-Maria Šimundić
Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog
Moguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)
(Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom
Uvod u neparametarske testove
Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
TEORIJA BETONSKIH KONSTRUKCIJA 79
TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
Ciklus leveridža. Master rad. Tijana Čorak. mentor: prof. dr Nataša Krejić UNIVERZITET U NOVOM SADU PRIRODNO - MATEMATIČKI FAKULTET DEPARTMAN ZA
UNIVERZITET U NOVOM SADU PRIRODNO - MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Master rad Tijana Čorak Novi Sad, 2017 mentor: prof. dr Nataša Krejić SADRŽAJ Sadržaj 1 Predgovor 3 2 Pojam
Sistemi veštačke inteligencije primer 1
Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati
NOVAC I INSTRUMENTI MONETARNE POLITIKE. PREDAVANJE 20 Prof. dr Jovo Jednak
NOVAC I INSTRUMENTI MONETARNE POLITIKE PREDAVANJE 20 Prof. dr Jovo Jednak NOVAC U prošlosti je novac bio raznih oblika i od različitih materijala. Trampa. Danas novac je jedino zakonsko sredstvo razmene
1. DESET PRINCIPA EKONOMIJE. Copyright 2004 South-Western/Thomson Learning
1. DESET PRINCIPA EKONOMIJE Reč ekonomija (privreda) potiče od grčke reči (oικονομικος = oikonomikos) što znači onaj koji upravlja domaćinstvom. Svako domaćinstvo kao i privreda treba da donesu odluke